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Genomic structural variation (SV) refers to differences in gene sequences between 
individuals on a genomic scale. It is widely distributed in the genome, primarily in 
the form of insertions, deletions, duplications, inversions, and translocations. Due to 
its characterization by long segments and large coverage, SVs significantly impact 
the genetic characteristics and production performance of livestock, playing a 
crucial role in studying breed diversity, biological evolution, and disease correlation. 
Research on SVs contributes to an enhanced understanding of chromosome function 
and genetic characteristics and is important for understanding hereditary diseases 
mechanisms. In this article, we review the concept, classification, main formation 
mechanisms, detection methods, and advancement of research on SVs in the 
genomes of cattle, buffalo, equine, sheep, and goats, aiming to reveal the genetic 
basis of differences in phenotypic traits and adaptive genetic mechanisms through 
genomic research, which will provide a theoretical basis for better understanding 
and utilizing the genetic resources of herbivorous livestock.
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1 Introduction

Structural variation (SV) is a major source of genetic diversity among organisms (1, 2) and 
is defined as differences in DNA segments greater than 50 base pairs between genomes. The 
SVs play a crucial role in generating significant phenotypic variability among individuals and 
facilitating evolutionary adaptations (3–5). These variations arise from various genetic 
processes, including DNA recombination, replication, and repair mechanisms, which lead to 
changes in the structural configuration of genomic regions (6, 7). Studies using murine models 
show that SVs significantly contribute to the genetic heterogeneity observed within species 
populations (8). Additionally, many of these variations are linked to the development of 
various human diseases, highlighting their importance in medical genetics (9–11).

The development of genomic variation detection technologies has progressed through 
several stages, including chromosomal karyotyping, fluorescence in situ hybridization (FISH), 
comparative genomic hybridization (CGH), and microsatellite markers. More recent 
innovations, such as single nucleotide polymorphism (SNP) chip arrays, array CGH, and 
high-throughput sequencing technologies, have significantly advanced life sciences. Despite 
advancements in genomic technologies, accurately detecting SVs in herbivorous livestock 
remains a significant challenge (1, 12, 13). This difficulty is compounded by lower-quality 
genome assemblies and incomplete gene annotations, often leading to the misidentification of 
SVs (1, 13). Understanding SVs is essential in animal genetics, particularly in herbivorous 
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livestock such as cattle and sheep, where SVs are strongly associated 
with economically significant traits. Substantial evidence suggests that 
artificial selection has favored advantageous SVs in these species, 
exemplified by the duplication of the agglutinin signaling protein 
gene, which is linked to the white coat phenotype in sheep (13). This 
review provides a comprehensive overview of recent research 
advancements in the study of SVs—such as copy number variations 
(CNVs), inversions, and translocations—within the genomes of 
various livestock species, including cattle, buffalo, equines, sheep, and 
goats. It also examines how these genomic variants influence key 
phenotypic traits, such as growth rate, reproductive performance, milk 
quality, and disease resistance. Through comparative analysis of 
genomic data across different livestock species, this paper seeks to 
elucidate the role of SVs in shaping genetic diversity and phenotypic 
traits, as well as their potential applications in molecular breeding and 
genetic improvement. Additionally, the review critically assesses 
current methodologies for detecting and analyzing SVs, highlighting 
their strengths and limitations in terms of accuracy and resolution. It 
concludes by proposing future research directions to deepen our 
understanding of the genetic basis of complex traits in livestock, and 
to support the sustainable and effective management of livestock 
genetic resources.

2 Classification of SVs

The SVs are diverse and include types such as insertion, deletion, 
duplication, inversion, and translocation of genomic segments 
exceeding 50 base pairs (14). Deletion is the most common type of SV, 
referring to the removal of a segment of DNA sequence from the 
genome, resulting in a decrease in the number of bases in the genome. 
Depending on the location of the DNA sequence deletion, it can 
be categorized as intermediate or terminal deletion (15). Insertion 
refers to adding a DNA segment within the genome, resulting in a 
change in the base sequence at that location. Insertion can be classified 
into two types: general DNA segment insertion, in which the inserted 
segment usually originates from the genome, and transposon insertion 
(16). Transposons are a class of DNA sequences that can move or 
change positions autonomously within the genome. They occupy a 
significant portion of the genome and are widespread across various 
organisms’ genomes. Transposon insertion affects the number of gene 
copies, gene order, the distance between genes, and the regulation of 
gene expression (17). When transposons are inserted in gene 
regulatory regions (e.g., promoters, enhancers, etc.), they may 
interfere with normal regulatory mechanisms, leading to changes in 
gene expression levels. Transposon insertion is a significant 
mechanism of genetic variation within the genome, increasing 
genomic instability, mutation rates, and genetic diversity. Its effects on 
the genome are diverse and complex and can influence individuals’ 
genetic characteristics and disease development. This mechanism 
plays an important role in the evolutionary process (18–20).

