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The external ear canal, characterized by species-specific structural and physiological 
differences, maintains a hostile environment that prevents microbial overgrowth 
and foreign body entry, supported by factors such as temperature, pH, humidity, 
and cerumen with antimicrobial properties. This review combines several studies 
on the healthy ear canal’s structure and physiology with a critical approach to the 
potential existence of an ear microbiome. We use a comparative multi-species 
approach to explore how allergic conditions alter the ear canal microenvironment 
and cerumen in different mammalian species, promoting pathogen colonization. 
We propose a pathogenetic model in which allergic conditions disrupt the antimicrobial 
environment of the EEC, creating circumstances favorable for facultative pathogenic 
micro-organisms like Staphylococcus and Malassezia species, leading to otitis 
externa (OE). A better understanding of the underpinning mechanisms may lead 
to innovative approaches to disease mitigation.
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1 Introduction

Inflammation of the external ear canal (EEC), otitis externa (OE), is a common 
dermatological disorder, diagnosed in approximately 1% of human patients in primary care 
(1). Changes in parameters such as the pH, temperature, or composition of earwax—a unique 
waxy substance derived from desquamated epithelial cells, sebaceous and ceruminous 
glands—can create an ideal environment for bacteria and/or yeasts to colonize and infect the 
ear canal. The OE-patient may present with pain, erythema and pruritis of the EEC and when 
microbial overgrowth is confirmed by cytology, topical antimicrobial treatment is required (2, 
3). Complications include otitis media, otitis interna and even osteomyelitis of the temporal 
bone (2, 4, 5). Importantly, as long as the predisposing factor for OE—such as regular 
swimming, local trauma or allergic disease (6–8)—is not removed, these patients are at high 
risk of recurrence, resulting in chronic OE which often requires repeated 
antimicrobial treatment.

Antimicrobial resistance in ear pathogens is increasing (9, 10), which necessitates the 
development of alternatives to treat and prevent OE. As has been proposed in other skin 
disorders such as acne vulgaris and allergic dermatitis (11–13), it may be relevant to study new 
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strategies that—instead of limiting the growth of ear pathogens by 
using bacteriostatic and bacteriocidic drugs—help to restore the 
balance between commensal microorganisms in the EEC, referred to 
as the ear microbiome. However—until now—little evidence exists on 
the presence, complexity, and protective role of a potential microbial 
community within the EEC. Moreover, it appears that the EEC is 
provided with many features that limit the growth of microorganisms, 
as will be discussed in this review.

We here aimed at investigating the presence and potential role 
of an ear microbiome by identifying the different challenges 
encountered by microorganisms entering the EEC, such as the 
different components of cerumen and the acidic pH. We focus on 
the disturbing impact of allergic dermatitis (AD)—a common 
underlying factor for OE—on different components of the 
microenvironment of the EEC to identify potential mechanisms 
favoring pathogen overgrowth. We use a cross-species comparative 
approach to identify common drivers of OE by including humans, 
dogs (prevalence of allergic OE comparable to humans) and horses 
(low allergic OE prevalence). By identifying the species-specific 
factors that contribute to maintaining a hostile environment within 
the ear canal, we  aim to investigate the presence of an ear 
microbiome through a rigorous and critical analysis. Considering 
the impact of allergic dermatitis on the EEC and cerumen, we tried 
to identify new leads for future research into the prevention and 
treatment of allergy-induced OE.

2 The EEC in health and allergic 
dermatitis

An overview of the features of OE and the pathogenesis of allergic 
dermatitis related to OE in humans, dogs and horses is given in Table 1 
and Supplementary Table  1. AD refers to different forms of AD, 
including a local hypersensitivity inflammatory response after 
exposure such as allergic contact dermatitis (14), and atopic dermatitis, 
a generalized chronic immune-mediated inflammatory skin disorder 
associated with IgE-antibodies (15–17). As shown in Table 1, OE in 
humans is associated with a local inflammatory reaction that occurs 
after direct contact of the EEC with hearing aids or chemicals in 
cosmetic products, while OE in dogs is associated with a generalized 
inflammatory reaction to environmental allergens (atopic dermatitis). 
The pathogenesis of atopic dermatitis in humans and dogs shows 
many similarities (18), however—as opposed to dogs with atopy 
(19)—OE is not a typical symptom of atopic dermatitis in humans 
(19). The question arises why this form of AD seems to have less 
impact on the human EEC compared with the canine EEC.

