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Introduction: Red ginseng (RG), a traditional herbal remedy, has garnered 
attention owing to its diverse health benefits resulting from its complex 
composition. However, extensive research is needed to substantiate the efficacy 
of RG and understand the underlying mechanisms supporting these benefits. This 
study aimed to identify potential biomarkers and investigate the impact of RG on 
related metabolic pathways in horse plasma using liquid chromatography–mass 
spectrometry (LC–MS)-based metabolomics.

Methods: Ten horses were divided into control and RG groups, with the latter 
administered RG at a dose of 600  mg⋅kg−1⋅day−1 for 3  weeks. Subsequently, 
the plasma samples were collected and analyzed using LC–MS. Multivariate 
statistical analysis, volcano plots, and feature-based molecular networking were 
employed.

Results: The analysis identified 16 metabolites that substantially decreased and 
21 metabolites that substantially increased following RG consumption. Among 
the identified metabolites were oleanolic acid, ursolic acid, and ginsenoside 
Rb1, which are known for their antioxidant and anti-inflammatory properties, 
as well as lipid species that influence sphingolipid and glycerophospholipid 
metabolism. Additionally, potential biomarkers, including major RG components, 
demonstrated distinct group clustering in principal component analysis and 
partial least squares-discriminant analysis, indicating their utility in assessing the 
physiological effects of RG consumption.

Discussion: This study contributes to a comprehensive understanding of the 
effects of RG on health.
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1 Introduction

Red ginseng (RG) is a medicinal herb traditionally used as a supplement for centuries in 
various treatments, owing to its composition of polyacetylenes, polysaccharides, 
sesquiterpenes, peptidoglycans, nitrogen-containing compounds, phenolic compounds, and 
vitamins (1). RG has been the subject of extensive scientific research due to its potential health 
benefits. The active components of RG exhibit diverse biological effects, including anti-
inflammatory, antitumor, antidiabetic, antioxidant, and anti-stress activities in various tissues 
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(2–5). These properties underscore the potential of RG as an 
alternative medicine for preventing and treating a range of diseases, 
including cardiovascular, metabolic, neurological, and hepatic 
disorders (2–5).

However, there are various perspectives on the precise 
mechanisms and metabolic pathways underlying the diverse effects of 
RG (6). To comprehensively understand these effects, a systematic 
investigation into the molecular mechanisms of its constituents is 
essential. Mass spectrometry offers a comprehensive and sensitive 
approach for substance detection, and liquid chromatography–mass 
spectrometry (LC–MS)-based metabolomics provides new insights 
into the efficacy of RG (7–12). A systematic analysis of metabolic 
responses of RG, along with a detailed examination of its mechanisms 
(13), is crucial to elucidate the synergistic effects of its different 
components, assess its safety, and gain a deeper understanding of 
complex molecular mechanisms of RG (14).

Current efforts to evaluate the health effects of RG often rely on 
studying changes in blood metabolites, predominantly using rodent 
models (1, 15). However, to understand benefits of RG in humans, it 
is crucial to consider interspecies specificity. Therefore, experimental 
evidence from diverse species is imperative to align these results with 
human outcomes (16).

Studying the effects of RG consumption in healthy horses and 
evaluating specific biomarkers can provide valuable information. First, 
it can validate the effects of RG on health. Second, it can assess 
individual physiological responses, enabling personalized health 
management (17). Third, specific biomarkers can be monitored to 
confirm the safety of long-term RG consumption and assess any 
potential side effects (18). Fourth, it can aid in the early prediction and 
prevention of potential health issues (19). Lastly, studying changes in 
specific biomarkers can elucidate the physiological effects of RG, 
contributing to a more comprehensive understanding of its 
mechanisms of action (20).

This study aimed to investigate, for the first time, the effect of RG 
consumption on horse plasma metabolites and to identify potential 
biomarkers associated with RG intake. Using LC–MS-based 
metabolomics, this study explored alterations in metabolic pathways 
and the potential physiological effects of RG. These findings suggest 
that specific metabolites, including ginsenosides, May serve as 
potential biomarkers to assess the effects of RG on health.