Duplication involves the replication of a DNA segment within the 
genome, resulting in the presence of two or more copies of that 
segment. Duplicated DNA segments can vary in length, ranging from 
10 to millions of base pairs. Duplication can be further categorized 
into two types: tandem duplications (21) and interspersed segmental 
duplications. Tandem duplications occur when the duplicated 
segments are directly linked to form a tandem structure. These 

duplications usually result from errors or recombination events during 
DNA replication. Tandem duplications can further be classified as 
short tandem duplications (22) or long tandem duplications. Short 
tandem duplications generally range from a few to a few 100 base 
pairs, while long tandem duplications can comprise several 1,000 base 
pairs or even more. Interspersed segmental duplications are repetitive 
segments that occur multiple times in the genome, but they are 
separated from each other by other DNA sequences (23). Interspersed 
segmental duplications can involve both duplications of genes and 
non-gene sequences (24). Duplications contribute to genome 
evolution by driving the emergence of new genes and isoforms, 
thereby increasing functional diversity and promoting evolutionary 
changes. Further, they can predispose individuals to the onset of 
certain genetic diseases.

Deletion, insertion, and duplication of genomic fragments longer 
than 1 kb are classified as CNVs (25). These CNVs are the primary 
source of genomic SVs (26). The other two categories of SVs, inversion 
and translocation, involve significant rearrangements, including the 
relocation of DNA segments between different regions of the genome. 
SVs can be further divided into balanced and unbalanced events based 
on the presence of CNVs (14). Unbalanced rearrangements, which 
include deletions, insertions, and duplications, occur alongside CNVs. 
In contrast, balanced rearrangements, such as inversions and 
translocations, involve changes in the order of genomic bases without 
alterations in CNVs. Distinguishing between these two categories is 
crucial because the methods used to detect SVs are closely linked to 
the proportion of genomic sequences that are created or eliminated. 
In the unbalanced category of SVs, CNVs typically represent a 
significant portion of the genome. Figure  1 illustrates deletions, 
insertions, mobile element insertions, tandem repeats, scattered 
repeats, inversions, and translocations in relation to the reference 
genome in the test genome (27).

3 Mechanisms of SVs formation in the 
genome

The mechanisms underlying the formation of SVs can arise from 
various mutational mechanisms (28), which mainly include mobile-
element insertion (MEI), fork stalling and template switching 
(FoSTeS), non-homologous end joining (NHEJ), and non-allelic 
homologous recombination (NAHR) (13). These mechanisms, 
including DNA recombination, replication, and repair, are believed to 
be responsible for structural alterations in DNA segments, resulting 
in the creation of SVs within the genome.

3.1 Mobile elements

The MEIs are discrete segments of genomic DNA that can insert 
new copies elsewhere in the genome via RNA intermediates (29). In 
humans, the vast majority of MEIs no longer retain the ability to 
generate new insertions. However, a few MEIs, mainly from the L1, 
Alu, and SVA families (30), remain active and capable of generating 
new insertions. Estimates suggest that approximately 1 in every 12 to 
14 live births has a de novo MEI (31), making MEIs an endogenous 
and persistent source of variation in the human genome. They can 
cause disease by directly disrupting coding sequences or otherwise 
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altering messenger RNAs (mRNAs). For example, the first disease-
causing MEI variant identified in humans was the hemizygous variant 
in F8, which causes hemophilia through loss of function (32). This 
form of genetic alteration may have significant clinical 
implications (33).

3.2 Fork stalling and template switching

The FoSTeS is a DNA replication-based mechanism that explains 
complex genomic rearrangements and CNVs (34). In the process of 
DNA replication, the DNA double helix is unwound to form two 
replication forks that move in opposite directions along the DNA 
strand (35). Fork stalling occurs when one or both of the replication 
forks encounter an obstacle that impedes their progress or DNA 
damage (36). Template switching is one mechanism that may occur 
during fork stalling (37), enabling the continuation of the replication 
process by switching a stalled fork to a nearby intact DNA template 
(38, 39). FoSTeS is an important mechanism for DNA replication and 
repair, ensuring that DNA synthesis can proceed even in the presence 
of barriers or damage (40). Additionally, changes in the site of 
replication initiation can lead to duplications or deletions.

3.3 Non-homologous end joining

The NHEJ mechanism serves as a physiological mechanism 
utilized by cells to repair DNA double-strand breaks induced by 
ionizing radiation or reactive oxygen species (41). This repair process 
typically occurs at low-copy repetitive sequences and is closely related 
to DNA replication (42, 43). The NHEJ-associated proteins are 

triggered by double-strand breaks in DNA sequences to facilitate the 
repair and joining of DNA strands (44). Initially, end repair replaces 
the lost nucleotides at the double-strand break, after which DNA 
ligase joins the broken DNA fragments together. The joining of 
segments from different chromosomes can lead to the duplication or 
deletion of sequences (13).

3.4 Non-allelic homologous recombination

The NAHR produces SVs when a genomic segment exhibits high 
sequence similarity to a non-allelic locus (13). This recombination can 
lead to the duplication of similar sites on one chromosome and the 
corresponding deletion of sites on the other chromosome. The NAHR 
commonly occurs during meiosis and mitosis because two regions 
with similar sequences on non-homologous chromosomes are 
susceptible to recombination (45–47). This process can disrupt genetic 
information, potentially resulting in abnormal phenotypes. Duplicate 
elements are often located at the breakpoints of NAHR events that are 
associated with cancer and various genetic disorders (48–51). 
Additionally, the process of crossover between sister chromatids may 
result in the addition or loss of DNA segments, leading to duplications, 
deletions, and inversions of chromosomal segments (Figure 2).

