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Enteric infection is a major cause of enteric disorder in neonatal pigs during the 
weaning transition. Dihydromyricetin (DMY) is a natural flavanonol compound 
extracted from Ampelopsis grossedentata with numerous biological activities 
such as antioxidative and immunomodulatory functions. The objective of this 
study was to investigate the effects of dietary dihydromyricetin supplementation 
on growth performance, immunity, and intestinal functions in weaned pigs 
challenged by enterotoxigenic Escherichia coli (ETEC). In total, 24 weaned 
DLY (Duroc × Landrace × Yorkshire) pigs were allotted to 3 treatments. Pigs 
fed with basal diet or basal diet containing 300  mg/kg DMY were orally infused 
with sterilized culture or ETEC (2.5  ×  1011 colony-forming units). Dietary DMY 
supplementation significantly elevated the final weight and average daily gain 
(ADG) but reduced diarrhea incidence in the weaned pigs of the EDMY group 
compared to the pigs of the ECON group (p  <  0.05). Compared to the ECON 
group, DMY also improved the digestibility of dry matter (DM), ether extract 
(EE), gross energy (GE), and ash of the EDMY group (p  <  0.05). Moreover, DMY 
not only significantly decreased the ratio of albumin/globulin but also elevated 
serum concentrations of immunoglobulins (e.g., IgA and IgG) in the weaned 
pigs of the EDMY group compared to the pigs of the ECON group (p  <  0.05). 
Interestingly, the villus height, the ratio of villus height to crypt depth (V:C), 
and the activities of mucosal alkaline phosphatase, sucrase, and maltase in the 
duodenum and jejunum of the EDMY group were higher than those in the ECON 
group (p  <  0.05). Importantly, DMY significantly elevated the expression levels of 
jejunal zonula occludens-1 (ZO-1), claudin-1, cationic amino acid transporter-1 
(CAT-1), and fatty acid transport protein-1 (FATP-1) in the weaned pigs of the 
EDMY group compared to the pigs of the ECON group (p  <  0.05). Additionally, 
compared to the ECON group, DMY increased the concentrations of microbial 
SCFA metabolites (e.g., acetic acid and propanoic acid), but reduced the 
abundance of Escherichia coli in the cecum of the EDMY group (p  <  0.05). Dietary 
DMY supplementation can attenuate the ETEC–induced growth retardation and 
intestinal injury, which was attributed to the amelioration of intestinal nutrient 
digestion and transport functions as well as the improved microbiota.
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1 Introduction

The weaned pigs lack effective resistance to diseases and stress due 
to the deprivation of maternal passive immunity and incomplete 
gastrointestinal (GI) tract development (1). Previous studies indicated 
that pathogenic bacteria can induce diarrhea, growth retardation, and 
even considerable mortality in piglets, especially in the first week after 
weaning, which causes huge economic losses in pig farming (2, 3). 
Enterotoxigenic Escherichia coli (ETEC), as the most common and 
typical infectious pathogen of postweaning diarrhea (PWD) for piglets, 
is characterized by various adhesions [e.g., F4 (K88+), F5 (K99+), F18, 
and F41 fimbriae], which could promote malignant colonization on the 
intestinal mucosa via specific fimbriae receptors (4). During ETEC-
induced diarrhea, the intestine is subjected to enormous stress, 
accompanied by remarkable changes in microbiota homeostasis, 
epithelial brush border enzymatic activities, intestinal permeability, and 
intestinal morphology, such as villous atrophy and crypt hyperplasia 
(5, 6). In past decades, antibiotics have been widely used as therapeutic 
drugs for ETEC infection to prevent diarrhea and intestinal injury in 
pig production. Nevertheless, the abuse of antibiotics can lead to 
bacterial resistance and drug residues in animal products, eventually 
threatening human safety (7). Therefore, alternatives to antibiotics that 
are safe for humans, animals, and the environment are urgently needed. 
Currently, some plant-derived compounds are reported to improve 
intestinal function, barrier, and microbiota dysbiosis, deeming they are 
a good choice for antibiotic substitutes (8–10).

Dihydromyricetin (DMY, 2R,3R-3,5,7,3′,4′,5′-hexahydroxy-2,3-
dihydroflavonol), as a natural flavonoid compound mainly extracted 
from Ampelopsis grossedentata (A. grossedentata), has received 
considerable attention for its several biological properties such as anti-
inflammatory (11), immune-enhancing (12), and intestinal 
microbiota-regulating biological activities (13). Recently, DMY has 
also been found to inhibit the replication of some viruses such as the 
African swine fever virus in vitro (14). These advantages suggest a 
promising protective role of DMY in preventing intestinal injury in 
animal production. For growing-finishing pigs, dietary 
supplementation of DMY can effectively ameliorate the intestinal 
barrier by increasing the immune compounds such as immunoglobulin 
M (IgM) and IgA contents (12). In addition to this, a previous study 
has shown that DMY significantly depressed the inflammatory 
response and restored the intestinal redox status, thus attenuating 
ileum injury in chickens that suffer E. coli lipopolysaccharide infection 
(15). Intriguingly, it has been reported that the water extract of 

A. grossedentata can regulate gut microbiota, promoting the growth of 
beneficial bacteria (e.g., Lactobacillus) and inhibiting harmful 
microbes (e.g., norank_f_Muribaculaceae) (16). However, to the best 
of our knowledge, little is known regarding the action of DMY on 
growth performance and intestinal epithelial functions in weaned pigs 
infected with ETEC. Hence, this study aimed to assess the effectiveness 
of dietary DMY supplementation on intestinal inflammation and 
epithelium injury in weaned pigs induced by ETEC, and the potential 
mechanisms of action were also investigated.