2 Materials and methods

2.1 Red ginseng consumption in horses

Ten-adult Thoroughbred horses were randomly divided into two 
groups of five horses each. All horses in the study were bred and 
supervised under the same conditions on a farm for a minimum of 
1 year. The trial group received ground RG (600 mg⋅kg−1⋅day−1) mixed 
with molasses as a carrier every morning for 3 weeks, while the control 
group received only the carrier. All horses ad libitum access to food 
and water throughout the study period. In the third week, 
venipuncture was performed in the morning following overnight 
fasting. Twenty milliliters of blood were drawn into heparin tubes (BD 
Vacutainer®). Animal protocols were approved by the Institutional 
Animal Care and Use Committee of the Korea Racing Authority (KRA 
IACUC-2207-AEC-2207).

2.2 Data mining and preprocessing

The materials, sample preparation, and analysis methods are 
described in Supplementary material S1. The workflow chart for the 
study is shown in Supplementary Figure S1. Excel files (including 
features such as m/z values, retention times, and peak area 
information) for omics analysis, along with MGF format files for 
metabolite annotation and feature-based molecular networking 
(FBMN), were generated and exported from MZmine 3 (version 
3.9.0). The data were calibrated using internal standards. Outliers were 
removed using a filter based on the QC function, and the dataset was 
preprocessed through log-transformation and Pareto-normalization 
in MetaboAnalyst 5.0 (21).

2.3 Peak annotation using in silico methods

Peak annotation was performed using SIRIUS version 5.8.3 
software (22). MS1 and MS2 peak fragmentation patterns were 
interpreted with ZODIAC, CSI: FingerID, and CANOPUS using the 
ClassyFire and NPClassifier modules. All the datasets were used for 
tentative identification. For the potential identification of biomarkers, 
COSMIC, ZODIAC, and confidence scores were comprehensively 
considered. Candidates with a ZODIAC score of 50% or lower or a 
SIRIUS score of <50% without an accompanying ZODIAC score were 
excluded from the analysis. A comprehensive approach was employed 
to verify additional biomarkers using the Human Metabolome 
Database (HMDB, https://hmdb.ca/), mzCloud (https://www.
mzcloud.org), and Lipid Maps (https://www.lipidmaps.org) databases, 
and a literature review. To facilitate pattern verification and data 
visualization, FBMN was employed (23). MGF files were uploaded to 
the Global Natural Product Social Molecular Networking (GNPS) 
platform (23).1 FBMN was conducted under the following conditions: 
minimum pair cosine score, 0.5; network topology, 10; and maximum 
connected component size, 100. The FBMN data were visualized and 
annotated using Cytoscape 3.10.1 software (San Diego, CA, 
United States).

2.4 Statistical and enrichment analysis

Principal component analysis (PCA) and partial least squares-
discriminant analysis (PLS-DA) were employed to chemometrically 
visualize the discrimination between the RG and control groups and 
to identify the variables contributing to the separation between these 
groups using the MetaboAnalyst 5.0 platform.2 A volcano plot was 
used to display the results of the fold change and independent t-tests 
(p < 0.01). The Lipid Pathway Enrichment Analysis platform3 and 
pathway analysis in MetaboAnalyst were used for functional 
enrichment analysis of the identified metabolites. To assess the 
sensitivity and specificity of the potential biomarkers, receiver 
operating characteristic (ROC) analyses were performed using 
MetaboAnalyst 5.0.

1 https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp

2 https://www.metaboanalyst.ca

3 LIPEA, https://hyperlipea.org
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3 Results

3.1 Metabolomics method validation

QC samples were generated by combining equal volumes of 
extracts from all samples and were processed and tested identically to 
that of the analyzed samples. During the instrumental analysis, each 
QC sample was subjected to both positive and negative ion mode 
detection. The total ion chromatography spectra of the QC samples 
exhibited well-defined peaks and a consistently uniform distribution 
under these detection conditions, validating the robustness of the 
system (Supplementary Figure S2).

