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Background: Implantable electroencephalography (EEG) recording devices 
have been used for ultra-long-term epilepsy monitoring both in clinical and 
home settings in people. Objective and accurate seizure detection and recording 
at home could be  of great benefit in diagnosis, management and research 
in canine idiopathic epilepsy (IE). Continuous EEG monitoring would allow 
accurate detection of seizure patterns, seizure cycles, and seizure frequency. An 
EEG acquisition system usable in an “out of clinic” setting could improve owner 
and veterinary compliance for EEG diagnostics and seizure management.

Objectives: Whether a subcutaneous ultra-long term EEG monitoring device 
designed for humans could be implanted in dogs.

Animals: Cadaver study with 8 medium to large breed dogs.

Methods: Comparatively using a subcutaneous and submuscular approach to 
implant the UNEEG SubQ-Implant in each dog. Positioning was controlled via 
CT post implantation and cranial measurements were taken.

Results: In four of the eight dogs a submuscular implantation without any 
complications was possible. Complications were close contact to the optic 
nerve in the first approaches, before the implantation angle was changed and 
in the smallest dog contact of the implant with the orbital fat body. Cranial 
measurements of less than 95  mm length proved to be  too small for reliable 
implantation via this approach. The subcutaneous approach showed severe 
limitations and the implant was prone to dislocation.

Conclusion: The UNEEQ SubQ-Implant can be  implanted in dogs, via 
submuscular approach. CT imaging and cranial measurements should be taken 
prior to implantation.
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Introduction

Canine idiopathic epilepsy (IE) is a brain disease characterized by 
spontaneous recurrent seizures. It is a common neurological condition, 
affecting 0.6–0.75% of dogs (1, 2). The current suggested diagnostic 
approach is divided into three tiers of confidence levels for the diagnosis 
of IE (3). Tier I and II are based on subjective criteria such as description 
of episodes, viewing of episodes, physical and neurological examinations, 
as well as unremarkable advanced tests like blood and cerebrospinal fluid 
analysis and magnetic resonance imaging (3). For epilepsy management 
owners are often recommended to keep a “seizure diary.” However, it is 
discussed that an underreporting of seizure frequency in dogs is 
commonly given (4). Tier III level of IE diagnosis uses 
electroencephalography (EEG) for objective confirmation of seizure 
events. EEG is additionally being used to investigate sleep and cognition 
in dogs and can aid in diagnosing canine cognitive dysfunction 
syndrome (CCDS) (5). A syndrome similar to Alzheimer’s disease in 
people, which can cause clinical signs such as confusion, anxiety, 
disturbance of the sleep/wake cycle and decreased interaction with 
owners in dogs (6–8). Recent studies show that fewer than 50% of 
veterinary neurologists perform EEGs in their diagnostics (9). Limiting 
factors for the more frequent use being equipment availability, 
insufficient cases and financial costs to clients (9). Abnormal electric 
activity is often found in epileptic dogs, without the necessity of an active 
seizure (10). However, inter-ictal short-term EEGs have a lower 
diagnostic yield and can have unremarkable findings (11–13), 
showcasing that an ictal EEG recording highly increases the diagnostic 
value. With unpredictable seizure onsets, ictal EEG however cannot 
always be achieved in routine diagnostics, making it more likely to record 
a seizure event during long term EEG monitoring. Since 2019 
implantable EEG recording devices have been used for ultra-long-term 
epilepsy monitoring both in clinical and home settings in people (14–
18). Objective and accurate seizure detection and recording at home 
could be of great benefit in diagnosis, management and research in IE 
(19). An EEG acquisition system usable in an “out of clinic” setting could 
improve owner and veterinary compliance for EEG diagnostics and 
seizure management, potentially without compromise in diagnostic 
quality as studies with people have shown (14, 17, 18). Furthermore, 
continuous EEG monitoring would allow accurate detection of seizure 
patterns, seizure cycles and seizure frequency (20). In addition, this 
technology should help resolve the low accuracy of seizure diaries 
compiled by owners of dogs with IE.