2 Materials and methods

2.1 Animal experimental design

All animal procedures were approved by the Committee on 
Animal Care Advisory of Sichuan Agricultural University 
(authorization number SICAU-2022-014). All experiment procedures 
were carried out in accordance with the guidelines for the Care and 
Use of Laboratory Animals. In total, 24 healthy barrows weaned on 
their 21st day and with an average body weight of 7.84 ± 0.08 kg were 
individually housed in a metabolism cage (0.7 m × 1.5 m × 1.5 m) and 
allowed to acclimatize to the study condition for 3 days. All pigs were 
randomly allocated to three groups (with eight replicates in each 
group and one pig in each replicate). Pigs in the CON and ECON 
groups were fed with a basal diet, and those in the EDMY group were 
fed the basal diet added with 300 mg kg−1 DMY (Guangzhou Nuacid 
Co., Ltd., Guangzhou, China) for 21 days. On day 19 (i.e., after the 
adaptation period), pigs in the ECON and EDMY groups were orally 
administered 100 mL of LB culture containing approximately 
2.5 × 109 cfu mL−1 E. coli K88 (hereafter referred to as ETEC; serotype 
O149: K91: K88ac), while pigs in the CON group were administered 
equivalent amount of sterile LB medium. The basal diet (Table 1) was 
formulated to meet the swine nutrient requirements recommended by 
the National Research Council (NRC, 2012). Fresh feed and water 
were provided ad libitum to pigs throughout the experimental period. 
The ambient temperature of 26°C ± 1.5°C and relative humidities of 
65% ± 5% were maintained. The ETEC F4+ (serotype O149:K91, 
K88ac) used in the challenge study was purchased from China 
Veterinary Culture Collection Center.

2.2 Sample collection

From days 19 to 21 of the experiment, the fresh fecal samples were 
collected immediately after excretion from pigs in each group. After 
collection, the daily excreta of each pig were weighed, and 10 mL of a 
10% H2SO4 solution was added to each 100 g of wet fecal sample, and 
subsequently stored in a sealed plastic bag at −20°C. At the end of the 
experiment, all fecal samples of each pig were thawed at room 
temperature, mixed thoroughly, and then dried at 70°C for 48 h. After 
being crushed on a 1-mm screen, these samples were stored at −20°C 
for chemical analyses including dry matter (DM), crude protein (CP), 
ether extract (EE), ash, and gross energy (GE).

At 8:00 a.m. on day 21, blood samples were collected from the 
jugular vein of overnight-fasted piglets into non-heparinized vacuum 
tubes. The serum samples were prepared by centrifuging blood samples 
at 3,500 × g at 4°C for 20 min and then stored in a −20°C refrigerator 

Abbreviations: ADFI, Average daily feed intake; ADG, Average daily gain; AIA, Acid-

insoluble ash; AKP, Alkaline phosphatase; ALT, Alanine aminotransferase; DMY, 

Dihydromyricetin; CAT1, Cationic amino acid transporter-1; CON, Pigs were fed 

with a basal diet; CP, Crude protein; Ct, Cycle threshold; DM, Dry matter; ECON, 

Pigs were fed with a basal diet and challenged by ETEC; EE, Ether extract; EDMY, 

Pigs were fed with basal diet containing 300 mg/kg DMY product and challenged 

by ETEC; ETEC, Enterotoxigenic Escherichia coli; FATP-1, Fatty acid transport 

proteins 1; GE, Gross energy; Glu, Glucose; GLUT-2, Glucose transporter-2; GOT, 

Glutamic oxaloacetic transaminase; IgA, Immunoglobulins A; IgG, Immunoglobulins 

G; IgM, Immunoglobulins M; LB, Luria-Bertani; PBS, Phosphate-buffered saline; 

PWD, Post-weaning diarrhea; SGLT-1, Sodium/glucose cotransporter-1; TJ, Tight 

junctions; V: C, Villus height: crypt depth; VFA, Volatile fatty acids; ZO-1, Zonula 

occludens-1.
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until analysis. Subsequently, the pigs were euthanized with an 
intravenous injection of sodium pentobarbital (200 mg/kg BW) and 
followed by an exsanguination protocol. After euthanization, the 
duodenum, jejunum, and ileum samples of each pig were separated from 
the exposed abdomen and washed with ice-cold PBS. The mid segments 
of the duodenum, jejunum, and ileum, approximately 3 cm in length, 
were harvested and fixed in 4% paraformaldehyde solution for intestinal 
morphology. Other duodenum, jejunum, and ileum (approximately 
4 cm in length) tissue samples were collected, snap-frozen, and stored at 
−80°C for real-time polymerase chain reaction (RT-PCR) analyses. The 

remaining segments of the duodenum, jejunum, and ileum were opened 
longitudinally, washed with ice-cold PBS, and gently scraped with a 
sterile glass microscope slide at 4°C to obtain mucosa samples. The 
mucosa samples were immediately snap-frozen in liquid nitrogen and 
stored at −80°C until further analysis of related enzyme activities. In 
addition, digesta of the colon and cecum was immediately placed in 
liquid nitrogen and stored at −80°C for analysis of microbial DNA and 
short-chain fatty acid (SCFA) concentration analyses.

2.3 Measurement of growth performance

Each pig’s body weight (BW) was monitored on days 1, 19, and 21 
after 12-h fasting in the morning at 8:00, and feed intake and waste 
feed were collected and weighed daily. The average daily gain (ADG), 
average daily feed intake (ADFI), and the feed: gain ratio (F/G) were 
then calculated.