3.2 Multivariate statistical analysis and 
metabolic profile changes

Metabolic profiling and comprehensive analysis of metabolites 
between the RG and control groups using MZmine 3 detected 854 
ions (positive mode) and 306 ions (negative mode) in the plasma 
samples. A total of 1,160 ions detected in both modes were 
integrated for statistical analysis. PCA was initially employed for an 
unsupervised comprehensive overview of the plasma samples. 
However, PCA did not reveal significant differences between the 
control and RG groups (data not shown). Subsequently, a 
supervised approach, PLS-DA, was employed to assess the 
differences between the groups. As shown in Figure  1A, the 
PLS-DA score plot revealed a clear distinction between the control 
and RG groups, suggesting substantial alterations in the metabolic 
profile of horse plasma following RG consumption (Figure 1B). 
Volcano plots were used to visualize the metabolites influencing the 
intergroup variations in PLS-DA. Comparing the RG-fed group 
with the control group, metabolites with log2 (fold change) values 
≥2 and -log10 (p-value) values ≥2 were considered statistically 
significant. As a result, 16 metabolites exhibited a statistically 
significant decrease, whereas 21 metabolites showed a statistically 
significant increase in response to RG (Figure 1C). The red and blue 
dots indicate characteristic metabolites in the direction of 
comparison (RG consumption/control, adjusted p-value <0.01, fold 
change >2). Gray dots indicate the metabolites that did not differ 
between the two groups. Table 1 lists the numbers identified in 
the figure.

3.3 Identification of metabolites

We annotated the significantly altered metabolites, and among the 
annotated metabolites, 11 out of 37 (approximately 29%) were 
identified based on MS1 and MS2 fragmentation data (Table 1). The 
identified metabolites included three major components–oleanolic 
acid, ursolic acid, and ginsenoside Rb1–as well as various lipid 
components. For the 26 peaks for which significant identification 
results were not obtained using the MS1 and MS2 spectra, the 
substances predicted using MS1 information were verified through 
the HMDB (Supplementary material S2, molecular weight tolerance 
< ±10 ppm). Among the potential metabolites identified, representative 
substances included phosphatidylethanolamine, oxidized ceramide, 
and cardiolipin.

3.4 ClassyFire information

Using ClassyFire to categorize the compounds identified in equine 
plasma, the majority of the compounds were summarized according 
to the kingdom (K), superclass (SC), and class (C) levels. Specifically, 
in the SC classification, most compounds were lipids and lipid-like 
molecules (47.2%), organic acids and their derivatives (22.5%), and 
benzenoids (12.8%) (Figure 2). FBMN allowed the visualization of 
connections between compounds based on the integration of 
ClassyFire information and the significance of peaks (Figure 2).

3.5 Feature-based molecular networking 
analysis

The FBMN analysis generated 780 nodes (Figure  2). In 
comparison, 1,160 peaks were obtained during the data mining 
process. The smaller number of nodes (780) was attributed to the 
use of the data-dependent acquisition (DDA) mode in the analysis. 
The DDA approach relies on MS1 data to induce a limited MS2, 
providing the advantage of obtaining a more reliable MS2 data for 
the target MS1. However, it failed to acquire all MS2 information for 
trace metabolites, which is crucial for FBMN analysis. Therefore, 11 
of the 37 peaks that exhibited significant changes (as indicated in 
Table 1 and Supplementary material S2, with numbers 12, 13, 16, 17, 
19, 31, 32, 33, 34, 35, and 36) were not represented as nodes. The 
FBMN results demonstrated that compounds with similar 
backbones, such as oleanolic acid, ursolic acid, and ginsenoside Rb1, 
were interconnected. These compounds were not detected in the 
control group, indicating that RG as their source. Additionally, 
compound 23 (Supplementary material S2), with structural 
similarity to compound 8, identified with high confidence (Table 1, 
PEG 25 cetostearyl ether), suggests the possibility of it being 
phosphatidylinositol-3,4,5-trisphosphate among the predicted 
compound candidates (momorcharaside B, notoginsenoside R9, 
ginsenoside M7cd, and phosphatidylinositol-3,4,5-trisphosphate). 
Additionally, the fold-change feature values in the RG consumption 
group compared to that of the control group were used to determine 
node sizes by incorporating omics information. The color (from 
white to black) and thickness of the node edges are proportionally 
represented by cosine values. The average intensity values between 
the groups were visualized within nodes using a pie chart, with the 
RG consumption group represented in purple and the control group 
represented in sky blue. The CANOPUS analysis results, conducted 
using ClassyFire on data mined from MZmine3, were organized 
into a sunburst plot. Individual peak information is highlighted by 
node border colors (Figure  2). Finally, nodes representing 
characteristic metabolites (RG-fed/control, adjusted p-value <0.01, 
fold change >2 times) are denoted by rounded rectangles, and 
specific node numbers can be cross-referenced with the information 
in Table 1.

