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Non-infectious immune 
complexes downregulate the 
production of interferons and 
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Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS 
virus (PRRSV) has been harming the pig industry worldwide for nearly 40  years. 
Although scientific researchers have made substantial efforts to explore PRRSV 
pathogenesis, the immune factors influencing PRRSV infection still need to 
be  better understood. Infectious virus-antibody immune complexes (ICs) 
formed by PRRSV and sub-or non-neutralizing antibodies specific for PRRSV 
may significantly promote the development of PRRS by enhancing PRRSV 
replication through antibody-dependent enhancement. However, nothing is 
known about whether PRRSV infection is affected by non-infectious ICs (NICs) 
formed by non-pathogenic/infectious antigens and corresponding specific 
antibodies. Here, we  found that PRRSV significantly induced the transcripts 
and proteins of interferon-α (IFN-α), IFN-β, IFN-γ, IFN-λ1, and tumor necrosis 
factor-α (TNF-α) in vitro primary porcine alveolar macrophages (PAMs) in the 
early stage of infection. Our results showed that NICs formed by rabbit-negative 
IgG (RNI) and pig anti-RNI specific IgG significantly reduced the transcripts and 
proteins of IFN-α, IFN-β, IFN-γ, IFN-λ1, and TNF-α in vitro PAMs and significantly 
elevated the transcripts and proteins of interleukine-10 (IL-10) and transforming 
growth factor-β1 (TGF-β1) in vitro PAMs. NICs-mediated PRRSV infection 
showed that NICs not only significantly decreased the induction of IFN-α, IFN-β, 
IFN-γ, IFN-λ1, and TNF-α by PRRSV but also significantly increased the induction 
of IL-10 and TGF-β1 by PRRSV and considerably enhanced PRRSV replication in 
vitro PAMs. Our data suggested that NICs could downregulate the production 
of antiviral cytokines (IFN-α/β/γ/λ1 and TNF-α) during PRRSV infection in vitro 
and facilitated PRRSV proliferation in its host cells by inhibiting innate antiviral 
immune response. This study elucidated one novel immune response to PRRSV 
infection, which would enhance our understanding of the pathogenesis of 
PRRSV.
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Introduction

PRRSV is a single-stranded, positive-strand RNA-enveloped virus 
assigned to the genus Arterivirus, and it has two well-known species, 
including type 1 (European-like or PRRSV-1) represented by Lelystad 
and type 2 (North American-like or PRRSV-2) described by VR-2332 
(1). Even though PRRSV was identified three decades ago, due to its 
long persistence of infection and complex pathogenic features, PRRS 
is at the top of global veterinary concerns. PRRSV causes acute 
respiratory problems (dyspnea, asthma, etc.) in young piglets and 
severe reproductive disturbances (abortion, stillbirth, etc.) in late 
pregnant sows, which results in considerable economic losses to global 
swine production (2, 3). The virus shows an extreme propensity for 
swine immune cells of monocytes/macrophages, notably porcine 
alveolar macrophages (PAMs). Still, it can also be cultivated using the 
African green monkey kidney MARC-145 cell line in vitro (4, 5). The 
innate immune system can defend against the invasion of most 
pathogenic microorganisms. The innate antiviral cytokines, such as 
interferons (IFNs) and TNF-α produced by immune macrophages in 
response to microbial pathogen stimulation, are critical components 
of the natural immune system that initiate antiviral response (6). 
Three types of IFNs (type I: IFN-α/β, type II: IFN-γ, and type III: 
IFN-λs) have been found in the body’s immune response (7). The 
outcome of virus infection could be affected by the induction of innate 
immune cytokines, including IFNs, TNF-α, IL-10, and TGF-β1. A 
growing number of reports demonstrate that PRRSV infection 
influences innate immunity by altering cytokine secretion of the host 
cells (8, 9). However, there are conflicting findings on the ability of 
PRRSV to regulate cytokine responses, and different PRRSV may 
differ in the capability to induce cytokine expression (10, 11). Multiple 
factors may be responsible for these controversial results, such as host 
cell types, detection methods, virus species, etc.