4 Detection methods for SVs in 
genome

The unbalanced events are typically detected through the loss or 
gain of genomic sequence (referred to as “read depth” or RD) (52, 53) 
or the array probe signal intensity (54, 55) in the affected region when 

FIGURE 1

Classification of SVs (27). This schematic illustrates various types of SVs in a test genome compared to the reference genome, including deletions, 
novel sequence insertions, mobile element insertions, tandem duplication, interspersed segmental duplication, inversions and translocations.
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compared to the reference genome. There is a need to identify 
sequence breakpoints for the detection of balanced events, and 
methods designed to identify unbalanced SVs from array and 
sequence data are more sophisticated than those focusing on 
balanced events (27). Balanced SVs, such as inversions and 
chromosomal translocations, have the potential to impact the 
phenotype of an organism but remain particularly challenging to 
identify as de novo events due to their negligible impact on gene copy 
numbers (56). Inversions are almost undetectable, with viable 
detection methods limited to PCR (57) and sequencing (6). 
Specialized sequencing methods utilizing bipartite sequence data 
(referred to as “read pairs” or RPs) have subsequently been developed 
to detect these inversions.

Sanger sequencing technologies offer high accuracy but have low 
throughput. In contrast, next-generation sequencing technologies 
excel in cost and throughput, although they have shorter read lengths 
and higher error rates. Third-generation sequencing technologies 
provide significant advantages in read lengths but are associated with 
higher error rates and require more complex data processing (58–61). 
Several bioinformatics technologies, including RNA-Seq, ChIP-Seq, 
FAIRE-Seq, ChIA-PET, and Hi-C, utilize next-generation sequencing 
(NGS), a technology named for its significantly higher throughput 
compared to first-generation sequencing (58). Presently, Illumina 
sequencing technology (62) is the most commonly employed, capable 
of generating 100 of gigabytes or even several terabytes of sequencing 
data within a matter of hours, thus satisfying the throughput demands 

FIGURE 2

The main formation mechanisms of SV (12). The schematic depicts the process of the main formation mechanisms of SV, including mobile-element 
insertion (MEI), fork stalling and template switching (FoSTeS), non-homologous end joining (NHEJ) and non-allelic homologous recombination 
(NAHR).
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of high-throughput sequencing, while ensuring the accuracy of its 
sequencing. The fundamental principle of Illumina sequencing 
involves the reversible termination of fluorescently labeled dNTP to 
facilitate synthesis-while-sequencing (63).

Third-generation sequencing technology, known as single-
molecule real-time sequencing technology or de novo sequencing 
technology, distinguishes itself from previous generations by its 
primary feature of single-molecule sequencing without the need for 
PCR amplification, enabling individual sequencing of each DNA 
molecule. While second-generation short-read sequencing technology 
currently dominates the sequencing market, the third-generation 
technology has gained momentum in recent years and has been 
applied to genome sequencing, methylation research, mutation 
identification, and other research fields. The primary third-generation 
sequencing technologies are nanopore electrical signal sequencing 
and single-molecule fluorescence signal sequencing. Nanopore 
electrical signal sequencing encompasses single-molecule nanopore 
DNA sequencing by Oxford Nanopore Technologies (ONT). Single-
molecule fluorescence signal sequencing comprises single molecule 
real-time (SMRT) technology by Pacific Biosciences (PacBio). Among 
these, the cornerstone of third-generation sequencing is the Nanopore 
sequencing technology developed by Oxford Nanopore (64, 65). The 
principle behind Nanopore sequencing involves using a nanopore 
covalently bound with molecular junctions inside the pore, with 
nanopore proteins immobilized on a resistive membrane. Kinetic 
proteins are then used to pull the nucleic acids through the nanopore. 
As the nucleic acid moves through the nanopore, it causes a change in 
charge, resulting in a change in the electrical current across the 
resistive membrane. Due to the small diameter of the nanopore, only 
a single nucleic acid polymer can pass through, and the charged nature 
of individual ATCG bases causes varying interference to the current, 
enabling real-time monitoring and decoding of current signals to 
determine the base sequence and achieve sequencing (66). 
Technologies for third-generation sequencing (TGS) can produce read 
lengths up to 10 of kilobase pairs (kb) or longer, allowing for detailed 
characterization of complex genomic regions, such as duplications, 
which are difficult to accurately analyze with short-read sequencing 
methods. Due to its long-read capability, TGS improves the accuracy 
of SV breakpoint and type identification, essential for understanding 
the biological impact of these variations (59). Various methods and 
tools for SV detection based on third-generation sequencing include 
PanPop (67), cuteSV (68, 69), cuteSV2 (70), DeBreak (71, 72), DELLY 
(73–75), and SVision (76).

Optical genome mapping (OGM) is a genome analysis technique 
that visualizes structural variation by directly imaging ultra-long DNA 
molecules (77, 78). This OGM technology employs restriction 
endonucleases and fluorescent markers for labeling DNA, followed by 
high-resolution imaging to capture the labeling patterns. These 
patterns reveal structural details across the genome, such as fragment 
size, position, and relationships. In addition, OGM technology 
provides advantages in high resolution (79, 80), ultra-long read 
lengths (79), sensitivity, specificity (80), and PCR-free analysis. 
However, OGM technology remains relatively new, with limitations 
in maturity, higher costs, and longer processing times (79). Genome-
wide association study (GWAS) involves the detection of genome-
wide polymorphisms in multiple individuals to obtain their respective 
genotypes (81). Subsequently, statistical analysis at the population 
level is carried out to examine the relationship between the obtained 