2.1 Structure related to disease

The anatomy of the EEC differs greatly in humans, dogs and 
horses; both in length, shape and, most interesting, the ratio 

between the cartilaginous—containing sebaceous and ceruminous 
glands—and the non-glandular osseous parts of the ear canal. The 
comparison of the species-specific differences in the anatomic 
features and physiologic parameters of the EEC is shown in Table 2. 
The canine EEC is almost exclusively supported by cartilage and as 
such, entirely provided with sebaceous and ceruminous glands. 
Furthermore, the canine ear canal is defined by a site-dependent 
distribution of sebaceous and ceruminous glands, with an 
increasing ceruminous/sebaceous gland ratio toward the 
tympanum (20–23). In contrast, cartilage supports only 1/3rd to 
1/4th of the human EEC and 3/4th of the equine EEC (24–28). It 
is possible that these anatomic varieties have a different impact on 
both the volume and composition of cerumen between these 
species. Structure-related predisposing factors for OE include both 
physical and histologic alterations. Narrowing of the EEC lumen—
due to anatomical varieties, chronic changes as well as 
accumulation of cerumen—is associated with OE and 
ceruminoliths in humans and dogs (19, 29, 30). Reduced ear canal 
permeability might affect the antimicrobial microenvironment in 
the external ear, providing better conditions for pathogens to 
survive and colonize.

Allergic dermatitis is associated with a disruption and alteration 
of the skin barrier, which lines the EEC. Both in humans and dogs, 
atopic skin is characterized by a higher abundance of short chain 
ceramides compared to long chain ceramides, which impedes the 
integrity of the skin barrier and causes an increase in transepidermal 
water loss (31–34). Moreover, lesional skin from atopic dogs is defined 
by a decreased level of sphingomyelins and cholesteryl esters, essential 
compounds of the epidermal barrier (34). The expression of filaggrin, 
a crucial protein in the epidermal barrier; and claudin-1, an essential 
component of tight junctions, is decreased in human patients with 
atopic dermatitis, thereby further impairing the skin barrier (35, 36). 
The contribution of filaggrin mutations on the pathogenesis of CAD 
remains to be elucidated (18).

Considering the anatomic variations between dogs and humans, it 
seems possible that the inflammatory parameters associated with the 
pathogenesis of atopic dermatitis have a different impact on the canine 
EEC than on the human EEC, which could explain the difference in 
predisposition for OE in atopic patients of both species. The canine EEC 
is relatively longer than the human ear canal and in contrast to the simple, 
short horizontal EEC of humans, the canine EEC consists of a vertical and 
horizontal canal, with a sharp junction in between. Moreover, the canine 
EEC is almost completely covered by cerumen, which is in great contrast 
to humans, where sebaceous and ceruminous glands are only present in 
a small part of the EEC. Therefore, the induction of a general cutaneous 
inflammatory response in atopic subjects could hypothetically have a 
greater impact on the microenvironment and microbiome—containing 
facultative pathogens—in a longer, more enclosed, perhaps less aerobic 
canine EEC than on the shorter, more open human EEC.

Regarding the length of the EEC and the distribution of the 
sebaceous and ceruminous glands, the equine EEC can be considered 
as intermediate between the human and canine EEC. Interestingly, 
horses with Insect-bite-hypersensitivity (IBH), an allergic condition 
which resembles atopic dermatitis as discussed above, are also at risk 
for OE. This strengthens the assumption that the variations in length 
and distribution of the different glands in the EEC may, at least partly, 
be  responsible for the different effect of allergies on the EEC in 
humans, dogs and horses.

Abbreviations: EEC, External Ear Canal; OE, Otitis Externa; AD, Allergic dermatitis; 

CD, Contact dermatitis; IBH, Insect-Bite-Hypersensitivity; CAD, Canine atopic 

dermatitis; Th, T-helper cell; FA, Fatty acid; AMP, Antimicrobial peptides; MIC, 

Minimum inhibitory concentration.
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2.2 (Patho) physiology of the EEC

An overview of the physiologic parameters of the EEC is shown 
in Table 2.