Macrophages can express the receptors for different 
immunoglobulin (Ig) molecules. The IgG Fc fragment receptors (Fc 
gamma receptors, FcγRs) are the most typical leukocyte phagocytic 
receptors (12). Antibodies (IgGs)/cognate foreign or self-antigens 
binding forms the immune complexes (ICs) that have long been 
known to modulate the host immune responses through their abilities 
to cluster FcγRs expressed on the surface of immune cells (13–15). The 
ICs-FcγRs interaction leads to antigen presentation, the release of 
chemokines and cytokines, phagocytosis, antibody-dependent cellular 
cytotoxicity, neutrophil activation and degranulation, B or T cell 
selection, maturation and activation (16–18). Besides regulating host 
immunity, the ICs have also been proven to suppress autophagy in 
glomerular endothelial cells, be tightly associated with many human 
and animal diseases, and be used in immunotherapies as an alternative 
treatment for several forms of tumor and in preventive/therapeutic 
vaccines preventing viral outbreaks in the host populations (19–21). 
Specific antibodies induced by the virus are usually antiviral and can 
prevent further viral infection in a number-dependent manner. 
Unfortunately, although some viruses activate a rapid humoral 
immune response of the host, these antibodies may enhance viral 
replication in target cells via antibody-dependent enhancement 
(ADE) of infection (22). Among the different types of viruses affected 
by ADE, the most notable is dengue virus (DENV), Ross River virus 
(RRV), Ebola virus, feline infectious peritonitis virus, Zika virus, 
human immunodeficiency virus type 1, and PRRSV (owing to its 
veterinary importance) (22, 23). Principally, FcγRs-mediated 

endocytosis of infectious ICs formed by viruses and preexisting sub-or 
non-neutralizing antibodies against viruses is responsible for the ADE 
(24). ADE infection promotes the entry process of infectious virus-
antibody ICs by FcγRs-mediated endocytosis and modifies innate 
intracellular antiviral mechanisms in FcγRs-bearing cells. For 
instance, ADE of DENV infection down-regulates the synthesis of 
IFN-β/γ and TNF-α (25–27). RRV-ADE infection results in 
suppression of IFN-β and TNF-α (28). The decrease of IFN-α/β/γ/λs 
and TNF-α levels is also observed in ADE of PRRSV infection (29–
31). The NICs formed in the physiological progress of antibody 
response to various non-pathogenic/infectious antigens widely exist 
in living organisms (32, 33). In addition, the combination of utterly 
neutralizing antibodies induced by viruses and corresponding viruses 
in viral infection also forms NICs. Nevertheless, whether the NICs 
influence the antiviral response to PRRSV infection is unknown.

This study explored the effect of artificial analog NICs formed by 
rabbit-negative IgG (RNI) and pig anti-RNI IgG antibodies on the 
innate antiviral response to PRRSV infection in vitro PAMs. The 
results might provide evidence to fill knowledge on NICs regulating 
virus-induced immune response, which would deepen understanding 
of the immune pathogenesis of PRRSV.

Materials and methods

Cells and virus

As described previously (34), PAMs used in this experiment were 
separated from nine PRRSV-negative 21 to 42-day-old pigs. The cells 
were maintained in Roswell Park Memorial Institute medium 
(HyClone, United States) supplemented with 10% fetal bovine serum 
(FBS) (HyClone, United  States) plus streptomycin–penicillin 
(HyClone, United States). PRRSV-2 virus strain HeN-3 (Accession 
number: FJ237420) used in all experiments was propagated in 
MARC-145 cells cultured in Dulbecco’s modified Eagle’s medium 
(HyClone, United  States) containing 10% FBS and streptomycin–
penicillin. Viral titers (50% tissue culture infectious dose, TCID50) 
were titrated in MARC-145 cells. Briefly, PRRSV suspension 
(10 × diluted) was inoculated onto MARC-145 cells (80% confluence) 
prepared in 96-well plates (Corning, United States) and cultivated for 
72 h at 37°C in 5% CO2. The cytopathic effect was observed using a 
microscope. Viral TCID50 titers were calculated using the Reed-
Muench method (35).