3.6 Enrichment analysis

To analyze the metabolic pathways associated with the identified 
biomarkers after RG consumption, we used LIPEA and MetaboAnalyst 
5.0 platforms. A total of 22 pathways were identified. RG 
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administration had the greatest influence on sphingolipid (SL) and 
glycerophospholipid (GPL) metabolic pathways (Figure  3A). RG 
affected lipid metabolism by upregulating three metabolites 
(dihydroceramide, ceramide, and sphingomyelin) in the SL pathway 
and four metabolites (phosphatidylcholine, phosphatidyl-
ethanolamine, phosphatidyl-L-serine, and cardiolipin) in the GPL 
pathway (Figure 3B).

4 Discussion

RG components produce diverse effects on the body, providing 
benefits in cardiovascular, hepatic, neurological, and metabolic 
disorders (2–5, 24, 25). However, the precise mechanisms and 
metabolic pathways underlying the effects of RG remain unclear. In 
this study, we  aimed to identify biomarkers associated with RG 
administration and explore the biological pathways related to these 
biomarkers using systems biology approaches.

While numerous studies have investigated the health benefits of 
RG using rodent models (26–29), it is crucial to understand the 
mechanisms of action of RG components in other species. 
Extrapolating results from different species to humans remains 
uncertain. RG is commonly used as a feed additive and alternative 
medicine for horses to enhance performance, promote growth, and 
prevent diseases (30, 31). Over the past 5 years, quality test results for 
feed additives used in racehorses in Jeju, Korea, revealed that RG has 
been used extensively, accounting for 34.7% (76 out of 219 total feed 
additive inspections), indicating its frequent used in the equine 
industry. However, scientific evidence concerning its effects in horses 
is limited. This underscores the need to obtain experimental evidence 
in diverse species including horses (16). We observed changes in the 
plasma metabolites of horses fed RG to enhance our understanding 
of the impact of RG on their health. Furthermore, we statistically 
analyzed and visualized the plasma metabolites using PLS-DA and 
FBMN. Additionally, we  identified metabolites potentially 
contributing to the observed changes through in silico methods and 

FIGURE 1

(A) Partial least squares-discriminant analysis plot based on LC-Q exactive data processed using Metaboanalyst 5.0, showing component 2 versus 
component 1. (B) Loading plot. (C) Volcano plot analysis.
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database analyses. The PLS-DA score plot clearly differentiated the 
blood samples from the control and RG groups. We also confirmed 
that the major representative components of RG and the plasma 
metabolites primarily contributed to these differences and were 
predominantly associated with lipid metabolism.

The potentially identified compounds–oleanolic acid, ursolic 
acid, and ginsenoside Rb1–are well-known representative 
components of RG (29, 32). Oleanolic acid and ursolic acid are 
structurally similar triterpenoid compounds known to inhibit 
inflammatory responses and reduce oxidative stress, thereby 
contributing to the mitigation of various chronic diseases. However, 
owing to structural differences, they modulate cellular signaling 
pathways differently, with ursolic acid reportedly exhibiting stronger 
anti-inflammatory effects than oleanolic acid (33, 34). Ginsenoside 
Rb1 exerts neuroprotective effects, improves brain function, and 
slows the progression of neurodegenerative diseases. It reduces stress, 
aids in fatigue recovery, and enhances overall physical vitality. 
Additionally, it contributes to blood pressure regulation and vascular 
function improvement, potentially reducing the risk of cardiovascular 
diseases (35–37).