The temperature within the EEC resembles the average body 
temperature, both in dogs and humans. Yet, ear temperature was 
found to be significantly lower in men and elderly people, compared 
to women and adults, respectively (37). Also in dogs, ear temperature 
differed depending on age. Huang et  al. demonstrated that dogs 
younger than 6 years and dogs weighing less than 6 kg showed 
significantly higher ear temperatures than dogs over 6 years old and 
over 6 kg bodyweight, respectively (38). So far, ear temperature has 
not been identified as a contributing factor to ear disease. Considering 

‘calor’ as a key element in an inflammatory reaction, one could expect 
an increase in ear temperature during inflammation, which could 
potentially alter the growth and survival of certain microorganisms 
and stimulate an immunologic response. However, Yoshida et  al. 
measured the EEC temperature in both OE and healthy dogs and did 
not find significant differences between these 2 groups of dogs (39).

As shown in Table 2, the pH of the human EEC is moderate to 
strong acidic, and as such, comparable to the skin pH. This low pH is 
caused by exocytosis of lysosomes and hydrolyzation of phospholipids, 
helps in creating an antimicrobial environment, enhances the 
epidermal barrier and has an influence on the epidermal lipid 
synthesis (40). Interestingly, the pH within the canine EEC appears to 
be less acidic, and also the skin pH in dogs, and in other mammals, is 

TABLE 2 Comparison of the anatomy, histology and physiology of the human, canine and equine EEC.

Human Dog Horse

Anatomy of the EEC

Shape and direction Mild ‘S’ shape, horizontal (23) Starting from the EEC opening: distal vertical and 

proximal horizontal canal (157)

Hourglass shape, vertical (26)

Length 2.5–3 cm (23) Breed-specific, positively correlated with body 

weight (on average 5.3 ± 1 cm) (158)

Dorsal length of the osseous 

EEC: 2.51–3.08 cm (26)

Histology of the EEC

Sebaceous glands Only present in the cartilaginous part, most 

apparent in outer two-thirds of the EEC (30)

Only present in the cartilaginous part, most 

apparent toward external ear opening (157, 158)

Only present in the cartilaginous 

part (159)

Ceruminous glands Only present in the cartilaginous part, most 

apparent in outer two-thirds of the EEC (30)

Only present in the cartilaginous part, most 

apparent toward tympanic membrane (157, 158)

Only present in the cartilaginous 

part (159)

Ratio cartilaginous: osseus EEC 1: 2 (30) 4: 1 (157, 158) 2.5: 1 (159)

Microenvironment

Relative temperature 36.4 ± 0.6°C (37) Erect ears: 37.17 ± 0.85°C (160)

Semi-pendulous ears:37.35 ± 0.5°C (160)

Pendulous ears: 36.93 ± 0.96°C (160)

No data available

pH 5.4 ± 0.48 (161) 4.6–7.2 (162) No data available

Relative humidity Left ear: 51.7 ± 9.6 (163)

Right ear: 50.6 ± 9.5 (163)

Erect ears: 98.6 ± 1.0 (39)

Semi-pendulous ears: 91.9 ± 3.7 (39)

Pendulous ears: 93.1 ± 3.0 (39)

No data available

TABLE 1 Prevalence of (allergic-dermatitis-related) OE in humans, dogs and horses and features of the allergic disease most associated with OE.

Human Dog Horse

Prevalence of OE Up to 1% (1) 7.3-10% (142–144) Unknown (5, 26)

Common bacteria/ yeast/ fungi associated 

with OE

 • Pseudomonas aeruginosa;

 • Staphylococcus aureus;

 • Staphylococcus epidermidis;

 • Cutibacterium acnes;

 • Corynebacterium jeikeium

 • Candida species and Aspergillus 

species (9, 110, 145–149).

 • Malassezia pachydermatis;

 • Staphylococcus pseudintermedius;

 • Pseudomonas aeruginosa;

 • Streptococcus species;

 • Proteus mirabilis;

 • Escherichia coli and Corynebacterium 

species (100, 103, 105–107, 150).

 • Enterococcus faecalis;

 • Staphylococcus delphini;

 • Staphylococcus aureus;

 • Coagulase-negative 

Staphylococcus species

 • Actinobacillus species and 

β-haemolytic Streptococcus species (5).