Antibodies

Rabbit-negative IgG (RNI) was purified from the blood serums of 
specific-pathogen-free white rabbits. Pig-negative IgG (PNI) was 
purified from the sera of healthy PRRSV-negative piglets. Pig anti-RNI 
specific polyclonal antibody (pAb) (ELISA titers: 12800) was derived 
from healthy PRRSV-negative piglets immunized with RNI coupled 
with Freund’s Adjuvant (Sigma, United States). Pig anti-RNI specific 
IgG was depurated from pig anti-RNI specific pAb by ammonium 
sulfate precipitation and diethylaminoethanol chromatography. 
Rabbit anti-PRRSV-N protein pAb was purchased from Bioss (Beijing) 
Biotechnology Co., LTD. (China). Rabbit anti-β-actin pAb and goat 
anti-rabbit IgG (H + L)-Horseradish peroxidase (HRP) antibodies 
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were purchased from Absin (Shanghai) Biochemical Co., 
LTD. (China).

PRRSV infection assay and NICs-mediated 
cytokine assay in PAMs

Pig anti-RNI IgG (1.14 mg/mL)/RNI (1.14 mg/mL) non-infectious 
immune complexes (NICs) and PNI (1.14 mg/mL)/RNI (1.14 mg/mL) 
admixtures (PNI + RNI) were prepared as previously reported (36). 
Briefly, 1.14 mg/mL RNI was thoroughly mixed and incubated with 
an equal volume of pig anti-RNI specific IgG antibodies (1.14 mg/mL) 
or PNI (1.14 mg/mL) at 37°C for 1 h to form NICs or PNI + RNI 
mixtures, respectively. IFN-α, IFN-β, IFN-γ, IFN-λ1, TNF-α, IL-10, 
and TGF-β1 were several key immune cytokines closely associated 
with innate antiviral response. To investigate whether these cytokine 
levels were altered by PRRSV or NICs, PAM cell monolayers (5 × 105 
cells) were prepared in triplicates 8 h in advance in 24-well plates 
(Corning, United States). Then, the cells were incubated with PRRSV 
(200 TCID50), PNI + RNI, NICs, or lipopolysaccharide (LPS) (100 ng/
mL) (Sigma, United States) at 37°C for 2 h. PAMs treated with LPS 
served as a positive control. PAMs treated with PNI + RNI served as a 
negative control. The untreated cells served as mock trials. 
Subsequently, the inoculum was replaced using 500 μL fresh growth 
media. The cells and their supernatants were collected after 12, 24, 36, 
48, 60, or 72 h infection to detect cytokine expression by relative 
quantitative RT-PCR/ELISA and PRRSV production with titration/
real-time RT-PCR.

The NICs-mediated PRRSV infection in 
PAMs

To further analyze whether NICs affected PRRSV-induced 
production of IFN-α, IFN-β, IFN-γ, IFN-λ1, TNF-α, IL-10, and 
TGF-β1, PAM cell monolayers (5 × 105 cells) were kept in triplicates 
8 h in advance in 24-well plates, then pretreated with 200 μL NICs or 
PNI + RNI at 37°C for 2 h. After removing the culture solutions, the 
treated cells were incubated with 200 TCID50 of PRRSV at 37°C for 
2 h. The cells infected with PRRSV alone acted as control groups. The 
inoculum was discarded, and 500 μL complete media was added. The 
cells and their supernatants were harvested at 12, 24, 36, 48, 60, or 72 h 
post-infection to quantify cytokine expression by relative quantitative 
RT-PCR/ELISA and PRRSV production with titration/real-
time RT-PCR.

Relative quantitative RT-PCR of immune 
cytokine mRNAs

Total PAM cell RNAs were obtained using TRIzol reagent (Takara, 
Japan), and approximately 200 ng RNAs were converted to cDNAs by 
reverse transcription (RT) kits (Takara, Japan). The cDNAs were used 
as the relative quantitative RT-PCR template. PCR reaction with 
primers listed in Table 1 was performed on an Applied Biosystems 
QuantStudio 5 Real-Time thermocycler (United States). For PCR 
amplifications, 2 μL cDNA templates were added to a mixture 
containing 10 μL TB Green II Premix (Takara, Japan), 6 μL sterilized 
deionized water, 1 μL forward primer (20 pmol/μL), and 1 μL reverse 

primer (20 pmol/μL). The cycling conditions were 95°C for 2 min, 
followed by 40 cycles of 95°C for 5 s and 60°C for 20 s. Cycle threshold 
(CT) values were obtained at the end of PCR amplifications. The 
transcript of the porcine β-actin (internal reference gene) was examined 
to normalize the input mRNA amount. As described previously 
(37–39), quantitative calculation of the target gene transcript began 
with the difference (∆CT) between the CT values of the target gene and 
the internal reference gene: ∆CT = CT (target gene) - CT (internal 
reference gene). These relative values were transformed into absolute 
values using the formula: Comparative mRNA expression level = 2−∆CT.