2.4 Determination of diarrhea rate

During the challenge period, the feces of the pigs were observed 
daily, and the diarrhea rate was calculated according to the formula, 
diarrhea rate (%) = (number of pigs with diarrhea within a treatment 
× total observational days) / (number of pigs × total observational 
days) × 100%. The incidence of diarrhea was defined in accordance 
with the following standards: fecal score of 0 (normal); fecal score of 
1 (normal feces); fecal score of 2 (moist feces), fecal score of 3 (mild 
diarrhea), fecal score of 4 (severe diarrhea), and fecal score of 5 
(watery diarrhea) in all the experiments. The occurrence of diarrhea 
was defined as maintaining fecal scores of 2 or 3 for two 
consecutive days.

2.5 Determination of the organ index

Organ index (%) was calculated as the organ fresh weight (kg)/
piglet weight (kg) × 100% before slaughter.

2.6 Apparent total tract digestibility

The apparent total tract digestibility (ATTD) was determined 
according to the endogenous indicator acid-insoluble ash (AIA) 
standard method (GB/T 23742–2009). The procedures utilized for the 
determination of nutrient composition were conducted with the 
international standard methods described by the AOAC International 
(17), including dry matter (930.15; AOAC), crude protein (930.15; 
AOAC), crude fat (920.39; AOAC), and crude ash (942.05; AOAC). 
For calculating the ATTD of the nutrients, we used the following 
formula: ((100-A1 × F2/A2 × F1) × 100). A1: digesta nutrient; A2: 
digesta AIA; F1: diet AIA; F2: digesta AIA.

2.7 Serum parameter measurements

The concentrations of serum total protein (TP), albumin 
(ALB), alkaline phosphatase (AKP), glutamic oxaloacetic 

TABLE 1 Composition and nutrient levels of the experimental diets (air-
dry basis, %).

Ingredient Content (%)

Corn, 7.8% CP 26.73

Extruded corn, 8.2% CP 25.45

Soybean meal, 44.2% CP 9.50

Extruded soybean, 51.1% CP 10.50

Soybean oil 2.00

Fishmeal, 62.5% 4.00

Whey powder 7.00

Soybean protein concentrate 8.00

Sucrose 4.00

Stone powder 0.90

L-Lys HCl, 78% 0.47

DL-Methionine, 99% 0.15

L-Threonine, 98.5% 0.13

L-Tryptophan, 98% 0.03

Choline chloride, 50% 0.10

Calcium phosphate 0.50

NaCl 0.30

Mineral premixa 0.20

Vitamin premixb 0.04

Total 100

Nutrient levelsc

Digestible energy, Mcal/kg 3.55

Crude protein, % 19.80

Calcium, % 0.92

Available phosphorus, % 0.37

Lysine, % 1.41

Methionine, % 0.47

Methionine + cysteine, % 0.75

Threonine, % 0.79

Tryptophan, % 0.22

aThe mineral premix provided the following per kg of diet: Fe (FeSO4·H2O), 120 mg; Cu 
(CuSO4·5H2O), 6 mg; Zn (ZnSO4·H2O), 100 mg; Mn (MnSO4·H2O), 40 mg; I (KI), 0.3 mg; Se 
(Na2SeO3), 0.3 mg.
bThe vitamin premix provided the following per kg of diet: vitamin A, 6000 IU; vitamin D3, 
400 IU; vitamin E, 10.0 IU; vitamin K3, 2.0 mg; vitamin B1, 0.8 mg; vitamin B2, 6.4 mg; vitamin 
B6, 2.4 mg; vitamin B12, 0.012 mg; niacin, 30 mg; pantothenic acid, 15 mg; folic acid, 0.75 mg; 
biotin, 0.1 mg.
cThe diet was formulated based on the recommendation of the NRC 2012.
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TABLE 2 Primers used for real-time PCR analysis.

Genea GenBank no. Primer sequence (5′ to 3′)b AT, °Cc Product size, bp

β-actin XM_003124280.5 F: TGGAACGGTGAAGGTGACAGC 62 177

R: GCTTTTGGGAAGGCAGGGACT

GLUT-2 NM_001097417.1 F: TGGAATCAGCCAACCTGTTT 58 165

R: ACAAGTCCCACCGACATGA

CAT-1 XM_021065165.1 F: TGCCCATACTTCCCGTCC 60 192

R: GGTCCAGGTTACCGTCAG

FATP-1 XM_021076151.1 F: GGAGTAGAGGGCAAAGCAGG 61 208

R: AGGTCTGGCGTGGGTCAAAG

ZO-1 XM_021098896.1 F: CAGCCCCCGTACATGGAGA 61 114

R: GCGCAGACGGTGTTCATAGTT

Occludin-1 XM_005672525.3 F: CTACTCGTCCAACGGGAAAG 59 158

R: ACGCCTCCAAGTTACCACTG

Claudin-1 NM_001244539.1 F: TCTTAGTTGCCACAGCATGG 59 106

R: CCAGTGAAGAGAGCCTGACC

aGLUT-2, glucose transporter 2; CAT-1, cationic amino acid transporter 1; FATP-1, fatty acid transport protein 1; ZO-1, zonula occludens-1.
bF, forward primer; R, reverse primer.
cAT, annealing temperature.

transaminase (GOT), glutamic pyruvic transaminase (GPT), total 
cholesterol (TC), glucose (GLU), triglyceride (TG), and urea 
(UREA) were gaged using an automatic biochemical analyzer 
(Olympus, Shanghai, China). Immunoglobulin A (IgA), including 
IgA, immunoglobulin G (IgG), and immunoglobulin M (IgM), 
were determined using a multi-mode microplate reader 
(SpectraMax M2, Molecular Devices, Sunnyvale, CA, 
United  States) following the procedures outlined by the 
corresponding commercially available swine Enzyme-Linked 
Immunosorbent Assay (ELISA) kits (Jiangsu Meimian Industrial 
Co., Ltd., Yancheng, China). The minimum detection limits were 
1 μg/mL, 12 μg/mL, and 1.2 μg/mL, respectively, and the intra-
assay coefficients of variation (CV) were 6.3, 7.3, and 6.7%, and 
inter-assay CV were 10.2, 9.7, and 12.3%, respectively. The 
standards provided in the kits were used to generate standard 
curves for quantification and each test was run in duplicate.