genotypes and the corresponding phenotypes. Genetic variants most 
likely to influence the trait are filtered based on statistical significance, 
followed by the identification of genes associated with these trait 
variants (82). GWAS analysis utilizes two kinds of data: genotypic 
data, usually in the form of a vcf file, and phenotypic data, typically in 
the format of a txt file containing sample names and their 
corresponding trait lists. These genetic markers, derived from these 
data, can subsequently be utilized for the development of breeding-
related test chips or for their value in medical diagnosis (83). While 
the principles underpinning GWAS for plant and animal breeding and 
human disease treatment do not significantly differ, the practical 
applications vary considerably. Consequently, the GWAS process for 
one species may not be directly transferable to another species (84). 
By using GWAS analysis, a study identifies structural variants, 
including insertions, deletions, inversions, and translocations, by 
comparing sequencing data to a reference genome with software tools 
such as cuteSV (68, 69), BreakDancer (85), Pindel (86, 87), and 
SVMerge (88).

5 SVs in livestock genome and their 
association with phenotypic traits

The importance of genetic variations has been extensively 
discussed in livestock animals (89, 90). These variations can impact 
gene expression and regulatory mechanisms, influencing phenotypic 
traits such as growth rate, milk production, disease resistance, and 
fertility in various livestock (91–96). Understanding SVs in livestock 
genomes enhances our ability to predict and manipulate traits, 
contributing to advancements in agriculture and food security and 
improved breeding programs and more efficient livestock production. 
Below, we  have discussed the research development on SVs in 
livestock genomes including cattle, buffalo, equine, sheep and goat.

5.1 SVs in cattle genome and their 
association with phenotypic traits

Genomic SVs represent an important source of genetic variation 
in cattle genomes and are commonly linked to phenotypic expressions 
(97–108). Substantial progress has been made in understanding SVs 
concerning cattle breed genetic characteristics (109–118) and their 
associations with essential phenotypes, including feed intake (119), 
growth traits (120), milk production (121–123), disease resistance or 
susceptibility (124–127), reproductive health (128–130), coat color 
patterning (57, 131–133) and environmental adaptability (134, 135) 
in cattle.

In studies focusing on growth traits, research on the EIF4A2 gene 
in four cattle breeds—Qinchuan, Yunling, Pinang, and Jiaxian—
demonstrated that the EIF4A2-CNV gene significantly influenced hip 
width and rump length in Qinchuan cattle, heart girth, chest depth, 
and rump length in Yunling cattle, and hip width in Pinang cattle 
(136). No significant effect on hip width was observed in Jiaxian cattle, 
suggesting the potential of EIF4A2 gene SVs as molecular markers in 
yellow cattle breeding, with implications for enhancing the selection 
of superior beef breeds (136). Consistently, studies analyzing GWAS 
data for CNVs and body growth traits in beef cattle have focused on 
the Nellore breed (120, 137). Using data from over 700,000 SNP probes 
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in 2,230 cattle, CNVs such as EPHB3-CNV98, COL26A-CNV121, 
GBP6-CNV204, ZNF280B-CNV96, and TSPY-CNV99 were found to 
be  significantly associated with growth traits in the Nellore breed 
(137). In addition, a CNV100 overlaps with the KCNJ12 gene, was 
observed to be  a key candidate for muscle development (137). 
Accordingly, a study investigated CNVR in the Brazilian Gir dairy 
cattle genome, focusing on traits relevant to tropical breeding 
conditions. By analyzing sequencing and SNP genotyping data from 
38 animals, 48 high-confidence CNVR were identified. These regions 
were associated with genes linked to traits like environmental 
adaptation, immune response, and reproduction (138).

In relation to milk production, 24,908 high-quality SVs were 
identified in a cohort of 478 Holstein and Jersey cows through whole-
genome sequencing. An interpolation technique estimated 4,489 SVs 
with an R2 greater than 0.5 in 35,568 Holstein and Jersey cows, utilizing 
two pipelines: FImpute and Quille2.3-Minimac 3 (139). Their findings 
further revealed that SVs typically explained less than 10% of the 
phenotypic variation in key dairy traits, with four SVs significantly 
associated with these traits (139). Concerning genetic characteristics, 
Talenti et al. employed optical mapping to construct a high-quality SV 
database among various cattle breeds from different geographical 
regions, thereby advancing research on SVs in cattle. Specifically, 
Bionano optical mapping data at 100X coverage were generated for 18 
cattle from nine ancestral lines across three continents and two 
subspecies. This study identified 13,457 SVs, with 1,200 of which 
overlapped coding regions (140). In the context of disease resistance 
and climate adaptation, a comparison of chromosome-scale genome 
assemblies in two cattle genealogies identified 123,898 non-redundant 
SVs. Functional studies suggested that a 108 bp exon insertion in the 
sialophorin (SPN) gene may affect macrophage uptake of Mycobacterium 
tuberculosis, contributing to the reduced susceptibility of Hainan yellow 
cattle to bovine tuberculosis (141). In line other studies also reported 
the association of CNVs with mastitis resistance in Dutch Holstein 
cattle (142), hoof and reproductive health in Canadian Holstein cattle 
(143, 144). In addition, research developed a novel SV detection 
pipeline, identifying millions of deletions, inversions, and duplicated 
regions in the cattle genome. A deletion variant in the APPL2 gene’s first 
exon was found to impact gene expression related to immune response, 
metabolism, and other functions, highlighting its role in selective 
adaptation across different regions. (145). Furthermore, a study focuses 
on mapping expression and splicing quantitative trait loci (e/sQTL) to 
understand phenotypic variability in cattle (146). The researchers 
created a pangenome using 16 HiFi haplotype-resolved cattle assemblies 
and genotyped 307 short-read samples, identifying over 21 million 
small and 43,000 structural variants. They validated 85% of structural 
variants and mapped e/sQTLs in 117 cattle with testis transcriptome 
data, identifying 92 structural variants as causal candidates for eQTL 
and 73 for sQTL. Transposable elements were found to be  key 
contributors to expression and splicing variation. Despite strong linkage 
disequilibrium between small and structural variants, only 28 additional 
eQTL and 17 sQTL were discovered (146).