Real-time RT-PCR of PRRSV RNA copies

PRRSV RNA copies in infected cells were detected and quantified 
using real-time RT-PCR based on the HeN-3 ORF7 gene (37). Briefly, 
viral RNA was isolated with TRIzol reagent and reverse-transcribed 
onto cDNA using commercial RT kits. Real-time RT-PCR of PRRSV 
RNA was performed on the Applied Biosystems QuantStudio 5 Real-
Time thermocycler using the following primer pairs (Forward primer: 
5’-AAACCAGTCCAGAGGCAAGG-3′; Reverse primer: 5’-GCAA-
ACTAAACTCCACAGTGTAA-3′). The cycling conditions were 95°C 
for 10 min, followed by 40 cycles of 95°C for 5 s and 60°C for 34 s. A 
standard curve was generated in each detection using the plasmid 
standard substances. An excellent linear relation was observed when 
the plasmid template was diluted from 101 to 109 copies/μL (correlation 
coefficient R2 = 0.999; amplified efficiency E = 0.959; the minimum 
detection limit = 20.8 copies/μL; and variation coefficient < 2.0%). 
PRRSV RNA copies were calculated according to the standard curve.

ELISA assay of immune cytokine proteins

The protein concentrations of innate immune cytokines IFN-α, 
IFN-β, IFN-γ, IFN-λ1, TNF-α, IL-10, and TGF-β1 in cell culture 
supernatants were calculated using commercial ELISA kits based 
on each standard curve generated using a known standard. All 

TABLE 1 Relative quantitative RT-PCR primers.

Gene Primer sequence (5′-3′)

IFN-α
Forward: GGATCAGCAGCTCAGGG

Reverse: GAGGGTGAGTCTGTGGAAGTA

IFN-β
Forward: CAACAAAGGAGCAGCAAT

Reverse: TGGAGCATCTCGTGGATA

IFN-γ
Forward: AGCCAAATTGTCTCCTTCTA

Reverse: AAGTCATTCAGTTTCCCAGA

IFN-λ1
Forward: AACTTCAGGCTTGCATCAGG

Reverse: TCTTTCTTTGTGGCTTCTTGG

TNF-α
Forward: AGCCGCATCGCCGTCTCCTAC

Reverse: CCTGCCCAGATTCAGCAAAGTCC

IL-10
Forward: GCATCCACTTCCCAACCA

Reverse: TCGGCATTACGTCTTCCAG

TGF-β1
Forward: GAGCCAGAGGCGGACTA

Reverse: GGGTGCCCTTGAATTTATC

β-actin
Forward: CGGGACATCAAGGAGAAGC

Reverse: CTCGTTGCCGATGGTGATG
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FIGURE 1

Effect of PRRSV or NICs on immune cytokine mRNAs in PAMs. PAM cell monolayers were incubated with PRRSV (200 TCID50), PNI  +  RNI, NICs, or LPS 
(100  ng/mL). Cells were collected for total RNA isolation at 12, 24, 36, 48, 60, or 72  h later. IFN-α (A), IFN-β (B), IFN-γ (C), IFN-λ1 (D), TNF-α (E), IL-10 (F), 
or TGF-β1 (G) mRNA expression was analyzed by relative quantitative RT-PCR method. β-actin was used to normalize cytokine mRNA levels. 
***p  <  0.001, **p  <  0.01, *p  <  0.05. Bars indicate the 2−∆CT of mRNA copies of cytokines in cells  ±  SEM from three repeated experiments. LPS, 
lipopolysaccharide; NICs, non-infectious immune complexes; PNI, pig-negative IgG; RNI, rabbit-negative IgG; ns, no significance.

detections were performed in parallel. IFN-α or TNF-α ELISA kits 
were obtained from Sigma Corporation (United States). R&D 
Systems (United States) provided IFN-γ or TGF-β1 ELISA kits. 
IFN-β or IL-10 ELISA kits were purchased from Invitrogen (United 
States). IFN-λ1 ELISA Kits were the products of MyBioSource Inc., 
(United States).