2.8 Intestinal morphology measurement

For the intestinal morphology study, approximately 3 cm segments 
isolated from mid-duodenum, mid-jejunum, and mid-ileum were 
immobilized with 4% paraformaldehyde solution for 24 h and then 
embedded in paraffin. After cutting the paraffin-coated intestinal samples 
into sections of approximately 3 μm, they were transferred to a 70% 
ethanol solution for dehydration. Afterward, the samples were 
wax-embedded on slides and stained with hematoxylin and eosin. Each 
section was put on a slide for intestinal morphology observation by using 
an Olympus CK40 inverted phase-contrast microscope equipped with the 
AxioVision software. The villus height (VH) was measured from the tip 
to the villi–crypt junction, and the crypt depth (CD) was measured from 
the villi base to the lowest point of the CD; 20 well-orientated and intact 
villi and crypts from each segment were counted to evaluate 
intestinal morphology.

2.9 Intestinal enzyme activities

The concentrations of sucrase, lactase, maltase, and alkaline 
phosphatase (AKP) in intestinal mucosa were evaluated in 
accordance with the instructions of the respective kits (Nanjing 
Jiancheng Bioengineering Institute). Briefly, approximately 100 mg 
of each thawed intestinal mucosa sample extracted from the 
duodenum, jejunum, and ileum was homogenized with a precooled 
0.9% saline and then centrifuged at 3,000 × g, 4°C for 15 min. The 
supernatant was assayed for protein content in accordance with the 
Bradford method (18), following the sucrase, lactase, maltase, and 
AKP activities were measured in triplicate on a spectrophotometer. 
The results were normalized to protein concentration and expressed 
as U/mg protein.

2.10 Gene expression analysis

For RNA extraction, approximately 0.1 g of each frozen sample 
isolated from duodenum, jejunum, and ileum was homogenized with 
1 mL of RNAiso Plus reagent (TaKaRa, Dalian, China) to extract the 
total RNA according to the manufacturer’s instructions. After 
analyzing integrity using 1.0% agarose gel, RNA purity and 
concentration were quickly determined on a spectrophotometer 
(NanoDrop-ND2000, Thermo Fisher Scientific, Inc., Waltham), of 
which OD260/OD280 ratio ranged from 1.8 to 2.0 were deemed 
appropriate. Subsequently, 1.0 μg of total RNA was reverse-transcribed 
into complementary DNA (cDNA) for RT-PCR using the 
PrimeScript™ RT reagent kit with gDNA Eraser (Takara 
Biotechnology Co., Ltd., Dalian, China).

As shown in Table 2, the primers were designed with Primer 5.0 
software to amplify target gene fragments by performing q-PCR. The 
q-PCR was performed with the SYBR® Green PCR I PCR reagents 
(Takara Bio Inc., Dalian, China) on a CFX96 Real-Time PCR 
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Detection System (Bio-Rad Laboratories, Hercules, CA, United States). 
All cDNA samples were detected in triplicate. Each q-PCR consisted 
of 1 μL of cDNA, 5 μL of SYBR Green JumpStart Taq ReadyMix (1×), 
0.2 μL of ROX Reference Dye II (50×), 0.4 μL of each primer, and 3 μL 
of diethyl pyrocarbonate-treated water in a total volume of 10 μL. The 
protocol used in q-PCR was as follows: 95°C for 30 s, followed by 
40 cycles: at 95°C for 5 s and 60°C for 34 s. The generated gene-specific 
amplification products were confirmed by melting curve analysis after 
each real-time quantitative PCR assay. The housekeeping gene 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used to 
standardize the mRNA expression level of target genes, which was 
calculated based on the 2–ΔΔCt method (19).

2.11 Intestinal microbiological analysis

The digesta samples (approximately 200 mg) isolated from the 
caecum and colon in individual pigs were used to extract total 
microbial DNA using the Stool DNA Kit (Omega Bio-Tek, Doraville, 
CA, United  States) according to the manufacturer’s instructions. 
Based on the sequences downloaded from the National Center for 
Biotechnology Information (GenBank), the primers and probes listed 
in Table 3 were designed to amplify the reactions of total bacteria, 
E. coli, Lactobacillus, Bifidobacterium, and Bacillus on a CFX96 Real-
Time PCR system (Bio-Rad Laboratories, Inc., Hercules, CA).

More precisely, total bacteria were detected by the reaction, which 
runs in a volume of 25 μL with 12.5 μL SYBR Premix Ex Taq (2×), 1 μL 
of each primer (100 nmol/L), 1 μL 50 × ROX Reference Dye*3, 7.5 μL 
of RNase-Free ddH2O, and 2 μL template DNA. The SuperReal PreMix 
(Probe) kit (Tiangen Biotech Co., Ltd., Beijing, China) was used for 
Lactobacillus, E. coli, Bacillus, and Bifidobacterium detection. Each 
reaction was run in a volume of 25 μL with 12.5 μL Super Real PreMix 
(2×), 1 μL of each primer (100 nmol/L), 1 μL probe (100 nmol/L), 1 μL 
50 × ROX Reference Dye*3, 6.5 μL of RNase-Free ddH2O, and 2 μL 
DNA. All reaction cycling protocols consisted of enzyme activation 

and denaturation at 95°C for 15 min; 40 cycles of 95°C for 3 s and 60°C 
for 30 s, followed by dissociation at 60–95°C with 0.5°C increments 
every 1 s. The cycle threshold (Ct) values and baseline settings were 
determined by automatic analysis settings, and the copy numbers of 
the target group for each reaction were calculated from the standard 
curves, which were generated by constructing standard plasmids by a 
10-fold serial dilution of plasmid DNA (1 × 101 to 1 × 109 copies/μL).