Prevalence of allergic-dermatitis related OE 23-59% (7) 8% (19) Unknown (5, 151, 152)

Most common type of allergic dermatitis 

associated with OE

Allergic contact dermatitis (7) Atopic dermatitis (19, 153) Insect-bite-hypersensitivity (5)

Extensiveness of the allergic reaction Local reaction (154) General reaction (17) General reaction (155)

Origin of the allergens associated with the 

allergic disease

Hearing aids, ototopical products (7) Environmental allergens (156) Saliva from Culicoides insects (151)
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on average higher than the pH of human skin, which is possibly due 
to the presence of the hairy coat in mammals (e.g., skin pH in dogs: 
6-7, skin pH in cats: 6.4–6.9, skin pH in horses: 7-8) (40). An acidic 
skin pH ensures better adhesion of the resident skin microbiota on the 
skin surface (41). Therefore, it is possible that the composition and 
diversity of the ear microbiome is affected differently by the acidic pH 
in the human ear canal and the higher pH in the canine ear canal.

The effect of allergic dermatitis on the otic pH, temperature and 
humidity has not been studied so far. In dogs, lesional atopic skin is 
determined by an elevation in skin pH (42). These changes in pH, 
however small, can have a significant influence on the microbiome, 
favoring the colonization of certain pathogens such as Staphylococcus 
aureus (43).

3 Cerumen as a defense mechanism 
toward OE-pathogens

Cerumen is a crucial biofluid in preventing microbial growth and 
infection of the EEC. To fulfill this function, cerumen contains several 
fundamental compounds, derived from desquamated epithelial cells 
and secretions of the sebaceous and ceruminous glands. In this 
section, the different compounds in cerumen with a defined 
antimicrobial action will be discussed.

3.1 The physical trapping function of 
cerumen: the contribution of lipids and 
mucins

3.1.1 Lipids
The high lipid concentration of cerumen acts as a physical capture 

mechanism for pathogens, foreign objects, and debris. Furthermore, 
a hydrophobic environment impedes the growth and survival of most 
microorganisms. Cerumen makes the epithelium of the EEC hard to 
reach and potential receptors for pathogens are covered, thereby 
preventing the adhesion of these microorganisms. Most research in 
humans has focused on the characterization and quantification of the 
lipid content, due to the high hydrophobic feature of cerumen. After 
lipid extraction of 19 cerumen samples, Bortz et  al. reported an 
average lipid fraction of 52% +/-3% of the dry weight of human 
cerumen (44). The most recent study on the composition of lipids 
within human cerumen was performed by Stransky et al. (45), with 
emphasis on the nonpolar lipid fraction. The results are summarized 
in Figure 1. Huang et al. used lipid extraction to measure the lipid 
content and applied thin layer chromatography for the identification 
of the lipids present in 36 healthy cerumen samples from 20 dogs (46, 
47). The total lipid content was on average 49.58% and as such, 
resembles the lipid content of human cerumen. The following lipids 
were detected: cholesterol, cholesterol esters, free fatty acids, fatty 
aldehydes, waxes, triglycerides, lecithin and sphingomyelin. Studies 
on the general lipid content of equine cerumen were not found.

AD influences the skin and sebum lipid composition. The total 
skin lipid percentage is significantly lower in human and canine AD 
patients which includes a decrease in ceramides, important 
contributors to the skin barrier (48, 49). Gene expression analysis of 
lesional skin of horses with IBH suggested also an alteration of the 

ceramide production compared to healthy skin (50). Lesional skin 
from atopic dogs is defined by a decreased level of sphingomyelins and 
cholesteryl esters, essential compounds of the epidermal barrier (34). 
Studies on the lipid composition of the skin and/or sebum in patients 
with contact dermatitis were not found.

The observed effects of allergic dermatitis on the skin and sebum 
lipid profile may theoretically have an impact on the cerumen lipid 
profile and could impair its protective function. Hypothetically, the 
higher abundance of short chain ceramides in cerumen might result 
in a more aqueous cerumen, allowing certain microorganisms (such 
as Staphylococcus species and Malassezia pachydermatis) to grow and 
colonize more easily than in normal cerumen and compared to other 
species present in the ear microbiome, leading to dysbiosis and OE.