Western blot assay

PAMs were lysed using lysis buffer and boiled in 5 × sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
loading buffer at 100°C for 10 min. Proteins were resolved by 10% 
SDS-PAGE and transferred onto a methanol-activated polyvinylidene 
difluoride (PVDF) Immobilon-P membrane (Sigma, United States). 
After blocking with 5% nonfat dry milk buffer, the PVDF membranes 
were stained by primary (rabbit anti-β-actin pAb, 1:1000 dilution; 
rabbit anti-PRRSV-N protein pAb, 1:1000 dilution) and secondary 
antibodies (goat anti-rabbit IgG-HRP antibody, 1:10000 dilution). The 
immunolabeled proteins were visualized using an ECL luminescence 
reagent (Bio-Rod, United States).

Statistical analysis

Data were expressed as mean ± standard error of the mean (SEM) 
from three repeated experiments. Statistical analyses were performed 
to determine which group differed by pairwise multiple comparisons 
using a two-way analysis of variance (ANOVA) followed by Bonferroni 
post-tests using the GraphPad Prism 5.0 software package. A value of 
p < 0.05 was considered significant.

Results

PRRSV induces an early innate antiviral 
response in PAMs

To explore whether PRRSV induced the production of immune 
cytokines IFN-α, IFN-β, IFN-γ, IFN-λ1, TNF-α, IL-10, and 
TGF-β1, PAM cell monolayers were infected with PRRSV for 12, 
24, 36, 48, 60, or 72 h. Cytokine mRNAs in infected cells and 
cytokine proteins in culture supernatants were measured, 
respectively. As illustrated in Figures  1A–D, significant 
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up-regulation of IFN-α, IFN-β, IFN-γ, and IFN-λ1 mRNAs was 
detected in virus-infected cells at 12, 24 h later, and weak down-
regulation of IFN-α, IFN-β, IFN-γ, and IFN-λ1 mRNAs was 
detected in virus-infected cells at 36–72 h later, compared to 
uninfected cells. Simultaneously, IFN-α, IFN-β, IFN-γ, and IFN-λ1 
proteins from virus-infected cell supernatants were significantly 
more than those from uninfected cell supernatants at 12–48 h later 
and slightly more than those from uninfected cell supernatants at 
60, 72 h later (Figures 2A–D). Although significant up-regulation 
of TNF-α mRNA was detected in virus-infected cells at 12–72 h 
later compared to uninfected cells, TNF-α protein from virus-
infected cell supernatants was only weakly more than that from 
uninfected cell supernatants at 12–72 h later (Figures 1E, 2E). In 
addition, significant up-regulation of the mRNAs and proteins of 
IL-10 and TGF-β1 were detected in virus-infected cells at 12–72 h 
later, compared to uninfected cells (Figures 1F,G, 2F,G). PRRSV 
kinetics showed the highest levels of viral RNAs and TCID50 titers 
after 48 h infection (Figure 3). These data suggested that PRRSV 
induced an early innate antiviral response.

NICs suppress innate antiviral response in 
PAMs

To confirm whether non-infectious immune complexes (NICs) 
regulated the expression of immune cytokines IFN-α, IFN-β, IFN-γ, 
IFN-λ1, TNF-α, IL-10, and TGF-β1, PAM cell monolayers were 
treated with NICs for 12, 24, 36, 48, 60, or 72 h. After collecting treated 
cells and culture supernatants, further cytokine mRNA quantitative 
analysis and cytokine protein ELISA assay were performed. As 
exhibited in Figures 1A–E, a significant reduction of IFN-α, IFN-β, 
IFN-γ, IFN-λ1, and TNF-α mRNAs was observed in NICs-treated 
cells after 12–72 h treatment, compared to PNI + RNI-treated cells. 
Concurrently, examination of NICs-treated cell supernatants showed 
no detectable levels for IFN-α, IFN-β, IFN-γ, IFN-λ1, or TNF-α 
protein. However, significant enhancement of IL-10 and TGF-β1 
mRNAs in NICs-treated cells and their proteins from NICs-treated 
cell supernatants were observed at 12–72 h post-treatment, compared 
to PNI + RNI-treated cells (Figures 1F,G, 2F,G). These data suggested 
that NICs suppress the innate antiviral response.

