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Amidst rising global temperatures, chronic heat stress (CHS) is increasingly 
problematic for the poultry industry. While mammalian CHS responses are well-
studied, avian-specific research is lacking. This study uses in-depth transcriptome 
sequencing to evaluate the pulmonary response of Cherry Valley ducks to CHS 
at ambient temperatures of 20°C and a heat-stressed 29°C. We  detailed the 
CHS-induced gene expression changes, encompassing mRNAs, lncRNAs, and 
miRNAs. Through protein–protein interaction network analysis, we  identified 
central genes involved in the heat stress response—TLR7, IGF1, MAP3K1, CIITA, 
LCP2, PRKCB, and PLCB2. Subsequent functional enrichment analysis of the 
differentially expressed genes and RNA targets revealed significant engagement 
in immune responses and regulatory processes. KEGG pathway analysis 
underscored crucial immune pathways, specifically those related to intestinal 
IgA production and Toll-like receptor signaling, as well as Salmonella infection 
and calcium signaling pathways. Importantly, we determined six miRNAs—miR-
146, miR-217, miR-29a-3p, miR-10926, miR-146b-5p, and miR-17-1-3p—as 
potential key regulators within the ceRNA network. These findings enhance 
our comprehension of the physiological adaptation of ducks to CHS and may 
provide a foundation for developing strategies to improve duck production 
under thermal stress.
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1 Introduction

The exponential growth of the global population necessitates substantial protein 
production, placing escalating demands on animal production systems, particularly within 
tropical and subtropical regions. This factor significantly contributes to ensuring global food 
security (1, 2). Among these production sectors, the poultry industry emerges as a crucial 
subsector that substantially fuels economic growth (3, 4). Nevertheless, the implications of 
global warming have engendered prolonged hyperthermia during the summer months, 
presenting a formidable challenge to the industry. This challenge has manifested in reduced 
productivity and substantial economic losses (5). This deleterious phenomenon, recognized 
as heat stress, has garnered extensive global attention and scrutiny (6).
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Heat stress entails an imbalance between heat acquisition and 
dissipation, resulting in an elevation of poultry body temperature 
(7–9). It is typically categorized into intense or chronic heat stress 
(CHS), pertaining to brief or prolonged exposure to elevated ambient 
temperatures, respectively (10). Unfortunately, both intense and 
chronic heat stress can exact a toll on avian health (11, 12). This 
consequence extends to other domestic animals as well. Poultry, in 
particular, faces heightened vulnerability due to the absence of sweat 
glands and the majority of their body surface being covered in 
feathers. Consequently, the role of heat dissipation is largely assumed 
by the lungs in poultry (13, 14). When the ambient temperature falls 
within the thermal comfort zone, birds can sustain their body 
temperature with minimal effort. Typically, the optimal temperature 
for growing Pekin ducks ranges from 18 to 20°C (15). However, 
deviations from this range trigger behavioral, physiological, and 
metabolic adaptations aimed at temperature regulation and mitigating 
the impact of high temperatures (16–18). These adaptations include 
panting, reduced food intake, weight loss, and can culminate in 
undesirable outcomes such as increased feed conversion ratios (FCRs), 
stunted growth, and compromised meat quality. In cases where 
efficient heat dissipation is unattainable, multi-organ dysfunction may 
ensue, potentially leading to fatality (19–21).

Recent strides in high-throughput screening technology have 
culminated in the routine utilization of transcriptome sequencing for 
the quantification and identification of RNAs across diverse tissues 
and cells (22). RNA molecules bear transcribed genetic information 
that can be translated into proteins or directly/indirectly modulate 
gene expression levels (23). The variation in the number of different 
transcripts in response to temperature changes can offer valuable 
insights into cellular states and stress mechanisms (22, 24). Notably, 
heat shock proteins (HSPs) and phosphoinositide 3-kinase (PIK3) 
emerge as key participants in heat stress acclimation, with the genes 
encoding these proteins showing significant upregulation in heat-
treated Fujian shelducks and Shan Ma, Pekin, Muscovy ducks (25–29). 
Furthermore, non-coding RNAs that play immunoregulatory roles 
during Salmonella enteritidis infection have been revealed through 
competing endogenous RNA (ceRNA) regulatory networks in 
Shaoxing ducks (30). Yet, the landscape of ceRNA networks under 
heat stress conditions remains largely uncharted.

In this pioneering study, we have created a CHS model in CVds—a 
breed with significant economic value—to explore the comprehensive 
transcriptomic alterations (31). Our innovative approach employs 
environmental control chambers for a precise induction of CHS, 
facilitating the in-depth examination of gene, miRNA, mRNA, and 
lncRNA expression variations using advanced sequencing techniques. 
Furthermore, we have delineated lncRNA-miRNA-mRNA networks 
to elucidate the intricate molecular dialogs during CHS, marking a 
novel foray into the full-spectrum transcriptomic impact of heat stress 
on these ducks.

2 Materials and methods

2.1 Animal resources, ethical approval and 
sample collection

This study was conducted in strict accordance with the regulations 
outlined by the Administration of Affairs Concerning Experimental 

Animals (Decree No. 63 of the Jiangsu Academy of Agricultural 
Science on 8 July 2014). All experimental procedures involving 
animals received ethical approval from the Research Committee of the 
Jiangsu Academy of Agricultural Sciences (Nanjing, China).