5.2 SVs in buffalo genome and their 
association with phenotypic traits

The SVs in the buffalo genome and their association with 
phenotypic traits have been a subject of increasing interest in 

recent studies. For instance, Ahmad et  al. (147) employed a 
coverage-based approach to generate high-resolution CNV maps 
of six major buffalo breeds globally using whole-genome 
resequencing data. By analyzing data at two sequencing coverage 
levels, 10X and 30X, they detected a total of 14,368 CNVs at 10X 
coverage and 127,222 CNVs at 30X coverage, with deletions 
outnumbering duplications in all breeds. At 10X coverage, the 
Murrah breed exhibited the highest number of CNVs, while the 
Surti breed had the lowest. Conversely, at 30X coverage, the 
Pandharpuri breed had the highest CNV count, while the Surti 
breed retained the lowest (147). Comparison of CNV profiles 
across these breeds highlighted evolutionary divergences among 
major buffalo breeds worldwide. This study enhances our 
understanding of SV in buffaloes and holds promise for 
applications in selective breeding and genetic improvement efforts 
(147). In another study, Li et al. characterized genomic differences 
between the water buffalo genome and the well-studied Bos taurus 
cattle genome. By comparing whole-genome sequencing datasets 
of 14 river buffaloes to the cattle reference genome, they identified 
13,444 deleted CNV regions and 11,050 merged MEI events 
located upstream of annotated cattle genes. These findings provide 
essential data for the functional annotation of genes that may 
be  linked to phenotypic differences between cattle and buffalo, 
laying the groundwork for future genomic analyses (148). Further 
advancing the understanding of buffalo genomics, Wang et  al. 
reported a chromosome-level genome assembly with a 72.2 Mb 
contig N50 and a high-resolution recombination map for male 
buffalo. Their study revealed that transposable elements (TEs) and 
SVs have potentially contributed to buffalo evolution by influencing 
neighboring gene expression. Notably, the pseudoautosomal region 
(PAR) of the Y chromosome was found to be  under strong 
purifying selection. Additionally, two distinct recombination 
hotspots were identified on chromosome 8, near genes associated 
with tooth development, which may enhance buffalo adaptation to 
low-quality feeds. Additionally, they found that the TE subfamily 
SINE/tRNAs may play a role in driving recombination into SVs, 
offering important insights into buffalo genome evolution and 
adaptation (149). Moreover, Strillacci et al. performed a genome-
wide CNV scan on 361 buffaloes from three Iranian river breeds 
(Azeri, Khuzestani, and Mazandarani), detecting 9,550 CNVs and 
302 CNV regions (CNVRs), which encompassed 1.97% of the 
buffalo genome. Notably, 22 CNVRs were common across all 
breeds, and 409 genes mapped to CNVRs were linked to traits such 
as morphology, health, milk production, meat quality, and 
reproduction, as annotated in the Bovine Genome Database. These 
results advance our understanding of the natural adaptations and 
recent environmental pressures faced by buffaloes, particularly in 
relation to milk production, their primary food source (150). In 
addition, Li et al. used comparative genomic and transcriptomic 
analyses to highlight significant structural genomic differences 
between river buffalo and taurine cattle. These differences may 
hold important implications for the biology, adaptation, and 
evolution of the two species, providing a comprehensive 
understanding of the river buffalo genome. As a result, this 
research offers a robust framework for future investigations into 
genetic improvement and disease resistance in buffaloes (151). 
Deng et al. further expanded the knowledge base by resequencing 
the genomes of 387 buffaloes from 29 Asian breeds, including river, 

https://doi.org/10.3389/fvets.2024.1416220
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Chen et al. 10.3389/fvets.2024.1416220

Frontiers in Veterinary Science 07 frontiersin.org

swamp, and crossbred buffaloes. They identified 36,548 CNVs 
through the CNV caller, covering 133.29 Mb of the buffalo genome, 
alongside 2,100 CNVRs, of which 1,993 were shared among the 
studied breeds. Population differentiation analysis using Vst 
identified 11 genes significantly differentiated across buffalo 
breeds, many of which were associated with milk production traits. 
Furthermore, expression quantitative trait loci (eQTL) analysis 
revealed differentially expressed CNVR-derived genes (DECGs) 
linked to milk production. Through a GWAS analysis, three 
CNVRs were found to be significantly associated with peak milk 
production. Collectively, this study provides comprehensive 
genomic insights into buffalo populations, identifying candidate 
genes for milk production traits that can inform genetic breeding 
programs aimed at enhancing milk yield and quality in 
buffaloes (152).