FIGURE 2

Effect of PRRSV or NICs on immune cytokine proteins in PAMs. PAM cell monolayers were incubated with PRRSV (200 TCID50), PNI  +  RNI, NICs, or LPS 
(100  ng/mL). Cell supernatants were collected for ELISA assay at 12, 24, 36, 48, 60, or 72  h later. IFN-α (A), IFN-β (B), IFN-γ (C), IFN-λ1 (D), TNF-α (E), 
IL-10 (F), or TGF-β1 (G) protein production was quantified using commercial ELISA kits. ***p  <  0.001, **p  <  0.01, *p  <  0.05. Bars indicate the mean of 
protein concentrations of cytokines in cell supernatants  ±  SEM from three repeated experiments. LPS, lipopolysaccharide; NICs, non-infectious 
immune complexes; PNI, pig-negative IgG; RNI, rabbit-negative IgG; ns: no significance.
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NICs repress PRRSV-induced innate 
antiviral response in PAMs

To determine whether NICs influenced the secretion of IFN-α, 
IFN-β, IFN-γ, IFN-λ1, TNF-α, IL-10, and TGF-β1 induced by PRRSV, 
PAM cell monolayers were pretreated with NICs for 2 h before 
infecting by PRRSV for 12, 24, 36, 48, 60, or 72 h. The cells and 
supernatants were harvested for mRNA relative quantitative and 
protein ELISA analysis of immune cytokines. As shown in Figures 4, 
5, the mRNAs of IFN-α, IFN-β, IFN-γ, IFN-λ1, and TNF-α in PRRSV-
infected cells pretreated with NICs, and their proteins in cell 
supernatants were significantly decreased at 12–72 h post-infection, 
whereas the mRNAs of IL-10 and TGF-β1 in PRRSV-infected cells 
pretreated with NICs and their proteins in cell supernatants were 
significantly increased at 12–72 h post-infection compared with 
PRRSV-infected cells pretreated with PNI + RNI. These data suggested 
that NICs repressed PRRSV-induced innate antiviral response.

NICs enhance PRRSV replication in PAMs

Since we  demonstrated that NICs repressed PRRSV-induced 
innate antiviral response, we  next test whether NICs influenced 
PRRSV replication. PAM cell monolayers were pretreated with NICs 
for 2 h before being infected by PRRSV for 12, 24, 36, 48, 60, or 72 h. 

The infected cell supernatants were collected to detect viral RNAs and 
TCID50 titers. Whole-cell lysates were extracted for immunoblot 
analysis of PRRSV N protein in PAMs by western blotting. The results 
seen in Figure 6 showed that the RNAs and TCID50 of PRRSV in 
supernatants of PRRSV-infected cells pretreated with NICs were 
significantly higher than those in supernatants of PRRSV-infected 
cells pretreated with PNI + RNI after 12–72 h infection. The increases 
in RNA copies and TCID50/mL titers of PRRSV by NICs ranged from 
10.42–27.63 folds and 12.94–18.80 folds, respectively. Similar results 
were also observed in Figure 7 (lanes 2 and 3). These data suggested 
that NICs facilitate PRRSV replication.

Discussion

Immune monocyte/macrophage lineages play an essential role in 
the innate immune system by producing many cytokines. Classically 
activated macrophages are pro-inflammatory by releasing 
pro-inflammatory cytokines such as TNF-α and IL-1β/6/12/23. 
Alternatively activated macrophages are anti-inflammatory and 
immunoregulatory by secreting anti-inflammatory cytokines such as 
IL-10 and TGF-β (40). The cytokine profile of target cells in response 
to PRRSV infection has been extensively studied. It seems generally 
accepted that PRRSV replication in host cells down-regulates the 
synthesis of innate antiviral cytokines (41, 42). Direct PRRSV 