2.12 Analysis of SCFAs

The SCFAs in digesta were determined using gas–liquid 
chromatography according to the previously method described (20). 
Briefly, approximately 0.5 g of thawed digesta was diluted with 2 mL of 
sterile Milli-Q water. After being vortexed, the entire sample was 
centrifuged at 12,000 × g for 10 min to obtain the suspension liquid. 
Then, a sample of 25% metaphosphoric acid solution was combined in 
a 9:1 ratio and centrifuged at 12,000 × g again for 10 min after being 
placed at 4°C for 30 min. Finally, a 0.45-mm filter membrane was used 
to filter the supernatant after it was aspirated with a syringe. The gas 
chromatographic system (VARIAN CP-3800, America) equipped with 
a polyethylene glycol-packed column with an inner diameter of 
0.32 mm and 30 m length, and 0.25 μm film thickness, was used to 
separate and quantify the SCFAs (e.g., acetate, propionate, and butyrate). 
After each injection sample (1 μL) entered the column, the column 
temperature rose from the initial temperature of 70°C to 150°C within 
3 min, while the temperature of the injector and detector reached 250°C.

2.13 Statistical analysis

All data were subjected to a one-way analysis of variance for a 
completely randomized design using the general linear model 
procedure of SPSS 24.0 (SPSS, Inc.), with each pig representing one 
experimental unit. Statistical differences among treatments were 

TABLE 3 Sequence of primers and probes for selected bacteria.

Gene Primer sequence (5′ to 3′)a AT, °Cb Product size, bp

Total bacteria F: ACTCCTACGGGAGGCAGCAG 60 200

R: ATTACCGCGGCTGCTGG

Lactobacillus F: GAGGCAGCAGTAGGGAATCTTC 60 126

R: CAACAGTTACTCTGACACCCGTTCTTC

P: AAGAAGGGTTTCGGCTCGTAAAACTCTGTT

Escherichia coli F: CATGCCGCGTGTATGAAGAA 60 96

R: CGGGTAACGTCAATGAGCAAA

P: AGGTATTAACTTTACTCCCTTCCTC

Bifidobacterium F: CGCGTCCGGTGTGAAAG 60 121

R: CTTCCCGATATCTACACATTCCA

P: ATTCCACCGTTACACCGGGAA

Bacillus F: GCAACGAGCGCAACCCTTGA 60 92

R: TCATCCCCACCTTCCTCCGGT

P: CGGTTTGTCACCGGCAGTCACCT

aF, forward primer; R, reverse primer.
bAT, annealing temperature.
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TABLE 5 Effects of dietary DMY supplementation on organ index of 
weaned piglets upon ETEC challenge.1

Items Treatments2 SEM p-value

CON ECON EDMY

Heart index, % 0.46 0.48 0.46 0.01 0.79

Liver index, % 2.58 2.60 2.71 0.07 0.71

Spleen index, % 0.16 0.17 0.19 0.01 0.24

Lung index, % 1.43 1.64 1.57 0.06 0.41

Kidney index, % 0.53ab 0.59a 0.51b 0.02 0.05

1Data are means of eight replicates per treatment.
2CON, pigs were fed with a basal diet; ECON, pigs were fed with a basal diet and challenged 
by ETEC; EDMY, pigs were fed with a DMY-containing diet and challenged by ETEC.
a,bWithin a row, values with different superscript letters differ (p < 0.05).

TABLE 6 Effect of dietary DMY supplementation on nutrient digestibility 
of weaned pigs upon ETEC challenge1.

Items Treatments2 SEM p-value

CON ECON EDMY

DM, % 87.29b 89.07b 92.20a 0.59 <0.01

EE, % 81.46b 84.60ab 88.28a 1.04 0.02

GE, % 87.29b 89.50b 92.15a 0.63 <0.01

Ash, % 62.93b 66.99b 77.62a 1.71 <0.01

CP, % 82.91 85.28 87.59 1.09 0.18

DM, dry matter; CP, crude protein; EE, ether extract.1Data are means of 8 replicates per 
treatment.
2CON, pigs were fed with a basal diet; ECON, pigs were fed with a basal diet and challenged 
by ETEC; EDMY, pigs were fed with a DMY-containing diet and challenged by ETEC.
a,bWithin a row, values with different superscript letters differ (p < 0.05).

TABLE 4 Effect of dietary DMY supplementation on the growth 
performance of weaned pigs upon ETEC challenge.1

Items Treatments2 SEM p-value

CON ECON EDMY

1–18 d

Initial weight, kg 7.88 7.72 7.89 0.08 0.75

Final weight, kg 12.01 11.60 12.95 0.30 0.67

ADFI, g/d 374.14 363.00 444.20 21.43 0.09

ADG, g/d 222.04 219.44 281.39 15.80 0.07

F/G 1.69 1.69 1.61 0.05 0.32

Diarrhea rate, % 29.61 28.73 28.33 2.31 0.71

19–21 d

Initial weight, kg 11.86 11.76 12.95 0.30 0.54

Final weight, kg 13.03a 12.04b 13.78a 0.34 <0.01

ADFI, g/d 353.09 315.71 385.3 17.21 0.28

ADG, g/d 209.72ab 95.24b 274.1a 27.19 0.02

F/G 1.72 – 1.48 0.57 0.10

Diarrhea rate, % 12.50c 45.83a 27.5b 1.70 0.03

ADG, average daily gain; ADFI, average daily feed intake; FC, feed conversion ratio.
1Data are means of eight replicates per treatment.
2CON, pigs were fed with a basal diet; ECON, pigs were fed with a basal diet and challenged 
by ETEC; EDMY, pigs were fed with a DMY-containing diet and challenged by ETEC.
a,bWithin a row, values with different superscript letters differ (p < 0.05).

separated using Tukey’s multiple-range test. The results are expressed 
as with their standard errors. Statistical significance was set at p < 0.05 
and 0.05 < p < 0.10, indicating a trend.