Following the approach detailed in (15, 32), a batch of 72 newly-
hatched CVds with identical genetic backgrounds were procured from 
a commercial farm. These ducks were subsequently divided into two 
groups through random allocation, ensuring that there were no 
significant disparities in phenotypes or weights among any pair of 
groups. For brevity, these groups were subsequently referred to as 
W20 and W29. During the initial phase of rearing, all ducks were 
individually housed in separate pens equipped with an environmental 
control chamber, providing access to ad libitum feed and water 
(Supplementary Figure S1). Figure  1 illustrates that the ambient 
temperature was sustained at 35°C for the first 4  days and was 
subsequently decreased to 34°C for the following 3 days. Over days 
8–12, the temperature in the W29 enclosure was gradually lowered by 
1°C daily to 29°C, which was then sustained for 30 days. In parallel, 
the ambient temperature for W20 was similarly reduced by 1°C daily 
throughout this interval, leading to a steady state at 20°C (33). During 
the entire rearing phase, humidity was consistently maintained at 74% 
(34), with all ducks having free access to standard commercial pellet 
feed and water from a drip-nipple system.

Ultimately, at the market-age of day 43, three samples were 
collected from each group were humanely stunned with a 36 V 
electrified pool and then euthanized via jugular vein dissection (35). 
As the second key organ for heat dissipation, their lungs were carefully 
excised, promptly frozen in liquid nitrogen and then stored at −80°C 
prior to dispatch to the sequencing company.

2.2 Microscopic observation of duck lungs

The lungs of each selected duck from both groups were examined 
under a microscope at a magnification of 20×. Lung tissue samples 
from CVds were carefully extracted and subsequently fixed in 4% 
paraformaldehyde for a duration of 24 h to preserve the cellular 
structure for detailed histological analysis. Subsequently, the samples 
underwent dehydration using a graded alcohol series. These specimens 
were then infiltrated and embedded in paraffin, before being sectioned 
into thin serial slices of approximately 5 μm thickness. These sections 

FIGURE 1

Detailed temperature regimens for W20 and W29 cohorts over the 
course of the investigation.
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were mounted onto glass slides, subjected to hematoxylin and eosin 
staining, and observed using an Olympus microscope (BX53).

2.3 RNA extraction, library preparation and 
full transcriptome sequencing

For each group, total RNA was isolated from three biological 
replicates of lung tissue using TRIzol® reagent (Invitrogen, 
United States), following the manufacturer’s protocol, and genomic 
DNA was removed with DNase I RNase-free (TaKara, Japan). The 
RNA concentration and integrity were verified using a 
NanoDrop  2,100 spectrophotometer (Thermo Fisher Scientific, 
United States) and an Agilent Bioanalyzer 2,100 (Agilent Technologies, 
United  States), respectively. Only high-quality RNA samples 
(OD260/280 = 1.8 ~ 2.2, OD260/230 ≥ 2.0, RIN ≥ 6.5, 28S:18S ≥ 1.0, 
>1 μg) were used for sequencing library construction.

Libraries for mRNA and lncRNA were prepared using a ribosomal 
RNA depletion strategy with the NEBNext® Ultra™ Directional RNA 
Library Prep Kit for Illumina (New England Biolabs, United States), 
starting with 3 μg of RNA per sample. miRNA libraries were generated 
using the QIAseq miRNA Library Kit (Qiagen, Germany), adhering 
to the supplier’s instructions. Based on the length distribution 
characteristic of miRNA, target fragments (16–35 nt) were isolated by 
gel excision on a 6% Novex TBE PAGE gel (1.0 mm, 10 well) 
(Invitrogen, United States). Quantification was performed using the 
Qubit 4.0 fluorometer (Thermo Fisher Scientific, United States), and 
sequencing was carried out on an Illumina NovaSeq 6,000 system 
(Illumina, United  States) by Shanghai Majorbio Bio-pharm 
Biotechnology Co., Ltd. (Shanghai, China).

2.4 Data preprocessing and quality control

After the above deep sequencing, the raw paired-end reads were 
preprocessed using SeqPrep1 and Sickle2 by removing adaptor 
sequences and filtering low-quality reads (Supplementary Table S1). 
Clean reads were aligned using HISAT to the high-resolution reference 
genome of Anas platyrhynchos (A. platyrhynchos GCF_015476345.1, 
https://www.ncbi.nlm.nih.gov/genome/2793?genome_assembly_
id=1498951) (36, 37). The mapped reads were assembled by StringTie 
in a reference-based approach (38). Also, the number of reads mapped 
to each transcript was calculated using RSEM, and the transcripts per 
million reads (TPM) was estimated to measure the expression level of 
each gene/transcript (39).

2.5 Bioinformatics analysis at gene 
expression level and mRNA expression 
level

Gene expression level is a broader term that encompasses the 
levels of all products of gene expression, including mRNA, non-coding 

1 https://github.com/jstjohn/SeqPrep

2 https://github.com/najoshi/sickle

RNAs, and proteins. mRNA expression level is a subset of this, 
focusing only on the messenger RNA produced during transcription. 
The DESeq2 package within R software was employed to identify 
genes and mRNAs that were differentially expressed between W20 
and W29, with an emphasis on those exhibiting a greater than 1.5-fold 
change and an adjusted padj below 0.05, marking them as statistically 
significant (40). These findings were further examined for functional 
relevance using GO and KEGG pathway enrichment via GOATOOLS 
and KOBAS (41, 42). Additionally, differentially expressed genes 
(DEGs) were integrated into STRING (version 12.0) and Cytoscape 
(version 11.0.13) to delineate protein–protein interaction (PPI) 
networks, highlighting key modules using the cytoHubba plugin 
(43–45). Enrichment analysis of interactive gene targets was 
conducted using the BINGO plugin and the clusterProfiler package 
(46, 47).