FIGURE 3

The kinetics of PRRSV proliferation in PAMs. PAM cell monolayers were infected with 200 TCID50 of PRRSV. Cell supernatants were harvested at 12, 24, 
36, 48, 60, or 72  h post-infection. PRRSV RNA copies (A) and its TCID50/mL titers (B) in cell supernatants were measured by real-time RT-PCR and 
TCID50 assay. Data represents mean  ±  SEM of three repeated experiments.
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replication may result in immunosuppression of the host, contributing 
to secondary infection or triggering other diseases whose clinical 
symptoms are directly related to changes in the immune system (43, 
44). The inhibition of innate immunity has been considered an 
essential factor contributing to the PRRSV regulation of host immune 
responses. In this study, we explored whether PRRSV induced an 
antiviral response by monitoring the presence of several vital antiviral 
cytokines in host cells by mRNA transcription analysis and protein 
ELISA assay of cytokines. We found that the abundant transcripts and 
proteins of IFN-α, IFN-β, IFN-γ, and IFN-λ1 were detected in 
PRRSV-infected PAMs in early infection, and weak inhibition of 
IFN-α, IFN-β, IFN-γ, and IFN-λ1 was observed in PRRSV-infected 
PAMs in late infection, consistent with previous studies (31, 45–47). 
Meanwhile, a low level of TNF-α production was detected in PRRSV-
infected PAMs at 12–72 h post-infection, suggesting that PRRSV was 
a weak inducer of TNF-α. These results indicated that PRRSV could 
induce the innate antiviral immune response in infected host cells by 
activating IFNs or TNF-α secretion. IL-10 and TGF-β1 are two 
important immunomodulatory cytokines that may be associated with 
viral infection and host immunosuppression (48, 49). Singleton et al. 
observed that monocyte-derived macrophages become more 

susceptible to PRRSV infection after pre-treament with IL-10 (50). 
IL-10 and TGF-β1 level up-regulation has been observed during 
PRRSV infection (51–53). But, there also are studies showing that 
PRRSV infection down-regulates or has no effect on IL-10 and 
TGF-β1 levels (54–56). We found that the mRNAs and proteins of 
IL-10 and TGF-β1 were upregulated in PRRSV-infected PAMs at any 
time post-infection. This evidence suggested that different PRRSV 
isolates may induce disparate expression patterns of IL-10 and TGF-β1.

Antibody/antigen binding generates immune complexes (ICs) with 
various modulatory functions. ICs play essential roles in enhanced immune 
activation against antigens, facilitated antigen uptake, antigen targeting/
retention, antigen-presenting cell activation, and balancing stimulatory 
signals (21, 57). The relationship between ICs and innate antiviral response 
has also been described. Several early studies have shown that ICs suppress 
IFN-γ-induced tumoricidal activity and primary histocompatibility 
complex class II expression by inhibiting the transducers and activators of 
the Janus kinase/signal pathway (58–60). Subsequently, ICs-induced 
secretion of IL-6 and IL-10 in an antibody ratio-dependent manner was 
confirmed in human monocytes (61). Data from a recent report shows that 
ICs suppress IFN-γ signaling by activating the FcγRI signaling pathway 
(62). Furthermore, in ADE infection of viruses, including PRRSV, the 

FIGURE 4

Effect of NICs on immune cytokine mRNAs in PAMs infected with PRRSV. PAM cell monolayers were pretreated with PNI  +  RNI or NICs for 2  h and then 
infected with 200 TCID50 of PRRSV. Cells were collected for total RNA isolation at 12, 24, 36, 48, 60, or 72  h post-infection. IFN-α (A), IFN-β (B), IFN-γ 
(C), IFN-λ1 (D), TNF-α (E), IL-10 (F), or TGF-β1 (G) mRNA expression was analyzed by relative quantitative RT-PCR method. β-actin was used to 
normalize cytokine mRNA levels. ***p  <  0.001, **p  <  0.01, *p  <  0.05. Bars indicate the 2−∆CT of mRNA copies of cytokines in cells ± SEM from three 
repeated experiments. NICs, non-infectious immune complexes; PNI, pig-negative IgG; RNI, rabbit-negative IgG.
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FIGURE 5

Effect of NICs on immune cytokine proteins in PAMs infected with PRRSV. PAM cell monolayers were pretreated with PNI  +  RNI or NICs for 2  h and 
then infected with 200 TCID50 of PRRSV. Cell supernatants were collected for ELISA assay at 12, 24, 36, 48, 60, or 72  h post-infection. IFN-α (A), IFN-β 
(B), IFN-γ (C), IFN-λ1 (D), TNF-α (E), IL-10 (F), or TGF-β1 (G) protein production was quantified using commercial ELISA kits. ***p  <  0.001, **p  <  0.01, 
*p  <  0.05. Bars indicate the mean of protein concentrations of cytokines in cell supernatants ± SEM from three repeated experiments. NICs, non-
infectious immune complexes; PNI, pig-negative IgG; RNI, rabbit-negative IgG.