The changes of the EEC after insertion of water might resemble 
the effects of a more aqueous cerumen on certain pathogens. In both 
dogs and humans, swimming has been associated with a higher risk 
for developing acute OE (19, 51). The insertion of water in the EEC 
results in a more humid EEC and an elevation of the pH and leads to 
maceration of the epidermis. In our opinion, the presence of water 
within the EEC may impair the function of cerumen thereby creating 
ideal circumstances for pathogen colonization and, consequently, OE.

3.1.2 Mucins
Mucins are large glycoproteins and the main component of 

mucus, a viscous secretion lining diverse epithelia. Mucins can 
be actively secreted into the extracellular space or can be membrane-
bound, the latter being released after enzymatic cleavage from the 
plasma membrane (52, 53). Feig et al. demonstrated the presence of 
several mucins in human cerumen [secreted mucins: Mucin-5B 
(MUC5B), Mucin-6 (MUC6), Mucin-7 (MUC7); and membrane-
bound mucins: Mucin-1 (MUC1), Mucin-16 (MUC16) and Mucin-20 
(MUC20)] (54). Among many other functions, mucins serve as a 
protective layer against pathogens (54, 55).

Histologic evaluation of the intestines of AD-induced mice 
showed a lowered content of mucins and was the only attempt made 
so far on the effect of atopic dermatitis on the expression of mucins 
(56). Additionally, it was shown that oral Pediococcus acidilactici 
supplementation increased mucin production, but decreased the 
clinical severity of atopic dermatitis (56). Studying the differences in 
concentration and structure of certain mucins in the cerumen of 
allergic patients compared to healthy patients could uncover a new 
piece of the complex pathogenesis of allergic dermatitis linked to OE 
and generate possible new insights to disease management.

3.2 Antimicrobial molecules present in 
cerumen

3.2.1 Antimicrobial lipids
Triglycerides are the primary source of free fatty acids after being 

hydrolyzed by the action of both bacterial lipases and acid lipases of 
the host’s skin, and possibly earwax too (57). A smaller part is 
provided by wax esters and cholesterol esters. Within the group of 
fatty acids (FA) in human cerumen—determined by Stransky et al. as 
described above—lauric acid (C12:0), myristic acid (C14:0), linoleic 
acid (C18:2 n-6), sapienic acid (C16:1 n-1) and palmitoleic acid (C16:1 
n-7) have been identified. Several studies confirmed the antibacterial 
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activity of these FA to mainly Gram-positive microorganisms, of 
which an overview is shown in Table 3. Unfortunately, based on the 
results described by Stransky et al., it was not possible to calculate the 
exact concentration of the different FA in cerumen. Therefore, it 
remains unclear whether the different FA in cerumen, as described by 
Stransky et al., are present at relevant concentrations to inhibit the 
growth of certain microorganisms.

In addition to FA, the stratum corneum of the skin provides 
another group of lipids with antimicrobial properties: the 
sphingosine bases. These are formed enzymatically from the 
ceramides, present in the intercellular spaces of the stratum 
corneum. Sphingosine bases have a broad antimicrobial activity 
against various Gram-positive bacteria and fungi (including 
S. aureus, Streptococcus pyogenes, Micrococcus luteus, 
Cutibacterium acnes, Brevibacterium epidermidis and Candida 
albicans) (57, 58).

Using gas liquid chromatography and mass spectrometry, the 
different FA in 36 healthy canine cerumen samples were further 
characterized, revealing the presence of antimicrobial FA such as 
myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), 
oleic acid (C18:1) and linoleic acid (C18:2) (59). Due to differences in 
data reporting, it was not possible to compare the fatty acid profile of 
human and canine cerumen quantitatively.

Another study used gas chromatography to identify the level of 
total FA within samples of canine cerumen, but these samples were 
derived from dogs diagnosed with OE (60). Palmitic acid (C16:0), 
oleic acid (C18:1) and linoleic acid (C18:2) were present in almost all 
samples (n = 95).

Sapienic acid (C16:1n10) was the most abundant FA in human 
cerumen (45) and is also the major FA present in human sebum (57, 
61). In canine cerumen, palmitoleic acid (C16:1n6)—an isomer of 
sapienic acid—is more commonly identified (46, 62). Both isomers 
have the ability to inhibit the growth of S. aureus (61) but due to the 
protective effect of staphylococcal oleate hydrolases, S. aureus can 
counter the inhibitory effect of palmitoleic acid, but not of sapienic 
acid (62). Based on these observations, human sebum and cerumen 
may be more antimicrobial toward S. aureus than canine sebum and 
cerumen. However, in dogs, the most abundant Staphylococcus species 
on the skin and in the ears is Staphylococcus pseudintermedius, and not 
S. aureus (42, 63). Whether palmitoleic acid can inhibit the growth of 
S. pseudintermedius is currently unknown.