2.6 Identification of lncRNA and prediction 
of target RNAs

Using the StringTie tool (38) with its default settings, 
we reassembled transcripts from the aligned clean reads. Subsequently, 
we cross-referenced these merged transcripts against known reference 
transcripts annotated in GFF/GTF formats and existing lncRNA 
databases to identify recognized lncRNAs. In addition, we pinpointed 
putative novel lncRNA transcripts by their length, requiring over 200 
base pairs, and by the presence of two or more exons. To assess the 
coding potential of these transcripts, we employed a suite of tools: 
CNCI (48) with a score threshold below zero, CPC (49) with a score 
under 0.5, CPAT (50) with a score below 0.5, and Pfam with an e-value 
stricter than 1e-3 but not passing the threshold. Transcripts that were 
consistently predicted to lack protein-coding potential by these 
metrics were classified as novel lncRNAs. Potential cis- and trans-
acting target mRNAs of lncRNAs were identified through an 
examination of gene expression patterns and chromosomal 
positioning, as outlined by (51). For cis-acting targets, genes situated 
within a 100,000 base-pair range flanking the lncRNA were pinpointed 
utilizing BEDTOOLS software as described by (52). The analysis of 
lncRNA-mediated trans-regulation was predicated on the correlation 
coefficient between the expressions of lncRNA and mRNA, with 
coefficients exceeding 0.9 signifying a potential trans-
regulatory interaction.

2.7 Identification of miRNA and prediction 
of target RNAs

Initially, all clean mapped tags were matched to known miRNAs 
using the miRBase (version 22.1) database3. Subsequently, the 
remaining tags were cross-referenced with the Rfam and Repbase 
databases to filter out ribosomal RNA (rRNA), transfer RNA (tRNA), 
small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), other 
non-coding RNAs, and repeats. Finally, unannotated tags were 
evaluated for potential novel miRNAs with miRdeep2 software (53), 

3 http://www.mirbase.org/
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based on their genomic location and the formation of hairpin 
structures. The miRanda algorithm (54) was applied to animal 
samples, while psRobot (55) was utilized for insect samples to 
forecast miRNA targets. Predicted miRNA-target RNAs were then 
determined by identifying the overlap in the outcomes from 
both tools.

2.8 Differentially expressed RNAs analysis

The refined datasets for lncRNAs, miRNAs, and mRNAs were 
obtained by discarding low-quality reads from the initial raw data, 
ensuring a Phred quality score of at least 20. RNAs that showed no 
expression in over three samples were excluded from subsequent 
analyses to maintain data integrity. Consequently, only high-quality 
filtered datasets were utilized for further analysis. To quantify RNA 
expression, the polished reads from the lncRNA and mRNA libraries 
were mapped to the reference genome via the STAR aligner, while the 
miRNA sequences were aligned to miRBase using the BOWTIE tool. 
The R software’s limma package (56) was utilized for identifying 
differentially expressed mRNAs, lncRNAs, and miRNAs (DEmRNAs, 
DElncRNAs, and DEmiRNAs). Significant DEmRNAs and 
DElncRNAs were detected within the comparison groups, applying a 
threshold of padj <0.05 and an absolute log2FC greater than 1. For 
DEmiRNAs, the criteria of an absolute Log2FC greater than 0.585 and 
a p-adjust value below 0.05 were adopted. Functional enrichment 
analyses for GO terms and KEGG pathways were conducted on the 
target genes of DEmiRNAs and DElncRNAs, as well as on DEmRNAs, 
using the GOATOOLS and KOBAS tools (42).

2.9 Construction of the 
lncRNA-miRNA-mRNA regulatory network

To elucidate the relationships between DEmRNAs, DElncRNAs, 
and DEmiRNAs, a lncRNA-miRNA-mRNA regulatory network was 
established rooted in the ceRNA hypothesis. Predictions for miRNA-
lncRNA and miRNA-mRNA pairings were conducted utilizing 
Miranda and Targetscan (57), respectively, while the Spearman 
correlation coefficient, hinged on expression levels, was employed to 
assess the interplay among these pairings. Visualization of the intricate 
network was achieved through Cytoscape software.

2.10 RT-qPCR validation for the expression 
level of DEmRNAs, DEmiRNAs, and 
DElncRNAs

The cDNA synthesis for mRNA involved reverse transcription 
using HiScript III RT SuperMix with gDNA wiper (Vazyme, China) 
in a thermal cycler, following the protocol provided by the 
manufacturer. The inverse transcription reaction (ITR) for mRNA was 
executed in a 20 μL reaction mix, incubated at 37°C for 15 min and 
85°C for 5 s, then cooled to 4°C. For lncRNA, cDNA synthesis was 
performed using the lnRcute lncRNA cDNA First-Strand Synthesis 

Kit and FastKing One Step First-Strand Synthesis Kit (both from 
Tiangen, Beijing, China). The cDNA for miRNA was synthesized 
using the miRNA First Strand cDNA Synthesis (Stem-loop Method) 
Kit (Sangon Biotech, China), with the ITR for both lncRNA and 
miRNA conducted as per their respective kits’ guidelines.