5.3 SVs in sheep and goat genomes and 
their association with phenotypic traits

SVs in the genomes of sheep and goats have emerged as key 
contributors to understanding phenotypic traits, especially 
regarding growth, genetic characteristics, reproduction, and 
adaptation in sheep and goat (26, 153–165). For example, Jiang 
et al. examined growth traits by analyzing the CNVs of the Src 
Homology 2 Domain Containing E (SHE) gene in 750 sheep 
specimens, including Chaka sheep, Hu sheep, small tail Han sheep, 
and large tail Han sheep. The study revealed a 2000 bp CNV in the 
SHE gene. This CNV was associated with traits such as body 
length, chest width, heart girth, and height at the withers. The 
study also highlighted breed differences, with deletions in SHE 
more frequents in Chaka and Hu sheep than in small and large tail 
Han sheep. The researchers concluded that the CNV of the SHE 
gene may be a critical factor in sheep molecular breeding, offering 
insights for improving economic traits through breeding practices 
(166). Similarly, CNVs have been identified as playing a significant 
role in goat reproduction. For instance, in a study on highly fertile 
dairy goats, researchers found that PRP  1 and PRP  6, both 
associated with the prolactin (PRL) signaling pathway, had 
repeated copy numbers in highly fertile goats (167). PRP 1 copy 
numbers were repeated three times, while PRP 6 copy numbers 
were repeated six times in the high fertility group, contrasting with 
the normal copy numbers in low fertility goats. These results 
suggest that the copy number repeats might influence the 
expression pattern of PRP 1 and PRP 6, though further research is 
required to clarify the underlying mechanisms (168). In another 
study, Li et  al. performed high-depth resequencing on 16 wild 
Asian mouflon sheep, 172 local breed specimens, and 60 
individuals from various sheep breeds across Asia, Europe, Africa, 
and Middle East (169). Their analysis identified candidate genes 
associated with domestication traits like tail fat, horn type, ear size, 
and other production traits such as wool, milk and meat. This 
research offered crucial genomic resources for sheep genetics and 
holds promise for future molecular-assisted breeding efforts (169). 
Furthermore, a detailed catalog of SVs in sheep was developed 
using high-quality de novo assemblies, revealing a 168 bp insertion 
segment in the 5′ untranslated region (5’ UTR) of the Homeobox 
B13 (HOXB13) gene (170). This specific mutation was linked to the 

long-tailed trait in sheep through a combination of GWAS and 
gene expression analyses (170). Additionally, Shi et al. conducted 
an in-depth analysis of CNVs in Tibetan sheep, comparing local 
Oula sheep with synthetic Panou sheep, and identified 60,429 CNV 
events, including 368 differential CNV regions. Of particular 
interest, the duplication of the ABCB1 gene was suggested as a key 
factor aiding Panou sheep in adapting to high-altitude 
environments (171). This research provided an extensive CNV map 
of Tibetan sheep, serving as a valuable genomic resource for future 
breeding initiatives (171). Consistently, another study identified a 
CNVR on chromosome 6, which encompasses the HGFAC and 
LRPAP1 genes—both of which are associated with fat deposition 
and environmental adaptability in Iranian fat-tailed breeds 
(Baluchi and Lori-Bakhtiari sheep) as well as thin-tailed breeds 
(Zel sheep) (172).

In a large-scale genomic study, Liu et al. (26) identified 6,286 
potential CNVs across 1,023 samples from 50 goat breeds, 
covering approximately 262 Mb or 8.96% of the goat genome. 
Several noteworthy CNV-overlapping genes, including EDNRA, 
ADAMTS20, ASIP, and DGAT1, were found to be  involved 
in  local adaptations such as coat color, muscle development, 
metabolic processes, and bone formation. This comprehensive 
CNV map provides new insights into the functional annotation 
of the goat genome (26). The findings highlight the significant 
role of SVs, particularly CNVs, in influencing phenotypic 
variation, breed-specific traits, and local adaptations in sheep and 
goats. Moreover, these results serve as a crucial genomic resource 
for future breeding programs and genetic improvement strategies 
in these species.