Interestingly, oleic acid, identified in canine cerumen in 2 studies 
as described above (46, 60) was not detected in human earwax in the 
study by Stranksy et al., even though it was present in human skin 
sebum as studied by Raghaillaigh et al. (64). Besides its modulatory 
effect on the immune system, oleic acid is able to increase membrane 
permeability of S. aureus and subsequently induce bacterial death (65, 
66). The reason why this FA has been found in canine cerumen 
samples and not yet in human samples remains unclear, however, 
more studies with more samples of both species are needed to confirm 
or invalidate this difference.

Studies describing the FA composition of equine cerumen were 
not found.

Several studies have already reported alterations in the skin and 
sebum lipid composition of human Atopic dermatitis patients 
compared to healthy individuals. By studying the sebum lipid profile 

FIGURE 1

Presentation of the distribution and probable origin of the components of human cerumen. This figure was made by the authors of this review, based 
on the rough data available in the study by Stransky et al. (77) and the suggested origin of these lipids was based on literature research. During the 
study of Stransky et al., 200 doses of cerumen from the ears of a healthy individual were collected and separated by column chromatography. The 
non-polar lipid fraction was further characterized by gas chromatography—mass spectrometry.
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of healthy persons and atopic dermatitis patients, a decrease in C18 
and C18:1 ceramides and C18 dihydroceramides was observed (67). 
Furthermore, compared to healthy skin, a decreased concentration of 
long chain FA and sphingolipids was observed, caused by the effects 
of IL-4 and IL-13, involved in the inflammatory reaction in atopic 
dermatitis patients (68).

3.2.2 Antimicrobial proteins
Several researchers investigated the presence of antimicrobial 

peptides (AMPs) in human, canine and equine cerumen. Until now, 
the presence of human beta-defensin (hBD)-1, 2, 3; Human 
Neutrophil Protein (HNP)-1,2,3; LL-37; Secretory leukocyte protease 
inhibitor (hSLPI); human bactericidal permeability increasing protein 
(BPI) and two types of immunoglobulins (IgG and IgA) has been 
confirmed in cerumen. An overview of the different AMPs identified 
in human, canine and equine cerumen is shown in Table 4. More 
details on the function, expression and type of these different AMPs 
can be found in Supplementary Table 2.

One could question whether the AMPs described above are 
actively secreted in earwax or whether their presence is just a result of 
the presence of exfoliated keratinocytes. Schwaab et al. tried to resolve 
this question by comparing the cell-bound and non-cell-bound 
fraction of β-defensin 1,2,3, hSLPI, hBPI and α-defensin-1,2,3. They 
found that the total concentration of α-defensin-1,2,3 before PBS 
washing of cerumen was significantly higher than the concentration 
after PBS washing, confirming that the presence of these proteins in 
earwax is not exclusively due to the presence of keratinocytes (69). 
Moreover, when looking at the presence of antimicrobial proteins at 
the skin surface, α-defensins are usually not expressed by keratinocytes 
(70). Therefore, further investigation is needed to verify whether the 
presence of α-defensins in earwax is due to active secretion by the 
ceruminous glands. β-defensins, LL-37, hSPLI and hBPI are known to 
be  expressed by keratinocytes, so at this point, it is still unclear 
whether they originate exclusively from the presence of exfoliated 
keratinocytes in earwax or whether they are actively secreted by 
ceruminous glands.

The role of AMPs in atopic skin disease was studied frequently in 
both humans and dogs, retrieving inconsistent results. Depending on 
the used method, a decreased as well as an increased level of 
α-defensins, β-defensins and cathelicidin has been observed in 
lesional and non-lesional atopic skin (71–76). In normal skin, the 
expression of β-defensin-2, β-defensin-3 and cathelicidin is 

TABLE 4 Types of proteins with antimicrobial properties (Antimicrobial Proteins, AMP) identified in the cerumen and EEC of humans, dogs and horses.