Primer sets for mRNA were crafted using Primer Premier 6 
software, while primer sets for lncRNA and miRNA were designed via 
Sangon Biotech’s online tools4. All primers used in this study were 
synthesized by Genewiz@ (China), based on sequences in GenBank 
and the reference genome. Then, quantitative real-time PCR 
(RT-qPCR) was carried out using SYBR Green Master Mix (Yeasen, 
Shanghai, China) on an ABI 7500 Sequence Detector (Applied 
Biosystem, United States) according to the manufacturer’s instructions. 
The reaction mixture included 10 μL of first-strand cDNA, 0.4 μM 
each of forward and reverse primers, and 10 μL of 2× SYBR Green 
Master Mix, totalling 20 μL. For miRNA, the MicroRNAs qPCR Kit 
(SYBR Green Method) from Sangon Biotech was employed. The 
RT-qPCR protocol consisted of an initial denaturation at 95°C for 
2 min, followed by 34 cycles of 95°C for 10 s and 60°C for 30 s. All 
assays were performed in triplicate, with GAPDH as the internal 
control gene for mRNA and lncRNA, and U6 snRNA as the internal 
control for miRNA expression studies (37, 58). Melting curve analysis 
confirmed the specificity of the amplification, and relative gene 
expression was quantified using the 2−ΔΔCt method.

3 Results

3.1 Growth performance and carcass traits

Supplementary Figure S2 reveals that at the 43-day collection 
point, W20 exhibited superior performance over W29 in the majority 
of carcass characteristics. For a more comprehensive analysis, please 
consult our previously published work (1). These findings suggest that 
the growth rate of CVds decelerates when ambient temperatures rise 
from 20°C to 29°C, aligning with the findings reported in (4).

3.2 Histopathological examination

In the comparative illustration provided by Figure 2, the lungs of 
W20 exhibited a robust, reddish color and no exudate, with the alveoli 
retaining their proper form and exhibiting only minor signs of 
inflammation. The lung interstitium was also free from any signs of 
excess fluid. In stark contrast, the W29 samples showed significant 
exudation and altered alveoli that no longer maintained their usual 
shape. These samples demonstrated considerable changes including 
thickened alveolar walls, capillary closure, and the presence of 
inflammatory cells within the alveolar passages, along with interstitial 
swelling. Yet, these issues were less pronounced than in previous 
W29 samples.

4 https://store.sangon.com/newPrimerDesign
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3.3 Gene expression divergence and 
subsequent analysis

To elucidate the genetic underpinnings of heat tolerance in CVds, 
transcriptomic analyses were conducted on individual lung samples 
from both W20 and W29 groups using the Illumina NovaSeq 6,000 
system. Each of the three cDNA libraries yielded a substantial number 
of clean reads, amassing billions of nucleotides in total. More than 
91% of the clean reads from each library can be  mapped to the 
reference genome of A. platyrhynchos. The expression level of each 
transcript was measured using TPM method. For the evaluation of 
gene expression variance, the profiles of the longest transcript isoforms 
were considered. Followed Principal Component Analysis (PCA) 

demonstrated a marked distinction between the W20 and W29 
sample groups (Figure 3A).

Genes exhibiting an absolute fold change of at least 1.5, coupled 
with a padj under 0.05, were classified as DEGs (Supplementary  
Table S2). From the W20/W29 comparison, a total of 1,013 DEGs 
were discovered, among which were 605 up-regulated and 408 down-
regulated, as shown in Figures 3B,C. Based on the MCC algorithm and 
literature research, the top genes were identified as potential hub 
genes, which were TLR7, IGF1, MAP3K1, CIITA, LCP2, PRKCB, and 
PLCB2 (Figure 4).

Subsequently, the GOATOOLS software was employed to pinpoint 
GO terms significantly enriched within these DEGs. A Fisher’s exact 
test, adjusted for multiple testing with the Benjamin-Hochberg 

A

B

C

D

E

F

FIGURE 2

Gene expression profiles in CVds at 43  days of age. The cross-sectional areas of CVds lung tissue reared in an environmental control chamber at (A–C) 
20°C and (D–F) 29°C. In panels (D–F), the green arrows point to areas of inflammatory tissue.
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FIGURE 3

Gene expression profile analysis in CVds at 43  days of age. (A) Principal Component analysis plot for six samples. (B) Volcano plot visualizing the gene 
expression profile, created using the ComplexHeatmap package in R. (C) Heatmap representation of selected differentially expressed genes. (D) Gene 
Ontology enrichment analysis of DEGs. (E) Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for DEGs.
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A

B

FIGURE 4

Protein–protein interaction networks. (A) A comprehensive PPI network for all differentially expressed genes, purged of any isolated nodes; (B) a 
focused subnetwork displayed in a circular layout to emphasize connectivity.
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method, flagged GO terms with a false discovery rate less than 0.05 as 
significantly enriched. Functional annotation of GO terms revealed 
DEGs predominantly engaged in four biological processes: ‘immune 
response,’ ‘immune system process,’ ‘regulation of immune system 
process,’ and ‘response to external stimulus,’ mirroring findings from 
multiple other studies. In terms of cellular components, the majority 
of associated GO terms pertained to membrane-related structures, 
including ‘membrane,’ ‘mitochondrial inner membrane,’ and ‘organelle 
membrane’ (Figure 3D). These DEGs were predominantly found to 
be  connected to immune system pathways, including ‘intestinal 
immune network for IgA production,’ ‘Toll-like receptor signaling 
pathway,’ and ‘C-type lectin receptor signaling pathway.’ Notably, a 
significant number of these DEGs were also enriched in pathways 
related to ‘oxidative phosphorylation’ and were implicated in 
‘Salmonella infection’ (Figure 3E).