5.4 SVs in equine (horses and donkeys) 
genomes and their association with 
phenotypic traits

SVs in equine genomes, particularly in horses and donkeys, 
have been the focus of recent research due to their potential impact 
on phenotypic traits. In particular, advances in genome sequencing 
technologies have facilitated a more detailed exploration of SVs, 
revealing their associations with traits such as fertility, 
environmental adaptability, and high-altitude survival. The rapid 
progress in science and technology has spurred significant growth 
in the horse and donkey industries, contributing significantly to 
the field of animal husbandry (173). Consequently, research into 
SVs within these animals’ genomes holds substantial importance. 
Equine genome has been investigated for structural variations and 
their consequent correlation with phenotypic traits (174–178). 
Similarly, the copy number of five genes located on the donkey’s Y 
chromosome—CUL4BY, ETSTY1, ETSTY4, ETSTY5, and SRY—
was quantified, revealing variability in their copy numbers, which 
offers essential genetic data for future donkey research (179). 
Additionally, a chromosome-level Equus kiang genome was 
assembled using Hi-C sequencing, leading to the identification of 
SVs potentially linked to high-altitude adaptation, specifically 
through species-specific insertions and deletions in genes such as 
PIK3CB and AKT, which are implicated in hypoxia-related 
pathways (180). Further research identified that while moderate 
expression levels of equine CUL4BY were found across various 
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tissues, ETSTY1, ETSTY4, and ETSTY5 showed exclusive 
expression in the testis of horses, though the status of the equine 
SRY gene as a single-copy gene remains debatable (181). For 
instance, a study using whole genomes from six diverse horse 
breeds (Mangalarga Marchador, Percheron, Arabian, Native 
Mongolian Chakouyi, Tennessee Walking Horse and American 
Miniature) were sequenced and mapped to the EquCab3.0 genome, 
generating 1.3 billion reads with coverage between 15x to 24x per 
horse. After rigorous filtration, they reported 1,923,693 Insertions/
Deletions (INDELs), 1,540 CNVs, and 3,321 SVs per horse and 
functionally annotated. Key genes associated with size variation, 
such as LCORL (in all horses), ZFAT (in Arabian, American 
Miniature, and Percheron), and ANKRD1 (in Native Mongolian 
Chakouyi), were detected. Additionally, a copy number variation 
in the Latherin gene, linked to thermoregulation by sweating, was 
found (182). A genome-wide map of CNVs in Chinese local horses 
identified candidate genes overlapping with CNVRs in Jinjiang 
horses, uncovering genes linked to hemoglobin binding. This 
discovery is of particular interest, as it suggests a role in the 
adaptation of Jinjiang horses to high-temperature and high-
humidity environments, providing key insights into the genetic 
mechanisms underlying equine adaptation to diverse 
environmental conditions (183). Consequently, Castaneda et al. 
(184) analyzed CNVs in horse Y chromosome genes using digital 
droplet PCR, examining 209 normal males, 73 XY horses with 
disorders of sex development and/or infertility and 5 Przewalski’s 
horses and 2 kulans. TSPY showed high variability, while SRY copy 
variations linked to RBMY may cause XY disorders of sex 
development and/or infertility. The CNVs in TSPY and ETSTY2 
differed in cryptorchid cases but not in infertility. They suggested 
further research to refine Y chromosome assembly and its 
reproductive implications (184) (Table 1).

6 Limitations and challenges of SVs in 
herbivorous livestock

The research on SVs is very important in the field of genomics, 
which involves variations in DNA sequences such as deletions, 
insertions, duplications, inversions, and translocations within large 
segments of the genome. These variations have significant implications 
for gene expression regulation, disease occurrence, and species 
evolution. However, SVs research faces several limitations and 
challenges (13), including constraints of sequencing technology, 
algorithmic and software issues, sample and population coverage, 
difficulties in functional verification, lack of phenotypic data, 
environmental and genetic interactions, challenges for breeding 
applications, technology costs and accessibility, as well as data sharing 
and standardization.

Conventional sequencing technologies, such as short-read 
sequencing, have limitations in detecting structural variants in 
large fragments, as they struggle to capture DNA sequence changes 
over long distances. While third-generation sequencing 
technologies, such as PacBio and Nanopore, offer longer read 
lengths that can improve the accuracy of structural variant 
detection, they are also more costly and complex to analyze. SV 
detection requires complex bioinformatics algorithms that must 
accurately recognize and distinguish between different types of 

structural variants. Existing algorithms still struggle with highly 
repetitive sequence regions, which can lead to false-positive or 
false-negative results.

The population structure of livestock is complex, with 
significant differences in genetic background between species and 
populations. This complexity requires researchers to consider the 
representativeness and diversity of samples in their analyses, as 
well as how to verify the biological significance of SVs in different 
populations. Although computational methods can predict SVs, 
these predictions usually need to be validated through experimental 
methods such as PCR and FISH, increasing the complexity and 
cost of the study. Research into the associations between SVs and 
production traits in livestock requires large amounts of phenotypic 
data; however, the collection and integration of these data can 
be time-consuming and costly.

Experimentation on domestic animals must adhere to strict 
ethical and welfare standards, which may limit certain types of 
research. Additionally, production traits in herbivorous livestock 
are influenced not only by genetic factors but also by environmental 
ones. Understanding these reciprocal effects is crucial for 
unraveling the biological functions of SVs. Translating findings on 
structural variants into practical breeding strategies presents many 
challenges, including the assessment of variant pathogenicity, 
genetic counseling, and the development of personalized treatment 
protocols. Although the cost of sequencing technology is 
decreasing, accessing and analyzing high-throughput sequencing 
data remains a financial burden for many researchers. The sharing 
and standardization of SV data are essential for facilitating global 
research collaboration and improving research efficiency, yet there 
is a lack of uniform data formats and sharing platforms.

To overcome these limitations and challenges, researchers need 
to develop new sequencing technologies, improve algorithms, 
increase computational power, and promote data sharing and 
standardization. For example, the SVision (76) and SVision-pro 
(185) algorithms developed by Prof. Kai Ye’s team enhance the 
accuracy and reduce the false-positive rate in SV detection by 
transforming the sequence problem into a variation instance 
segmentation problem in the image space. These efforts will help 
improve our understanding of SVs in herbivorous livestock and 
ultimately enhance their production and health.

7 Conclusion

Altogether, we  concluded that SVs are a significant source of 
genetic diversity among individuals. The advent of high-throughput 
sequencing technology has made genome sequencing of herbivorous 
livestock more accessible and cost-effective. By comparing genome 
sequences across different species or individuals, we  can identify 
genomic SVs associated with specific traits. These variations may 
be  linked to important characteristics such as growth rate, 
reproductive ability, disease resistance, and environmental adaptation. 
Understanding how these variants affect gene function and expression 
can help clarify the relationship between genomic SVs and the traits 
of herbivorous livestock, as well as inform more effective conservation 
and breeding strategies. Additionally, this research can reveal the 
evolutionary history and relationships of these animals, enhancing our 
understanding of their origin and evolution. Both domestic and 
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TABLE 1 Summary of SVs associated with phenotypic traits in herbivorous livestock.