cross-linking of FcγRs and infectious virus-antibody ICs formed by viruses 
and cognate virus-specific sub-or non-neutralizing antibodies also inhibits 
IFNs and TNF-α responses (29, 63). In contrast, several reports have 
demonstrated that ICs sometimes activate IFNs and TNF-α production 
(64–66). These differences may be related to the types of ICs or experimental 
models. However, up to date, the role of NICs formed by antibodies and all 
kinds of non-pathogenic/infectious antigens in innate antiviral response to 
virus infection has not been well understood. Previous reports showed that 
macrophages pre-treated with type I or II IFNs were less susceptible to 
PRRSV infection (50, 67). In the current study, we found that the transcripts 
and proteins of IFN-α, IFN-β, IFN-γ, IFN-λ1, and TNF-α in PAMs were 
reduced by NICs treatment, and the transcripts and proteins of IL-10 and 
TGF-β1 in PAMs were enhanced by NICs treatment. We showed that NICs 
suppressed innate antiviral response. More importantly, our data showed 
that NICs treatment of PAMs not only down-regulated PRRSV-induced 
secretion of IFN-α, IFN-β, IFN-γ, IFN-λ1, and TNF-α but also upregulated 
PRRSV-induced secretion of IL-10 and TGF-β1 and enhanced PRRSV 
replication in PAMs. These results suggested that NICs repressed innate 
antiviral response to PRRSV infection in vitro. Our studies supplied a better 

understanding of the interaction between NICs and host cells, primarily 
focusing on the effect of NICs on PRRSV replication. Further exploration 
of the mechanisms of NICs inhibiting innate antiviral immunity will 
significantly improve our knowledge of PRRSV-persistent pathogenesis 
and provide insights into developing novel anti-PRRSV strategies.

Conclusion

PRRSV induced an early antiviral response by activating the 
secretion of IFN-α, IFN-β, IFN-γ, IFN-λ1, and TNF-α in vitro PAMs. 
NICs inhibited PRRSV-induced antiviral response by reducing 
PRRSV-induced synthesis of IFN-α, IFN-β, IFN-γ, IFN-λ1, and 
TNF-α in vitro PAMs and increasing PRRSV-induced production of 
IL-10 and TGF-β1 in vitro PAMs, therefore promoting PRRSV 
replication. Our findings provided a new insight into PRRSV infection 
that might be  enhanced by the formation of non-pathogenic/
infectious antigens-antibodies ICs, which facilitated an understanding 
of the immune pathogenesis of PRRSV-persistent infection.
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FIGURE 6

Effect of NICs on PRRSV propagation in PAMs. PAM cell monolayers 
were pretreated with PNI  +  RNI or NICs for 2  h and then infected with 
200 TCID50 of PRRSV. Cell supernatants were harvested at 12, 24, 36, 
48, 60, or 72  h post-infection. PRRSV RNA copies (A) and its TCID50/
mL titers (B) in cell supernatants were measured by real-time RT-
PCR and TCID50 assay. ***p  <  0.001. Bars indicate RNA copies or 
TCID50/mL titers of PRRSV. Error bars indicate the mean  ±  SEM of 
three repeated experiments. NICs, non-infectious immune 
complexes; PNI, pig-negative IgG; RNI, rabbit-negative IgG.

FIGURE 7

Immunoblot analysis of PRRSV N protein in PAMs. PAM cell 
monolayers were pretreated with PNI + RNI or NICs for 2 h and 
then infected with 200 TCID50 of PRRSV. Cells were collected for 
protein extraction at 12, 24, 36, 48, 60, or 72 h post-infection. 
Whole-cell proteins were prepared for western blotting with 
primary (rabbit anti-PRRSV-N protein pAb, 1:1000 dilution) and 
secondary antibodies (goat anti-rabbit IgG-HRP antibody, 
1:10000 dilution). β-actin served as a loading control. NICs, 
non-infectious immune complexes; PNI, pig-negative IgG; RNI, 
rabbit-negative IgG; pAb, polyclonal antibody.
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