3.4 Characterization and analysis of 
differentially expressed mRNA

Utilizing quality-assured RNAseq data, we  delineated 34,363 
protein-encoding mRNAs via custom shell scripts developed in-house. 
Of which, there were 1,434 mRNA observed to be  significantly 
differentially expressed, with 803 up-regulated and 631 down-
regulated (Figures 5A,B).

The GO term functional annotation highlighted that DEmRNAs 
were actively involved in breakdown processes, including the 
catabolism of macromolecules and organic substances, as well as 
protein metabolism. Cellular component analysis showed an 
abundance of GO terms related to ubiquitin-related enzyme activities, 
specifically ‘ubiquitin-protein transferase activity’ and ‘ubiquitin-like 
protein transferase activity’ (Figure  5C). Additionally, these 
DEmRNAs showed a significant presence in immune system 
pathways, like ‘Toll-like receptor signaling’ and ‘C-type lectin receptor 
signaling.’ Notably, a greater number of terms were associated with 
infectious diseases, such as those related to ‘Herpes simplex virus 1 
infection,’ ‘Influenza A’ and ‘Salmonella infection’ (Figure 5D).

3.5 Characterization and analysis of 
differentially expressed lncRNA and 
functional enrichment analysis of predicted 
targets

In the realm of gene regulation, lncRNAs act as cis-regulators, 
often influencing proximate protein-coding genes. Utilizing refined 
RNAseq data subjected to quality control, our tailored shell scripts 
facilitated the identification of 5,352 (4,387 known and 965 novel) 
lncRNA transcripts. The genomic analysis revealed that while 
lncRNAs and mRNAs share similar transcript lengths, lncRNAs are 
more likely to have longer sequences exceeding 3,000 bp. LncRNAs 
typically feature a greater proportion with 2–5 exons and possess 
shorter open reading frames (ORFs) and lower expression levels as 
quantified by FPKM (Figures 6A–D).

Subsequent analysis revealed 217 differentially expressed lncRNAs 
within the W29 profile, comprising 111 that were up-regulated and the 
rest displaying down-regulation (Figures 7A,B). Plus, GO and KEGG 
pathway enrichment analyses were undertaken to decipher the functions 

and pathways associated with the predicted targets. The enriched GO 
terms were principally connected to immunoreaction, such as ‘immune 
response,’ ‘immune system process,’ and ‘regulation of immune system 
process’ (Figure 7C). The KEGG pathway analysis revealed involvement 
in immune system (e.g., Intestinal immune network for IgA production) 
and Infectious disease (e.g., Salmonella infection) (Figure 7D).

3.6 Characterization and analysis of 
differentially expressed miRNA and 
functional enrichment analysis of predicted 
targets

In this study, we generated a substantial number of raw reads, 
totaling 12,706,326, 10,121,409, and 9,982,953 for W20, and 
12,311,631, 12,412,586, and 10,192,859 for W29, respectively. 
Following the removal of adaptor sequences, low-quality sequences, 
and reads outside the length range of 18 to 32 nucleotides, we obtained 
high-quality clean reads: 12,553,092, 10,032,226, and 9,858,879 for 
W20, and 11,971,885, 12,250,135, and 9,864,788 for W29. The 
majority of these clean reads ranged in length from 20 to 24 
nucleotides (Figure  6E). Upon classifying the small RNAs, 
we discovered that 75.3% of the clean reads were attributed to intronic 
(61.69%) and exonic (38.24%) regions. Additionally, miRNAs 
accounted for 19.3% of the reads, small non-coding RNAs (sncRNAs) 
comprised 0.96, and 4.37% were categorized as other types (Figure 6F).

Additionally, for the miRNA expression profiles, 543 DEmiRNAs 
were identified in W29, including 413 up-regulated and 130 down-
regulated miRNAs (Figures 8A,B). In the target study of W29-specific 
DEmiRNAs, GO annotation revealed a preponderance linked to 
molecular functions like receptor activities such as ‘neurotransmitter 
receptor activity,’ ‘signaling receptor activity,’ and ‘transmembrane 
signaling receptor activity.’ Cellular component annotations centered 
around structures such as membranes and organelles, while molecular 
functions primarily involved binding and catalysis. The enriched GO 
terms for known DEmiRNAs were associated with catabolic processes 
(Figure 8C). In KEGG pathway analysis, the targets of DEmiRNAs 
were involved in MAPK signaling pathway, Calcium signaling 
pathway, and TGF-beta signaling pathway (Figure 8D).