Genes (SVs) Phenotypes Biological effect Species References

EIF4A2 Growth traits
Hip width; rump length; heart girth; 

chest depth

Cattle

(136)

Deletion in Chr5 93,504,218 bp-

93505234 bp, Chr6 87,209,737 bp-

87211122 bp, Chr14 1,299,687 bp-

1299831 bp, Chr20 28,914,471 bp-

28915027 bp

Production traits
Milk, fat, protein yield, fertility and 

overall type
(139)

316 bp deletion within the intron 

of DDX58
Diseases and adaptations

Climate adaptation, Epidermal 

differentiation, skin barrier and bovine 

tuberculosis resistance

(141)

APPL2 Diseases and adaptations
Immune response, taste function, cell 

proliferation, and glucose metabolism
(145)

RXFP4 Metabolism
Feed efficiency and feed intake-related 

traits.
(186)

LEPR Growth traits Body weight, height and length (187)

KIT Genetic characteristic Coat color (188)

ZEB2 Growth traits
Growth, weight traits, and horn 

ontogenesis

Buffalo

(147)

STK17 A Diseases and adaptations

Involved in apoptosis, which has 

functions in immune response and 

disease resistance

(147)

OR10J5, OR10J1, OR10J4, OR10J3 Adaptations Perception of chemical stimuli (147)

IBSP, SPP1, MEPE Adaptations
Promoting the formation and 

mineralization of dentin
(149)

ABCC8, USH1C, MYOD1, OTOG, 

KCNC1, SERGEF
Production traits

May potentially affecting meat 

production
(150)

PLXNA2 Associated with cattle temperament (150)

GLYAT Adaptations Adaptation to tropical environments (151)

FTH1, MYPN, NEXN, TMOD1 Production traits Meat quality (151)

RAPH1, DAAM1, U6, TRNAC-

ACA, MEX3C, ALDH4A1, 

MIGA1, SMAD4, PHKA2, 

COL4A1, ZNF407

Production traits Milk production (152)

ACTR3, TAS1R2, PBRM1, GNA12 Growth traits Carcass and body traits (152)

USP33 Diseases
Bovine respiratory disease 

susceptibility
(152)

FNIP2 Reproductive traits Reproductive traits (152)

SHE

Growth traits

Body length, cannon bone 

circumference, heart girth, chest width, 

and height at the withers

Sheep

(166)

Production and body size traits

Domestication, tail fat, horn type, ear 

size, reproductive traits, wool 

production, milk production, meat 

production

(170)

168 bp insertion segment in the 5’ 

UTR of the HOXB13 gene
Long-tailed trait (171)

PPP3CA, SSTR 1 Aging and carcass weight (172)

The duplication of the ABCB1 

gene
Adaptations Adaptation to the plateau environment (172)

(Continued)
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international studies on genomic SVs in livestock have progressed 
rapidly, offering valuable insights into the genetic traits, evolutionary 
history, and population structure of herbivorous livestock.

Future investigations into SVs in livestock genomes should 
prioritize the development of more efficient and cost-effective long-
read sequencing technologies. Such advancements will enhance the 
accuracy of SV detection, enabling comprehensive studies across large 
and genetically diverse populations. Additionally, there is a critical 
need for improved bioinformatics algorithms designed to manage the 
complexity inherent in genomic regions. These algorithms should aim 
to minimize sequencing errors and accurately differentiate functional 
SVs from neutral variations, thereby increasing the reliability of 
genomic analyses. The expansion of population-scale datasets is 
essential, along with the establishment of robust data-sharing 
platforms. These initiatives will facilitate cross-species analyses and 
comparative genomics, thereby deepening our understanding of SVs 
across various livestock species. Furthermore, the integration of multi-
omics approaches, including transcriptomics and epigenomics, is vital 
for linking SVs to phenotypic traits. This integration will provide 
valuable insights into the functional roles of SVs within the context of 
livestock genetics. Collaborative efforts toward data standardization 
and the establishment of ethical frameworks are crucial for advancing 
research and its practical applications in livestock breeding 
and management.
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TABLE 1 (Continued)

Genes (SVs) Phenotypes Biological effect Species References

PRP 1, PRP 6 Reproductive traits Fertility

Goat

(167, 168)

EDNRA, ADAMTS20, ASIP, 

KDM5B, ADAM8, DGAT1, 

CHRNB1, CLCN7, EXOSC4

Genetic traits

Coat color, muscle development, 

metabolic processes, bone sclerosis, 

and embryonic development

(26)

CUL4BY, ETSTY1, ETSTY4, 

ETSTY5, SRY
Sperm quality traits Donkey (180)

PIK3CB and AKT, with lengths of 

3,258 bp in the exonic region and 

189 bp in the intronic region

Adaptations High-altitude adaptation Equus kiang (181)

CUL4BY
Moderate expression levels in the testis, 

heart, spleen, and kidney

Horses

(182)

ETSTY1, ETSTY4, ETSTY5 Exclusively expressed in the testis

HSPA1A, NFKBIA, SOCS4, IL-6 Adaptations
Adaptation to high-temperature and 

high-humidity environments
(183)
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