Rb1 is the major ginsenoside in the plasma of horses (29). The 
findings of the current study emphasize that Rb1 is the predominant 
component in blood following RG consumption.

Changes in plasma metabolite levels due to RG consumption 
have been reported in various studies. A study administering RG 
daily to healthy mice for 6 weeks (3 mL, 300 mg/kg) observed an 
increase in plasma lipid metabolites (lysophosphatidylcholine, SL) 
(1). Similarly, a study conducted in a mouse model of Alzheimer’s 
disease showed significant changes in lipid metabolites (38). These 
findings strongly suggested that RG is primarily associated with lipid 
metabolism, reinforcing the reliability of the results obtained in 
this study.

We identified two significantly altered pathways following RG 
consumption: SL and GPL metabolism. SL and GPL are distinct lipid 
classes, and various lipid species within these classes participate in 
diverse cellular functions, including cell proliferation, signaling 
cascades, and apoptosis (39). The SL metabolic pathway begins with 
sphingosine and subsequently generates various SLs, such as 

ceramide and sphingomyelin. Ceramide plays a crucial role in 
apoptosis and cellular stress responses (40). The primary component 
of RG, ginsenosides, exhibit anti-inflammatory and antioxidant 
effects, which May contribute to the regulation of ceramide synthesis 
and degradation within the SL metabolic pathway. For example, 
ginsenosides can reduce cellular stress and promote cell survival (41, 
42). GPL, consisting of a glycerol backbone attached to phosphate 
and fatty acids, are key components of the phospholipid bilayer. 
These lipids maintain cell membrane fluidity and play essential roles 
as secondary messengers in signaling pathways (43). RG 
consumption improves membrane fluidity and structural stability by 
regulating GPL metabolism (44). Some studies have suggested that 
RG consumption May positively influence blood lipid profiles and 
potentially improve cardiovascular health (45, 46).

Recent evidence suggests that SL and GPL pathways mutually 
regulate their biosynthesis, and alterations in these interactions can 
contribute to lipotoxicity-related impairments in various organs (47). 
RG exhibits adaptogenic properties in improving immunological and 
neurological diseases, with SL and GPL metabolism implicated in 
these process (48, 49). The results of this study demonstrated that RG 
administration in horses induced SL and GPL changes, with no 
relevant side effects. This strengthens our understanding of the 
diverse physiological effects of RG through the SL and GPL 
metabolic pathways.

Some studies have highlighted the role of ginsenosides in the 
changes in lipid composition resulting from RG consumption. 
Compound K plays a crucial role in regulating the biological 
functions of cells by increasing the expression of SL and ceramides 
(50). Additionally, Rb1 stimulates skin wound healing through a 
sphingolipid-1-phosphate-dependent mechanism and inhibits 
hyperlipidemia by regulating the synthesis and breakdown of 
phosphatidylcholine in GPL metabolism while also modulating the 
gut microbiota (15, 51).

However, understanding the intricate mechanisms underlying 
the effects of RG remains challenging, even with the evidence of 
lipid pathway alterations presented in this study. The effects of RG, 
such as the modulation of intestinal microbiota by Rb1, are 
influenced by various internal and external factors, resulting in 

TABLE 1 Potential biomarkers associated with RG consumption in equine plasma (positive and negative mode).

No. Mode Tentative identification Formula Retention 
time

Precursor 
(m/z)

MS2  
(m/z)