3 Results

3.1 Effect of DMY on growth performance, 
organ index, and nutrient digestibility in 
weaned pigs upon ETEC challenge

Before the ETEC challenge, DMY treatment had no effect (p > 0.05) 
on initial weight, final weight, and F/G (Table 4). During days 19–21, 
ETEC significantly reduced (p < 0.05) the final weight and ADG in the 
weaned pigs of the ECON group compared to the pigs of the CON group. 
In particular, DMY supplementation significantly increased (p < 0.05) the 
final weight and ADG but decreased (p < 0.05) the diarrhea incidence and 
kidney index in the weaned pigs of the EDMY group compared to the pigs 
of the ECON group (Table 5). Compared to the CON and ECON groups, 
the EDMY group showed a significant increase in the apparent 
digestibility of DM, EE, GE, and ash (Table 6).

3.2 Effect of DMY on serum biochemical 
indices and immunoglobulins in weaned 
pigs upon ETEC challenge

As shown in Figure 1, the ETEC challenge significantly decreased 
(p < 0.05) concentrations of immunoglobulins such as IgA and IgG in 
the weaned pigs of the ECON group compared to the pigs of the CON 
group. However, DMY supplementation not only decreased (p < 0.05) 

albumin/globulin ratio but also elevated levels of serum levels of IgA, 
IgG, and IgM in the weaned pigs of the EDMY group compared to the 
pigs of the ECON group (Figure 2).

3.3 Effect of DMY supplementation on 
intestinal morphology and mucosal 
enzyme activity in weaned pigs upon ETEC 
challenge

The ETEC challenge significantly decreased (p < 0.05) the villus 
height of the jejunum and ileum of the weaned pigs of the ECON 
group compared to those in pigs of the CON group. However, DMY 
treatment significantly increased (p < 0.05) the villus height of the 
jejunum and ileum of the weaned pigs of the EDMY group compared 
to those in pigs of the ECON group. For crypt depth, DMY treatment 
significantly decreased (p < 0.05) the crypt depth in the duodenum of 
the weaned pigs of the EDMY group compared to that in pigs of the 
ECON group. Additionally, although the ETEC challenge significantly 
decreased (p < 0.05) ratio of V: C in the duodenum and jejunum of the 
weaned pigs of the ECON group compared to those in pigs of the 
CON group, DMY treatment eliminated this effect (Figure 3).

In Table 7, DMY treatment increased the duodenal mucosa AKP, 
sucrase, and maltase activities, jejunal mucosa lactase and sucrase 
activities, and ileal mucosa sucrase activity in the weaned pigs of the 
EDMY group compared to the pigs of the ECON group (p < 0.05). 
Moreover, the mucosa activities of sucrase and maltase in the duodenum 
were higher (p < 0.05) in the EDMY group than those in the ECON group.
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3.4 Effect of DMY supplementation on 
expressions of critical genes involved in 
intestinal epithelium functions

As shown in Figure 4, the ETEC challenge significantly decreased 
(p < 0.05) the expression levels of GLUT2, CAT-1, and FATP-1 in the 
jejunum of the weaned pigs of the ECON group compared to those in 
pigs of the CON group. However, DMY supplementation not only 
elevated the mRNA expression levels of ZO-1 and Claudin-1 in the 
jejunum but also elevated the mRNA expression levels of CAT-1 and 
FATP-1 in the duodenum of the EDMY group compared to those of 
the ECON group (p < 0.05).

3.5 Effect of DMY supplementation on 
intestinal microbial populations and 
metabolites in weaned pigs upon ETEC 
challenge

In Table 8, the ETEC challenge significantly increased (p < 0.05) the 
abundance of Escherichia coli in the cecum and colon as well as total 
bacteria in the colon of weaned piglets in the ECON group compared to 
those in the CON group. DMY supplementation significantly decreased 
(p < 0.05) the abundance of Escherichia coli in the colon of weaned piglets 
in the EDMY group compared to that in the ECON group. As shown in 
Figure 5, DMY supplementation significantly elevated (p < 0.05) the cecal 

FIGURE 1

Effect of dietary DMY supplementation on plasma biochemical indices concentrations of weaned pigs upon ETEC challenge. Values are means ± SEM, 
(n = 8). CON, pigs were fed with a basal diet; ECON, pigs were fed with a basal diet and challenged by ETEC; EDMY, pigs were fed with a DMY 
containing diet and challenged by ETEC. AKP, alkaline phosphatase; ALT,  alanine aminotransferase; GOT, glutamic oxalacetic transaminase.
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FIGURE 2

Effect of dietary DMY supplementation on plasma Immunoglobulin concentrations of weaned pigs upon ETEC challenge. Values are means ± SEM, (n 
= 8). CON, pigs were fed with a basal diet; ECON, pigs were fed with a basal diet and challenged by ETEC; EDMY, pigs were fed with a DMY containing 
diet and challenged by ETEC. IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M.

FIGURE 3

Effect of dietary DMY supplementation on small intestinal morphology of weaned pigs upon ETEC challenge (H&E; × 40). (A) Representative 
photomicrographs of villi in the duodenum (a−c), jejunum (d−f) and ileum (g−i) from pigs in the CON, ECON, and EDMY groups, respectively. (B) Villus 
height, crypt depth, and villus height to crypt depth ratio of the duodenum, jejunum, and ileum of piglets in the CON, ECON, and EDMY groups, 
respectively. CON, pigs were fed with a basal diet; ECON, pigs were fed with a basal diet and challenged by ETEC; EDMY, pigs were fed with a DMY 
containing diet and challenged by ETEC.

and colonic concentrations of acetic acid and propanoic acid in weaned 
piglets of the EDMY group compared to those of the ECON group.