With EEGs often being challenging to perform in a clinical setting 
(3), this study aims to investigate whether a subcutaneous ultra-long 
term EEG monitoring device designed for humans could be implanted 
in dogs.

Materials and methods

Device

The subcutaneous EEG system (UNEEQ SubQ-Implant) used in this 
study consists of two components: The implant (Figure  1A) and an 
external recorder (Figure  1B). In addition, an introducing needle 
(Figure 1C) is used to aid the implantation procedure. In this study the 
implantation of said EEG monitoring solution was tested, using the 
introduction needle for sub-cutaneous or submuscular implantation.

The implant consists of a ceramic housing and a lead with three 
electrodes and provides two-channel measurements from a single 
location. The EEG data are measured in μV and split into two channels: 
“EEG SQ_D-SQ_C”—measured from SQ_C to SQ_D and “EEG SQ_P-
SQ_C”—measured from SQ_C to SQ_P (Figure  1A). The housing 
measures 24 × 17 × 3.3 mm, the lead 103 mm containing three electrodes 
with an outer diameter of 1.06 mm and a length of 10 mm each.

A small external device (Figure 1B) is inductively coupled to 
the implanted housing, powering it via this link. The external 
device receives and stores the EEG signals, storing at least 30 days 
of data. The data is collected via two channels with 207 Hz and 
10-bit sampling. The recorded EEG data can be  streamed to a 
secure cloud environment for storage, analysis, and visual review. 
The EEG data are analysed by automated seizure detection 
algorithms, and suspected seizure activity is highlighted for 
subsequent expert visual review (21). However, this part of the 
EEG monitoring solution was not in the scope of this study.

Study design and animals

A cadaver study was performed at the University of Veterinary 
Medicine Hannover. Eight canine cadavers were used for this study 
(Table 1). The dogs were donated to science following their euthanasia 
with written consent by their owners. Due to the size of the device, 
implantation in dogs ranging from 20 kg to 59 kg was investigated.

Implantation and control of positioning

In each dog two implantation approaches were performed. First, 
the implant was introduced subcutaneously along the zygomatic arch 
(subcutaneous approach). Second, on the other side a submuscular 
approach similar to the surgery described for people in a publication 
by Djurhuus et  al. (16) was additionally examined. A computed 
tomography (CT)1 scan was performed following both subcutaneous 
and submuscular implantation to evaluate the position of the implant. 
The CT scans included soft tissue and bone windows with a metal 
artefact reduction filter. The cranium of each dog was measured using 
the CT images. At midline, noting the length from the occiput to the 
level of the zygomatic process of the frontal bones and the height from 
the basisphenoid bone in a 90°C angle to the sagittal suture.

Subcutaneous approach

 1. On the shaved head, a linear, vertical incision of about 25 mm 
length was made just above the caudal border of the zygomatic 
arch and about 10 mm caudal to the planned caudal border of 
the housing.

 2. A subcutaneous pocket for the housing was created.
 3. The implant was fitted in the introducing needle.

1 Philips IQon Spectral CT (Philipps Medical Systems GmbH, Hamburg, 

Germany).
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 4. The introducing needle can be bent carefully to fit the curvature 
of the patient’s head.

 5. Using the introducing needle the implant was slowly inserted 
into the subcutaneous tissue. Following the curvature of the 
zygomatic arch the introducing needle was embedded until 
the tip reached just past the anterior border of the 

zygomatic arch, in distance to the eye and 
auriculopalpebral nerve.

 6. Fixating the lead with forceps, the introducing needle was 
withdrawn carefully leaving the lead in situ.

 7. The housing was inserted into the subcutaneous pocket and the 
skin closed with surgical sutures.

FIGURE 1

(A) UNEEG SubQ-implant. The electrodes are named SQ_P (subcutaneous contact point proximal), SQ_C (subcutaneous contact point central) and 
SQ_D (subcutaneous contact point distal). (B) 24/7 EEG™ SubQ recorder, the wearable, external part of the electroencephalography monitoring 
solution. The disk attaches to the implanted housing. In people it can be attached to clothing via a magnet. Picture source: UNEEG Medical, https://
www.uneeg.com/recorder. (C) UNEEG Sub-Q introduction needle with inserted implant.