3.7 CeRNA regulatory network in response 
to CHS

To elucidate the comprehensive regulatory matrix involving 
protein-coding RNAs and non-coding RNAs in response to CHS, a 
complex ceRNA network was established, integrating differentially 
expressed miRNAs, mRNAs and lncRNAs. This expansive network 
predicted thousands of mRNAs and dozens of lncRNAs as miRNA 
targets in the lungs of W29. Filtering interactions by a strong negative 
correlation revealed several thousand potential miRNA-mRNA and a 
handful of miRNA-lncRNA linkages. Certain miRNAs (miR-146, 
miR-217, miR-29a-3p, miR-10926, miR-146b-5p, and miR-17-1-3p) 
emerged as central hubs, potentially key to regulatory mechanisms, 
while multiple lncRNAs (LOC101804558, LOC113841824, 
LOC101798355, LOC119717605, and LOC110353088) were also 
pinpointed as significant network participants (Figure 9).

https://doi.org/10.3389/fvets.2024.1417244
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Liu et al. 10.3389/fvets.2024.1417244

Frontiers in Veterinary Science 09 frontiersin.org

3.8 RT-qPCR confirmation of 
miRNA-ceRNA correlation in CHS 
responses

To substantiate the RNAseq data and examine the expression 
correlation between miRNAs and their targets, we selected four key 

miRNAs—miR-146, miR-217, miR-29a-3p, and miR-10926—and 
their associated mRNAs and lncRNAs from the ceRNA network for 
RT-qPCR analysis. The primer sequences for the mRNAs and 
lncRNAs are itemized in Tables 1, 2, respectively, incorporating 
GAPDH as the internal reference gene. The primers for the miRNAs 
are cataloged in Table  3, with U6 employed as the internal 
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FIGURE 5

Differentially expressed mRNA profiling in CVds at 43  days. (A) Volcano plot visualization of mRNA expression profiles generated with the 
ComplexHeatmap package in RStudio. (B) Heatmap depiction of top DEmRNAs. (C) GO enrichment analysis of DE-mRNAs. (D) KEGG pathway 
enrichment for DEmRNAs.

https://doi.org/10.3389/fvets.2024.1417244
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Liu et al. 10.3389/fvets.2024.1417244

Frontiers in Veterinary Science 10 frontiersin.org

normalization gene. The analysis affirmed a predominantly accurate 
reflection of regulatory dynamics, with miRNAs and their respective 
targets displaying the expected regulatory trends of either up- or 
down-regulation (Figure  10). Notably, miR-146 was observed to 
be up-regulated, with its predicted targets being up-regulated, while 
miR-217 demonstrated down-regulation, accompanied by 
up-regulation of all its targets. These results not only validate the 
RNAseq data’s accuracy but also the postulated inverse relationship 
between the expression levels of miRNAs and their 
corresponding ceRNAs.

4 Discussion

The detrimental physiological effects of CHS on poultry and 
livestock industries are well-documented. These effects encompass 
reductions in feed intake, feed efficiency, growth performance, meat 
and egg production, meat quality, and survival rates (15, 24, 32, 59–
67). Moreover, various studies have explored the impact of CHS on 
inflammatory responses, dysbiosis, reactive oxidative stress (ROS), 
signal reactions, and energy metabolism (68–76). Some studies have 
specifically investigated the health status and well-being of ducks 
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FIGURE 6

Characterization and comparative analysis of differentially expressed lncRNAs under CHS. (A–D) Comparative metrics between lncRNAs and mRNAs, 
including transcript length, exon count, open reading frame size, and expression levels measured as transcripts per million. (E) Categorization of the 
identified small RNAs. (F) Distribution of transcript lengths for all identified miRNAs in the two groups.
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under increasing ambient temperatures, focusing on granulosa cells 
and the jejunum (25, 77). As the one of the main high-throughput 
sequencing technologies, transcriptomics has been facilitating the 

poultry rearing in recent years (78). In the current study, we made full 
transcriptome profiling of lungs detached from two groups of CVds at 
43 days of age reared under 20 and 29°C ambient temperatures. In 
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FIGURE 7

Exploring lncRNA variances in CVds at 43  days. (A) Visualization of lncRNA expression variations using a volcano plot from the ComplexHeatmap 
package. (B) A heatmap delineating notable DElncRNAs. (C) Analysis of GO term enrichment among DElncRNA targets. (D) Examination of DElncRNA 
targets within KEGG pathway frameworks.
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order to understand the molecular mechanism of response to CHS, 
comprehensive bioinformatics analysis and intensive RT-qPCR 
experiments was implemented.

Initial findings indicate that CHS significantly modulates a range 
of physiological aspects in CVds through pivotal genes including 

TLR7, IGF1, MAP3K1, CIITA, LCP2, PRKCB, and PLCB2. Notably, 
TLR7, highly expressed in duck lung tissue, is a key gene in the innate 
immune defense against viral infections such as influenza (78–80), 
and also plays a role in egg production (79–83). Immunostimulants 
are reported to enhance antioxidant and immune efficacy by 

FIGURE 8

Analysis of differentially expressed miRNAs in CVds at 43  days. (A) A volcano plot generated with the ComplexHeatmap package in RStudio to visualize 
miRNA expression profiles. (B) Heatmap representation highlighting top DEmiRNAs. (C) GO enrichment analysis for predicted targets of DEmiRNAs. 
(D) Assessment of DEmiRNAs within the context of KEGG pathways.
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stimulating TLR7 expression (84, 85). CIITA (Class II major 
histocompatibility complex trans-activator) is integral to the innate 
immune response, functioning as a trans-activator that boosts 
MHC-II expression in both antigen-presenting and virus-infected 
cells. This activation sparks antiviral responses in the host, serving as 
a blockade against viral replication and aiding in the clearance of viral 
infections (86, 87). IGF1 is acknowledged as a key gene influencing 
growth, body composition, and the development of metabolic and 
skeletal traits, and plays a significant role in the growth of various 

tissues, including muscle and bone (88–95). Moreover, its correlation 
with reproductive efficiency underscores its importance in 
developmental biology and poultry breeding programs (96–100). 
Publications concerning MAPK3K1 (mitogen-activated protein kinase 
kinase kinase 1) (101, 102), LCP2 (103) are limited, yet these genes are 
known for their roles in lipid metabolism and the development of fatty 
liver disease. PRKCB (protein kinase C alpha) (104), and PLCB2 
(Phospholipase C Beta 2) are less frequently mentioned. The 
comprehensive analysis incorporating differential expression and 
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FIGURE 9