Trial/
Control

1 Pos Oleanolic acid C30H46O2 7.58 439.3564 107.08, 133.10, 187.14 ↑

2 Ursolic acid C28H36O15 12.05 457.3669 439.35, 119.08, 147.11 ↑

3 Ginsenoside Rb1 C30H50O2 18.66 425.3771 407.36, 109.10, 135.11 ↑

4 SM(d16:1/17:0) C38H77N2O6P 19.70 689.5584 184.07, 368.38, 124.99 ↑

5 Phosphatidylcholine (18:3n6/18:2n6) C44H78NO8P 22.22 802.5346 743.46, 619.46, 184.07 ↑

6 N-ethyldocosanamide C24H49NO 22.67 368.3883 102.09, 116.10, 130.12 ↓

7 Cer 16:3;2O/16:1;(2OH) C32H57NO4 22.74 520.4356 177.05, 149.05, 233.11 ↓

8 PEG 25 cetostearyl ether C66H134O26 23.80 1343.9276 664.45, 663.45, 383.14 ↑

9 N,N-dibutylerucamide C30H59NO 24.15 450.4664 130.15, 198.18, 156.13 ↓

10 Neg Octillol C30H52O5 12.04 491.3745 473.36, 115.07, 375.29 ↑

11 8(S)-hydroxyeicosatetraenoic acid C20H32O3 14.00 319.228 179.10, 301.21, 257.22 ↓

↑ indicates increase; ↓ indicates decrease. p < 0.01.
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enhancement or reduction of their effects. Gut microbes are closely 
linked to host metabolism, and SL produced by gut bacteria are 
subsequently transported to internal organs, affecting host lipid 
metabolism (52). Furthermore, RG modulates the diversity of the 
gut microbiota that can regulate the transformation of ginsenosides 
(52). Therefore, it can be inferred that RG, SL, and gut microbes 
intricately and reciprocally influence each other, potentially 
affecting the pathogenesis of various diseases. Comprehensive 
research on the relationship between gut microbes and RG is 
necessary for future studies.

This study evaluated the effects of RG supplementation in horses 
by analyzing both the metabolic pathways and physiological effects. 
However, several factors must be considered when interpreting these 
results. First, although RG has been used as an herbal medicine in 

Eastern countries for thousands of years (53), there are still no clear 
standards regarding its dosage and duration of administration. 
Previous studies in humans and rodents have used doses ranging 
from 100 to 600 mg/kg over periods ranging from 1 d to 27 months 
(54, 55). Considering these data and the resources available for our 
experiments, we administered RG at a dose of 600 mg/kg for 3 weeks. 
Furthermore, large animals like equines require more resources, cost, 
and specialized facilities compared to other species and considering 
the difficulty in collecting samples, conducting experiments involving 
numerous animals is challenging. Therefore, we  conducted the 
experiment using 10 horses, which May appear relatively few 
compared to experiments using other animal models, such as mice. 
These physical and methodological limitations have contributed to 
the scarcity of in vivo horse data. Therefore, the data from this study 

FIGURE 2

Results of feature-based molecular networking between the red ginseng (RG) consumption group and the control group.
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warrants future large-scale experiments with rodents to build upon 
these findings.

5 Potential biomarkers

We assessed whether the major components of RG detected in 
plasma and the significantly altered plasma metabolites could 
potentially serve as biomarkers of RG intake. The evaluated 37 
components had variable importance in projection values 
exceeding 1, and the area under the curve (AUC) values in the 
ROC analysis were 0.88 or higher (Supplementary Figure S3). 
PCA and PLS-DA of the 37 components revealed clear distinctions 
between the groups, and the heatmap results further confirmed 
group clustering. This suggests that these components could 
potentially be used as biomarkers in the future.

6 Conclusion

This study demonstrated significant alterations in the plasma 
metabolites of horses following RG consumption, particularly 
affecting lipid metabolism. The identified compounds, including 
oleanolic acid, ursolic acid, and ginsenoside Rb1–known for their 
antioxidant and anti-inflammatory properties–emerged as potential 
biomarkers for RG intake. This study provides insights into the 
metabolic effects of RG and contributes to a broader understanding 
of its potential health benefits. Additionally, this study serves as a 
foundation for tailored health management and safety assessments 
associated with long-term RG consumption.
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FIGURE 3

(A) Overview of pathway analysis for all metabolic pathways (Kyoto Encyclopedia of Genes and Genomes) for RG-fed horses. All matched pathways 
are classified by p-values (y-axis) from pathway enrichment analysis and pathway impact values (x-axis) from pathway topology analysis. Node size 
represents the impact values, while node colors indicate different p-values. (B) Pathway map of differential metabolites between RG-fed and control 
groups.
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