TABLE 1 Breed, sex, age, weight in kg, cranial measurements, and reason for euthanasia of the dogs used in this study.

Breed Sex Age (years) Weight (kg) Cranium in mm 
(length × height)

Reason for 
euthanasia

Dog 1 Labrador Retriever F 10 33 103 × 70 Adrenal neoplasia

Dog 2 Labrador Retriever M 14 32 108 × 72 Cardiac disease

Dog 3 Mixed breed M 6 32 108 × 65 Pneumothorax

Dog 4 Long Haired Collie M 2 20 95 × 59 Sepsis

Dog 5 German Sheperd 

Dog

Fs 4 34 109 × 66 Gastric torsion

Dog 6 Bernese Mountain 

Dog

Fs 8 34 105 × 67 Urethral neoplasia

Dog 7 Elo Fs 13 23 90 × 58 Neoplasia

Dog 8 Bordeaux Mastiff M 5 59 125 × 86 Cardiac disease

Dogs were used in the order 1–8. M, male; F, female; Fs, female, spayed.
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Submuscular approach

 1. On the shaved head, a linear, vertical incision of about 
25 mm length was made above the masseter in the occipital 

area, midline between occiput and ear base and about 
10 mm behind the planned caudal border of the housing 
(Figure 2).

 2. A subcutaneous pocket for the housing was created.

FIGURE 2

Submuscular approach on a Bernese Mountain Dog (cadaver, dog 6). (A) A subcutaneous pocket is created to fit the housing of the implant. (B) The 
implant is vertically inserted through the masseter, at about 1/3 of the distance between the caudal part of the zygomatic arch and the occiput using 
the introduction needle. When reaching the skull, (C) the introduction needle is orientated horizontally and angled towards the zygomatic process of 
the frontal bone. It is then inserted, following the skull. (D) When fully inserted (or in smaller dogs inserted to the desired length) the lead can be fixated 
using forceps. (E) The introduction needle is carefully removed, keeping the implant fixated in place. (F) The implant is fitted in the subcutaneous 
pocket and the skin is closed using surgical sutures (pictured here, intracutaneous stiches). Although not pictured, when applying to live animals, a 
sterile approach is needed. Standard surgical preparation including shaving, washing, disinfection of the skin and sterile covering of the surgical area 
are required.
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 3. The implant was fitted in the introducing needle.
 4. To help orientation, the thumb can be  placed on the 

occiput and the middle finger on the caudal edge of the 
zygomatic arch. Placing the index finger at the ear base, 
approximately at 1/3 of the length between the caudal 
aspect of the zygomatic arch and the occiput. Using the 
other hand, the introducing needle and implant were 
vertically inserted through the masseter until the tip 
reaches the skull.

 5. The introduction needle was then angled horizontally and 
aimed towards the zygomatic process of the frontal 
bone/medial cantus of the eye. Following the skull, it 
was embedded underneath the masseter, until the 
implant was fully inserted and only the housing remains 
above the masseter (or in smaller dogs inserted to the 
desired length).

 6. Fixating the lead with forceps, the introducing needle was 
withdrawn carefully leaving the lead in situ.

 7. The housing was inserted into the subcutaneous pocket and the 
skin is closed with surgical sutures.

Results

The cranial measurements for each dog can be found in Table 1.

Subcutaneous approach

A good placement result was achieved in five of the eight dogs 
(dogs two, four, five, seven, eight) (n = 5/8). With the implant being 
positioned along the zygomatic arch (Figure 3) and the electrodes 
overlying the frontal, temporal and occipital lobes. In the remaining 
three dogs the electrode was, in the cases of dogs one and six, 
dislocated in the area of the rostral electrode with it being diverted 
dorsally (n = 2/3) (example Figure 3). And in dog three the entire lead 
dislocated in the subcutaneous tissue (n = 1/3). Regardless of the final 
position all implants were prone to dislocation when the tissue, 
especially the skin was subjected to movement.