CeRNA network. (A) A constructed ceRNA network centered around miR-217, miR-146b-5p, miR-29a-3p, miR-10926, miR-17-1-3p, and miR-146. In 
this network, dark blue arrows represent miRNAs, pink triangles indicate mRNAs, light blue circles denote lncRNAs. (B) Depiction of mini-ceRNA 
network involving six DE-miRNAs and their associated target genes.
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TABLE 1 Primer sequences for mRNA quantification via RT-qPCR.

mRNA name GenBank accession No. Primer sequences (5′–3′) Product size (bp)

AGPAT3 rna-XM_038172299.1
F: CACAGTTCTCCTCTCGCCTCTC

170
R: ATTCTTGGTTGCCGTAGCTGGA

PPA2 MSTRG.7142.3
F: GCCACTGAGGAGCCGTTGAATC

119
R: GTCTGAGGGAGGGCACCGTAAT

CIITA rna-XM_027469345.2
F: AGCAGGAGAAGCAAGTGGAAGA

266
R: CTGGTGAGTTAGCGAGGTGGAG

PLCB2 rna-XM_005019168.5
F: GCGATGTGGCTGAAGAGGAACC

295
R: CGGCTCATCTGTCGCTTGTTGT

MAP3K1 rna-XM_038170332.1
F: TGCCAACAGTCGAACGAGTCAA

188
R: CCAGTAGTGCTTGCCAGTTGCT

PRKCB rna-XM_038186960.1
F: CCTGACTACATCGCACCTGAGA

202
R: AGATCGCCACTGCCTCCTTG

GAPDH rna-XM_03818058.4
F: GGTTGTCTCCTGCGACTTCA

165
R: TCCTTGGATGCCATGTGGAC

F, forward primer sequence; R, reverse primer sequence. GAPDH, internal control gene.
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FIGURE 10

Validation of different expressed RNAs via RT-qPCR. (A–F) mRNA, (G–J) miRNA, (K–O) lncRNA. The relative expressions were calculated in triplicate 
using the method of 2−△△Ct and presented as mean  ±  SD. *p-value <0.05, **p-value <0.01, ***p-value <0.001, ****p-value <0.0001.
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RT-qPCR suggests the potential of these genes as biomarkers for heat 
stress in CVds.

Similarly, it was found that biological profiles, inflammation, and 
stress protein markers were significantly enriched in miRNA target 
genes in differential genomes, including L1RAPL2, IL7R, TRAF3, 
TRAF5, HSPA8, etc. IL1RAPL2 is a molecule in the IL1R family that 
has different biological effects on immune and inflammatory 
responses. There is evidence to suggest that IL1RAPL2 is a specific 
biomarker for kidney injury (105). IL7R is often regulated to varying 
degrees after virus attacks on poultry. Similarly, there is evidence to 
suggest that IL7R is associated with cellular responses to heat exposure 
(106). TRAF3 is a key innate immune regulatory factor that plays a 
crucial role in defending against viral invasion (107, 108). TRAF5 has 
been found to regulate inflammation and apoptosis of atherosclerosis, 
steatosis and melanoma cells, and also plays an important role in 
regulating myocardial I/R injury (109). HSPA8 can significantly affect 
the proliferation, apoptosis, and immune function of poultry 
macrophages, while significantly promoting the proliferation of HD11 
cells and inhibiting their apoptosis, with pro-inflammatory 
effects (110).

Subsequent analysis of gene enrichment pointed to CHS 
significantly bolstering immunological processes, with a particular 
focus on catabolic pathways in the case of DEmRNAs and targets of 

DEmiRNAs. Across the differentially expressed RNAs, pathways in the 
immune system, especially those involved in IgA production and Toll-
like receptor signaling, were highlighted. These enrichments align with 
the literature on CHS’s impact on animal health (1, 12, 26, 70, 75, 76). 
The pathway of Salmonella infection consistently appears as one of the 
most enriched, reflecting the pathogen’s notoriety as a leading poultry-
associated foodborne illness. This observation aligns with findings that 
heat stress may compromise the immune defenses, potentially 
increasing the risk of Salmonella infection in poultry, as noted in recent 
studies (31). The calcium signaling pathway, akin to the Salmonella 
infection pathway, has shown deep involvement in response to heat 
stress (Figures  3E, 5D, 7D). Elevated temperatures can increase 
membrane fluidity and permeability, leading to a calcium imbalance 
and the release of cytochrome c into the cytoplasm, triggering apoptosis 
through factors like caspases (63). Simultaneously, ROS generated 
under heat stress can inflict oxidative damage on enzymes responsible 
for muscle calcium regulation, further disturbing cellular homeostasis. 
As a result, high temperatures lead to reduced levels of calcium and 
phosphorus in the plasma of laying hens. These minerals are crucial for 
egg production and the quality of the eggshell (18, 104, 111).