4 Discussion

It has been shown that ETEC can cause intestine disturbance 
and an increase in diarrhea rate and F/G of piglets, thereby 
establishing a feasible model of intestinal infection (5, 6, 21). DMY 

has been extensively studied as it possesses multiple health-
promoting biological and pharmacological properties, of which 
antioxidative ability (12), anti-inflammatory (11), immune-
enhancing (12), and intestinal microbiota regulating biological 
activities (13) may be pertinent to improving growth performance 
of animals, especially during the weaning period. A previous study 
indicated that dietary supplementation of DMY at 500 mg/kg 
decreased F/G in growing-finishing pigs (12). In contrast, the 
current results suggested that oral administration of DMY alone did 
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not show beneficial effects on F/G and diarrhea rate of piglets during 
days 1–18 (pre-challenge). Given that numerous plant-derived 
compounds are more effective when livestock animals suffer from 
pathogenic pressure (22–24). Accordingly, the positive effect of 
DMY was obvious under the condition of the ETEC challenge. In 
this study, we found that dietary DMY not only reversed the negative 
alternations in diarrhea rate caused by ETEC and therefore improved 

the ADG and F/G, but also increased the digestibility of DM, Ash, 
EE, and GE in the ETEC-challenged pigs, suggesting a beneficial 
effect of DMY supplementation on the intestinal health of 
weaned pigs.

The metabolic and health status of animal bodies or organs could 
be reflected by the blood biochemical parameters. In the male Sprague–
Dawley rat study, the result showed that feeding 5 μg/kg body weight 

TABLE 7 Effect of dietary DMY supplementation on mucosal enzyme activity of small intestine in weaned piglets upon ETEC challenge.1

Items Treatments2 SEM p-value

CON ETEC ETECPE

Duodenum

AKP, U/g protein 8.12a 6.17b 7.82a 0.40 0.04

Sucrase, U/mg protein 162.35b 160.14b 202.50a 15.54 0.02

Lactase, U/mg protein 180.26 166.82 177.66 16.18 0.68

Maltase, U/mg protein 216.71b 221.71b 305.47a 27.13 <0.01

Jejunum

AKP, U/g protein 11.25a 8.52b 9.51ab 0.43 0.05

Sucrase, U/mg protein 379.77a 303.82b 370.20a 23.22 <0.01

Lactase, U/mg protein 307.45a 227.72b 320.11a 24.38 <0.01

Maltase, U/mg protein 774.16 661.24 624.68 80.24 0.17

Ileum

AKP, U/g protein 4.12 3.59 3.73 0.31 0.32

Sucrase, U/mg protein 51.79ab 38.33b 54.62a 5.74 0.02

Lactase, U/mg protein 74.80 62.10 50.27 12.36 0.16

Maltase, U/mg protein 122.01 102.69 102.40 10.21 0.11

AKP, alkaline phosphatase.1Data are means of eight replicates per treatment.
2CON, pigs were fed with a basal diet; ECON, pigs were fed with a basal diet and challenged by ETEC; EDMY, pigs were fed with a DMY-containing diet and challenged by ETEC.
a,bWithin a row, values with different superscript letters differ (p < 0.05).

FIGURE 4

Relative expression levels of critical genes involved in the intestinal barrier functions. Values are means ± SEM, (n = 8). Within a panel, bars labeled with 
different superscript letters significantly different at P < 0.05. CON, pigs were fed with a basal diet; ECON, pigs were fed with a basal diet and 
challenged by ETEC; EDMY, pigs were fed with a DMY containing diet and challenged by ETEC. ZO-1, zonula occludens-1; GLUT2, glucose 
transporter-2; CAT1, cationic amino acid transporter-1; FATP1, Fatty acid transport protein-1.
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TABLE 8 Effect of dietary DMY supplementation on intestinal bacteria in digesta of cecum and colon in weaned piglets upon ETEC challenge.1

Items Treatments2 SEM p-value

CON ECON EDMY

Cecum

Total bacteria, copies/g 11.09 10.98 10.94 0.03 0.10

Escherichia coli, copies/g 8.21a 10.11a 8.53b 0.26 0.03

Lactobacillus, copies/g 8.59 8.77 8.36 0.11 0.33

Bifidobacterium, copies/g 7.03 6.83 7.37 0.24 0.68

Bacillus, copies/g 9.24 9.44 9.64 0.08 0.15

Colon

Total bacteria, copies/g 11.18b 11.45a 11.31ab 0.05 0.03

Escherichia coli, copies/g 8.84b 10.52a 9.34ab 0.27 <0.01

Lactobacillus, copies/g 8.70 8.49 8.94 0.15 0.46

Bifidobacterium, copies/g 7.48 7.25 7.77 0.26 0.73

Bacillus, copies/g 9.59 9.41 9.71 0.07 0.18

1Data are means of eight replicates per treatment.
2CON, pigs were fed with a basal diet; ECON, pigs were fed with a basal diet and challenged by ETEC; EDMY, pigs were fed with a DMY-containing diet and challenged by ETEC.
a,bWithin a row, values with different superscript letters differ (p < 0.05).

FIGURE 5

Effect of dietary DMY supplementation on concentrations of VFAs in digesta of cecum and colon in weaned pigs upon ETEC challenge. Values are 
means ± SEM, (n = 8). CON, pigs were fed with a basal diet; ECON, pigs were fed with a basal diet and challenged by ETEC; EDMY, pigs were fed with a 
DMY containing diet and challenged by ETEC.