Submuscular approach

In four of the eight dogs (n = 4/8) an implantation without any 
complications was possible. In the first two dogs (dogs one and two), 
when angling towards the medial canthus of the eye the implantation 
resulted in the implant laying in close contact with, or vicinity of the 
optic nerve. The more caudal aspects of the implant however showed 
narrow distance to the cranium and good alignment with the temporal 
and occipital lobes (Figures 4, 5).

In the following dogs the implant was angled towards the 
zygomatic process of the frontal bone, achieving good placement 
results and enough distance to structures such as the optic nerve and 

FIGURE 3

Subcutaneous approach. (1A) Lateral view of the subcutaneous implant in a 3D reconstruction of the computed tomography (CT) images of dog 4, 
ideal positioning. (1B) Dorsolateral view of the same dog (dog 4). (2A) Lateral view of the dislocated subcutaneous implant in a 3D reconstruction of 
the CT images of dog 6. (2B) Dorsolateral view of the same (dog 6). Blue dot marking the housing, red arrow marking the lead, blue arrows marking 
the three electrodes of the implant.
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ophthalmic veins. Dogs three, four, five and six showed good 
alignment of the electrodes with the occipital lobe, temporal lobe and 
frontal lobe (Figures 4, 5).

In dog seven a full insertion of the implant resulted in the rostral 
part of the implant being embedded in the orbital fat body. In dog 
eight the rostral electrode only reached up to the temporal lobe.

Discussion

This article represents the first approach to implanting a 
subcutaneous ultra-long term EEG monitoring device designed for 
humans in dogs. It was shown that an implantation is possible and in 
half of the tested dogs, in the submuscular approach a good result in 
terms of implant position was achieved. Changing the insertion angle 
towards the zygomatic process of the frontal bone achieved better 
results in terms of positioning in further distance to the optic nerve 
and related blood vessels. Whether a penetration of the optic nerve 
with the implant occurred in the first two dogs during the submuscular 
approach could not be ruled out. Nevertheless, even close contact to 
the optic nerve could cause irritation, inflammation and discomfort if 
applied in patients. The authors therefore recommend positioning the 
electrode as demonstrated in dogs three to six (Figures 2, 4). However 
post operative imaging should nevertheless be done, if applied to 
patients, to identify potential complications like haemorrhage and to 
ensure a good positioning of the lead. In dog seven the implant 
reached into the orbital fat body once fully inserted. This dog had the 

smallest cranial measurements out of the eight dogs used in this study. 
Despite the cranium of dog four only being 5 mm longer and 1 mm 
higher than dog seven’s, enough distance to the orbital structures 
could be  seen in dog four. Dog eight proved to have the largest 
cranium, being a large breed brachycephalic dog. With a length and 
height difference of almost 30 mm compared to dog four. These 
measurements did not account for the thickness of the masseter, 
which also plays a role in implant positioning, since the lead first must 
be inserted through the entire muscle. Depending on the thickness a 
large proportion of the lead remains in the muscular tissue, before the 
desired position is reached. The housing has to remain subcutaneously 
to be connected with the recorder. Dog eight therefore showed the 
opposite to dog four, with the head being too large for the electrodes 
to span over the occipital, temporal and frontal lobe. In cases like this 
a decision as to which projection areas are desired should be made 
prior to implantation. This showcases that the size of the dog and 
measurement of the cranium are crucial for future patient selection. 
In the dogs investigated, we found that a length of less than 95 mm 
spanning at midline, from the occiput to the level of the zygomatic 
process of the frontal bones is too short for implantation via this 
submuscular approach, similar to the one used in people (16). When 
implanting this device, but especially in smaller dogs, the positioning 
should be planned via imaging prior to implantation. This would 
allow detailed measurements of the cranium to investigate whether 
the implant can be fitted. The implant leaves little leeway as to the 
degree of insertion, if all three electrodes are implanted. The use of a 
neuronavigation system or more invasive surgical procedures 

FIGURE 4

Showing 3D reconstructions of the skull from computed tomography (CT) images after submuscular implantation. Dog 6 (images numbered 1) with 
ideal implantation and dog 1 (images numbered 2) implanted with probable contact to the optic nerve. (1A) Lateral view of dog 6. (1B) Dorsolateral 
view of dog 6. (1C) Rostral view of dog 6. (2A) Lateral view of dog 1. (2B) Dorsolateral view of dog 1. (2C) Rostral view of dog 1. Blue dot marking the 
housing, red arrow marking the lead, blue arrow marking the three electrodes of the implant.
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involving incising the masseter may allow implantation in 
smaller dogs.