In addition, this study presents, for the first time, a batch of 
miRNAs which play a role in CHS response of duck. In the 
foundational stages of inflammation, miR-146 is upregulated following 

TABLE 2 Primer sequences for miRNA quantification via RT-qPCR.

miRNA name Target name GenBank accession No. Primer sequences (5′–3′)

miR-146 AGPAT3 rna-XM_005012470.5 F: GCGCTGAGAACTGAATTCCA

AGPAT3 rna-XM_038172299.1 R: GTGCAGGGTCCGAGGT

miR-29a-3p EXOC4 MSTRG.75.2

F: GCGCTAGCACCATCTGAAAT
MAP3K1 rna-XM_038170337.1

MAP3K1 rna-XM_038170332.1

POU2F1 rna-XM_027449375.2

POU2F1 rna-XM_038184037.1

R: GTGCAGGGTCCGAGGTPRKCB rna-XM_038186960.1

TCIRG1 rna-XM_038179683.1

miR-10926 MAP2K6 rna-XM_038165339.1 F: GCGCGCATCCCAGCGGTG

POU2F1 rna-XM_038184037.1
R: GTGCAGGGTCCGAGGT

POU2F1 rna-XM_027449375.2

miR-146 LOC101805192 rna-XR_005269648.1
F: GCGCTGAGAACTGAATTCCA

R: GTGCAGGGTCCGAGGT

miR-29a-3p

LOC119718278 rna-XR_005269166.1
F: GCGCTAGCACCATCTGAAAT

LOC119715672 rna-XR_005262974.1

LOC101791220 rna-XR_003496600.2

R: GTGCAGGGTCCGAGGTLOC119718278 rna-XR_005269167.1

LOC106018689 rna-XR_002404388.3

miR-10926 LOC110351219 rna-XR_005260670.1
F: GCGCGCATCCCAGCGGTG

R: GTGCAGGGTCCGAGGT

U6 F: CTCGCTTCGGCAGCACA

R: AACGCTTCACGAATTTGCGT

F, forward primer sequence; R, reverse primer sequence. U6, internal control gene.
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exposure to lipopolysaccharide LPS, a bacterial element detected by 
TLR4. This triggers a series of events where NFκB migrates to the 
nucleus, initiating the expression of genes responsible for inflammatory 
mediators (112–114). Research has strengthened miR-146’s role in this 
pathway, underscoring its function in a negative feedback mechanism 
that tempers the inflammatory response initiated by TLR4 (115). 
MiR-146b-5p is typically upregulated in response to Salmonella 
enterica infection, playing a pivotal role in maintaining immune 
balance by dampening the initiation of the innate immune reaction 
(116, 117). This miRNA has been shown to facilitate replication of the 
Duck Tembusu virus through the suppression of the RPS14 gene, 
demonstrating its negative regulatory capacity in immune processes 
(118). miR-217 is noted for its regulatory influence on diverse muscle 
cell types by modulating critical genes, targeting ROCK1 in vascular 
smooth muscle cells and FGFR2 in skeletal muscle progenitors (119, 
120). In the context of chicken liver cancer cells, miR-29a-3p responds 
to selenium levels and can instigate cell movement and invasion. It 
does this by focusing on the COL4A2 gene, leading to the suppression 
of the RhoA/ROCK signaling pathway (121). To date, the roles of 
miR-10926 and miR-17-1-3p remain unexplored, signaling the need 
for further investigation into their functions.

However, it’s important to acknowledge the limitations of this 
study. Firstly, we focused solely on morphological changes in lung 
tissue, and future research should incorporate biochemical tests of 
lung tissue and morphological tests of skin tissue, as skin is the largest 
heat dissipation system. Secondly, while the short-read transcriptome 
sequencing and data analysis provided valuable insights, they do not 
provide a complete view. The list of DEGs obtained here includes some 
unreported genes that likely play crucial roles in the CHS-induced 
response of ducks. These genes should be  characterized in future 
studies. Furthermore, investigating the mechanisms that regulate the 
expression of these genes is essential, as is the use of other omics 
approaches (multi-omics studies). Additionally, the present study 
could benefit from additional examinations, such as assessing amino 
acid composition, nutritional value, and protein digestibility (122).

As a brief supplement, several strategies have been proposed to 
mitigate the adverse effects of CHS, such as improving housing, 

ventilation, and cooling systems (e.g., using little rearing systems and 
cage rearing systems) (123, 124), dietary supplementation (e.g., with 
vitamin A, vitamin C, vitamin E, Glutamine, and Herbs) (125–129), 
feed additives (e.g., probiotics, prebiotics, polyphenols, and palm oils) 
(130, 131), and other approaches (e.g., feed restrictions and genetic 
selection for heat tolerance) (132–136).

5 Conclusion

In essence, this study aims to delve into the effects of varying 
ambient temperatures on the growth performance of CVds and 
shed light on the underlying mechanisms responding to heat stress 
using cutting-edge high-throughput sequencing technologies. In 
conclusion, like other poultry, CVds are also sensitive to high 
ambient temperatures, and environmental control chambers offer 
advantages in improving their quality of life (20, 137, 138). 
Considering the predictions of continued climate change in most 
models (19, 139), further research is urgently needed to uncover 
the response mechanisms and regulatory networks of 
ducks to CHS.
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