DMY decreased the level of blood urea nitrogen, which is a marker of 
kidney injury (25). Consistent with the previous report, this study found 
that dietary DMY had decreased serum UREA level and kidney index in 
the ETEC-challenged pigs, suggesting DMY alleviated the symptoms 
associated with the infection of weaned pigs challenged with ETEC. The 
albumin, globulin, and A/G ratio can be used as an indicator to indicate 
the situation of protein synthesis and nutritional status in vivo, and it is 
worth noting that a large number of immunoglobulins constitute an 
important source of globulin (26, 27). In this study, dietary DMY 
downregulated the plasma A/G ratio and globulin, indicating that DMY 
may influence the immune status of piglets. Generally, the levels of 

Immunoglobulins such as IgG, IgM, and IgA are used as indicators of 
immunological status, which play a critical role in clearing particular 
bacteria or viruses (28). In the present study, DMY significantly elevated 
the serum IgA, IgG, and IgM concentrations in the ETEC-challenged 
pigs, which is consistent with a previous study (12), indicating an 
enhanced immunity upon DMY supplementation.

The small intestine is of critical importance for nutrient digestion and 
absorption, and its villous height and V/C ratio have been considered as 
integrated morphological structure indicators to evaluate intestinal health, 
such as intestinal barrier integrity, nutrient digestion, and absorption 
capacity (29). Recently, several studies have confirmed that ETEC strains 

https://doi.org/10.3389/fvets.2024.1421871
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Xie et al. 10.3389/fvets.2024.1421871

Frontiers in Veterinary Science 11 frontiersin.org

produce enterotoxins that act on the enterocytes, leading to the secretion 
of fluids and electrolytes, which ultimately results in the impaired 
intestinal barrier and function (4–6). Along the same lines, we found that 
the ETEC challenge decreased the duodenal and ileal villus height, and 
significantly reduced the ratio of V/C in the duodenum and jejunum, 
indicating injury of the intestinal epithelium. However, dietary DMY 
supplementation attenuated the intestinal injury by increasing the villus 
height and the ratio of V/C. Changes in the intestinal morphology are 
usually accompanied by the mucosal enzyme activities expressed in the 
brush border, which can reflect the function of intestinal epithelium (30). 
In the present study, dietary DMY supplementation not only elevated 
duodenal the activities of sucrase, maltase, and AKP but also elevated the 
jejunal activity of AKP, sucrase, and lactase in the ETEC-challenged pigs. 
As important endogenous enzymes, sucrase, maltase, and lactase are 
considered an excellent marker enzyme involved in carbohydrate 
digestion (31). However, alkaline phosphatase (AKP) has received wide 
attention due to its important protective properties in the gut, including 
absorption of lipids, detoxification of bacterial lipopolysaccharide, and 
possible modulation of the gut microbiota (32). All the evidence suggested 
that dietary DMY has a protective effect on intestinal health.

To gain insights into the mechanisms underlying the 
DMY-regulated intestinal health, we  further investigated the 
expression levels of several critical genes involved in intestinal 
epithelium functions. The occludin, ZO-1, and Claudin-1 were 
members of transmembrane barrier proteins, cytoplasmic scaffold 
proteins, and adhesion molecules proteins of tight junctions (TJs), 
respectively, which play a key role in maintaining intestinal 
permeability (33). However, Escherichia coli lipopolysaccharide-
induced injury in the intestinal barrier by reducing the expression 
of TJs (34). In the present study, dietary DMY supplementation not 
only significantly elevated the expression levels of ZO-1 and 
Claudin-1 but also elevated the expression levels of nutrient 
transporters (CAT-1, and FATP-1) in the intestinal epithelium of 
ETEC-challenged pigs. CAT-1 is a small molecule protein that is 
responsible for the transportation of cationic amino acids across 
cell membranes (35). However, the FATP-1 is closely associated 
with the transportation of fatty acids (36). The elevated expressions 
of these nutrient transporters may contribute to the improved 
barrier integrity and functions of intestinal epithelium in piglet 
exposure to the ETEC challenge.

It has been reported that DMY inhibits the growth of Staphylococcus 
aureus by disrupting membrane integrity and decreasing activities of a 
few energy metabolism enzymes, total ATPase (37). Similarly, 
we  unexpectedly found that dietary DMY selectively inhibits the 
growth of potential pathogenic bacterial species (Escherichia coli) in 
this study. Recently, increasing evidence suggested that a dysregulated 
or perturbed state of the gut microbiota increases the susceptibility of 
piglets to enteric pathogens (38). Although we did not find that DMY 
affected the abundance of Lactobacillus, Bifidobacterium, and Bacillus 
in this study, it is necessary to conduct more extensive microbiome 
research in the future to explore whether DMY can improve ETEC-
induced microbiota disturbance. Meanwhile, SCFAs (e.g., acetic acid, 
propionic acid, and butyric acid), as metabolites of the intestinal 
microbiota have been increasingly focused on due to their effective 
antimicrobial properties (39–41). Moreover, SCFAs not only act as a 
substrate for energy production but also regulate cell proliferation, 
apoptosis, and immunity, thereby promoting the functional maturation 

of intestinal epithelial cells (42). In the present study, dietary DMY was 
able to elevate SCFA levels in digesta of ETEC-challenged pigs. These 
results were consistent with the trend of intestinal barrier integrity and 
nutrient digestion and absorption capacity in the present study.

5 Conclusion

Hence, this study confirmed the protective effect of DMY as 
a dietary supplement in alleviating ETEC-induced intestinal 
injury in weaning pigs. As metabolites of intestinal microbiota 
regulated by DMY, SCFAs protect the intestinal barrier and 
nutrient digestion and absorption capacity, which might be the 
potential mechanism of dietary DMY supplements to protect 
intestinal injury induced by ETEC exposure. In addition, this 
study will also provide a new perspective on the application of 
dietary DMY in swine production.
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