Whether this implant achieves good resolution and evaluable EEG 
recordings in dogs was not in the scope of the current study. However, 
since scalp EEG has relatively low sensitivity for the detection of 
seizure onsets due to the large distance from the cortex to the surface 
(22), better results in seizure detection may be  possible with this 
device. The distance to the cortex is reduced immensely in the 
submuscular approach compared to scalp EEG. The submuscular 
approach also eliminates a few of the barriers (skin, muscle) that 
interfere significantly with the recording of the EEG. Since the 
electrodes are still in contact with the muscles, additional EMG 
recordings may be required when applying this device to dogs. When 
using the subcutaneous approach merely the skin is eliminated as a 
barrier. The subcutaneous approach showed severe limitations in this 
study. The implant was prone to dislocation when the tissue, especially 

the skin, was subjected to movement. Thus, despite good positioning 
results in 62% of these cases, in live dogs, it cannot be guaranteed that 
the implant would remain in such a position once the patient is awake, 
and the implant is subjected to movement of the skin, muscles and jaw 
or ears. When dislocating laterally, over the zygomatic arch, an 
additional insulating barrier (bone) would be added, decreasing the 
resolution of the EEG further. The authors therefore cannot 
recommend the application of a subcutaneous approach in 
canine patients.

Due to the invasiveness of the procedure, if applied to canine 
patients, an implantation under local anaesthetic, as used in people 
(16) would not be  possible. To guarantee a secure implantation, 
without damaging of nerves or blood vessels, a full restraint of the 
patient would be  necessary. For this, a deep sedation with local 
anaesthesia, or better a general anaesthesia is required. In people side 
effects such as itching, soreness, or tightness/irritation around the 

FIGURE 5

Transverse 2D computed tomography (CT) images (bone window, metal artefact reduction) of the dogs’ heads taken at the position of each of the 
three electrodes of the implant (submuscular implantation). The electrodes are pointed at with blue arrows. Images numbered 1 show the positions for 
dog 5, with good implant position. Images numbered 2 show the positions for dog 6, with good implant position. Images numbered 3 show the 
positions for dog 1, with the rostral laying electrode close to the optic nerve. (1A) Rostral laying electrode of the implant located at the level of the 
frontal lobe in dog 5. (1B) Middle electrode located at the level of the temporal lobe in dog 5. (1C) Caudal laying electrode located at the level of the 
occipital lobe in dog 5. (2A) Rostral laying electrode of the implant located at the level of the frontal lobe in dog 6. (2B) Middle electrode located at the 
level of the temporal lobe in dog 6. (2C) Caudal laying electrode located at the level of the occipital lobe in dog 6. (3A) Rostral laying electrode of the 
implant located at the level of the frontal lobe, in the area of the optic nerve, in dog 1. (3B) Middle electrode located at the level of the temporal lobe in 
dog 1. (3C) Caudal laying electrode located at the level of the occipital lobe in dog 1.
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implant and headaches up until 21 days post-surgery, as well as wound 
infections and skin penetration in the area of the housing were 
observed (16). Close monitoring, wound and pain management, if 
applied to canine patients should therefore be  ensured. 
Contraindications named for people, which could be  adapted to 
canine patients include patients at high risk of surgical complications, 
such as active systemic infection and haemorrhagic disease. Patients 
with owners who are unable (i.e., mentally or physically impaired) or 
do not have the necessary assistance to properly operate the device 
system. Patients who have an infection at the site of device 
implantation. Patients who require MRI scans following the 
implantation (23).

This study did not evaluate the connectivity of the recorder to the 
implanted device in dog. In people the positioning of the housing is 
recommended to be behind the ear, regardless of the lead position 
(16). Named reasons for this are that “the housing rests on a relatively 
flat and stable part of the cranium close to, but preferably outside, the 
hairline. This position eases the device management and may make 
the need of regular shaving unnecessary” (16). This can lead to the 
assumption that dogs equipped with the implant may require regular 
clipping of the fur surrounding the implant, to guarantee connectivity 
with the external recorder.

Applications of this device in dogs would allow for continuous 
EEG recording in dogs over an extended period, ranging from days to 
months. Continuous EEG plays a crucial role in the diagnosis and 
management of various neurological conditions, including epilepsy 
(24, 25). Unlike conventional EEG, which captures brief snapshots of 
brain activity during short recording sessions, continuous EEG allows 
for the uninterrupted monitoring of brain electrical activity, during 
the inter-, pre-, postal, and ictal phases. This offers several important 
advantages from both a diagnostic and translational standpoint. It 
provides insights into the dynamics of epileptic activity, enabling 
clinicians to characterize seizure patterns, frequency, and duration 
more accurately (26–28). This detailed information can be used for 
optimizing treatment strategies, including the selection and 
adjustment of antiseizure medication and seizure forecasting (29, 30). 
In human medicine, studies have shown that the system used in this 
study allowed successful seizure forecasting (18, 31). Furthermore, 
continuous EEG monitoring facilitates the identification of inter-ictal 
epileptiform discharges (IEDs), which are abnormal electrical signals 
in the brain that occur between seizures (26, 32, 33). They yield 
information about the distribution of epileptic events and can be more 
prevalent than seizures and occur more regularly (26). Detection of 
IEDs helps confirming the diagnosis of epilepsy and assessing 
treatment response (34). However, using only a two-channel electrode 
system may limit the spatial resolution and complexity of the EEG 
data and may provide less clinically meaningful information than a 
standard multi-channel EEG, which can help localise the origin of 
abnormal EEG data, especially when applied with the help of a 
neuronavigation system (38). The current system will be mainly useful 
to monitor seizure activity. In an ideal setting, a multichannel EEG 
system will be used to map epileptic seizure activity to a specific brain 
area and the placement of the two-lead system will be  tailored 
accordingly. Studies in people have shown that the hippocampus, 
amygdala, frontal cortex, temporal cortex, and olfactory cortex are the 
common areas involved in seizures (39). With epileptic foci such as 
changes within the hippocampus (40) or white matter (41) still being 
an ongoing topic of research in veterinary medicine as well as seizure 

induce changes within the brain (42, 43) this system may aid in further 
research by supplying continuous long-term EEG data. Especially, 
when implanted to record the anatomical location of interest. Though 
the system investigated in this study may require a bilateral 
implantation of the device, using two implants for a good assessment 
or comparison of both hemispheres. Considering the invasive surgical 
procedure, potentially involved in implanting one or two devices in 
dogs, it is essential that the clinical benefits outweigh the risks. The 
results from human medicine however show promising results that 
this could also be possible in canine patients (18, 31). The application 
of this device could have significant clinical benefits regarding disease 
monitoring, especially in patients where an epileptic focus was 
previously diagnosed and the device implanted to fit this 
location accordingly.

From a translational standpoint, continuous EEG recording in 
dogs holds potential for advancing our understanding of epilepsy 
pathophysiology and treatment. Dogs with naturally occurring 
epilepsy share many similarities with human patients in terms of 
seizure presentation, underlying mechanisms, and treatment response 
(35–37, 44) Moreover, continuous EEG monitoring in dogs can serve 
as a valuable preclinical model for testing new antiseizure medication 
and investigational therapies. The ability to assess drug efficacy, safety, 
and tolerability in a naturally occurring disease setting in dogs can 
provide valuable insights that may ultimately benefit human patients 
with epilepsy (35–37, 45).

This study shows promising results, that subcutaneous ultra-long 
term EEG monitoring device designed for humans can be implanted 
in dogs and may qualify for future research outside of this cadaver 
study. Future uses could cover clinical aspects for epilepsy diagnostics, 
epilepsy monitoring and seizure forecasting, monitoring responses to 
antiseizure medication, as well as the use in research for sleep and 
CCDS or pharmaceutical research.
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