AMP Identified in

Human Canine Equine

Cerumen EEC Cerumen EEC Cerumen EEC

α-defensin-1 X (69) – – – – –

α-defensin-2 X (69) – – – – –

α-defensin-3 X (69) – – – – –

β-defensin-1 X (69, 169) X (169–171) – – – X (172)

β-defensin-2 X (69, 169) X (169–171) – – – X (172)

β-defensin-3 X (69) – – – – –

β-defensin-3-like – – X (76) – – –

IgA, IgG – X (169, 173) X (158) – – –

Cathelicidins X (69) X (170, 171) X (76) – – –

hSLPI X (69) – – – – –

hBPI X (69) – – – – –

Lactoferrin X (69) X (170) – – – –

Lysozyme – X (170) – – – X (172)

TABLE 3 Antimicrobial lipids present in cerumen and the minimum 
inhibitory concentration for skin and/or ear pathogens.

Antimicrobial 
lipid

Identified in Minimum inhibitory 
concentration (MIC)

Lauric acid Human cerumen 

(45)

Cutibacterium acnes: 3,9 μg/mL 

(164)

Staphylococcus aureus: 0,97 μg/mL 

(164)

Staphylococcus epidermidis: 

3,9 μg/mL (164)

Streptococcus sp.: 1,00 mg/mL 

(165)

Linoleic acid Human cerumen 

(45), Canine 

cerumen (60, 158)

S. aureus: 3 μg/mL (166)

Sapienic acid Human cerumen 

(45)

S. aureus: 30 μg/mL (61)

Streptococcus salivarum: 30 μg/mL 

(61)

Palmitoleic acid Human cerumen 

(45), canine 

cerumen (158)

Streptococcus sp.: 1,27 mg/mL 

(66)

Oleic acid Canine cerumen (60, 

158)

S. epidermidis: > 400 μg/mL (167, 

168)

S. aureus: 400-1000 μg/mL (167, 

168)
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upregulated during infection and inflammation. Besides the current 
ambiguous effect of AD on the expression of AMPs, one could 
question why these AMPs—despite their potential impact on the onset 
of infection—ultimately fail to prevent infection in AD patients, 
leading to OE.

First, the antipathogenic effects of the AMPs in the EEC could 
be  negligible relative to the change in lipid concentration and 
composition of cerumen, the impaired skin barrier and the 
inflammatory parameters involved in allergic skin disease—as 
discussed above. Moreover, most treatments for CAD will result in a 
suppression of the AMP-expression, which could theoretically 
contribute to the relapse of OE in atopic dogs, treated with systemic 
anti-inflammatory drugs, such as oclacitinib (77), ciclosporin or 
lokivetmab (78). Furthermore, Santoro et  al. reported a defective 
secretion of β-defensin-3 and cathelicidin in non-lesional atopic skin 
after exposure to pathogens, indicating a loss of function due to an 
increased adhesion of these AMPs to corneocytes (72). Lastly, an 
induction of AMP-secretion can hypothetically lead to dysbiosis, as 
the effect of these host defense peptides can be different for each 
microorganism present in the EEC. To demonstrate, non-bacterial 
commensals belonging to the genus of Malassezia frequently colonize 
the EEC of atopic dogs, however, the antipathogenic effect of defensins 
and cathelicidin on the growth and survival of Malassezia species is 
currently not reported. Moreover, it seems that Malassezia furfur and 
M. pachydermatis are able to encourage the secretion of AMPs such as 
β-defensin-2 (79, 80), thereby strengthening the dysbiosis, possibly 
leading to colonization and infection of the EEC. However, only 
M. pachydermatis is currently associated with OE in atopic dogs, 
indicating that probably additional factors are needed for colonization.

In conclusion, more studies are necessary to evaluate the effect of 
allergic dermatitis on the cerumen profile; more specifically on how 
the changes in different (antimicrobial) compounds can contribute 
to the development of a more optimal environment for certain 
pathogens such as Staphylococcus species and Malassezia species.

4 Microorganisms associated with the 
EEC

4.1 Cerumen: barrier or nutrient source for 
microorganisms

Cerumen is composed of a variety of lipids, proteins and mucins 
and as such, earwax may potentially serve as an ideal nutrient source 
for certain bacteria and yeast (81). M. pachydermatis, for instance, 
commonly isolated from otitic ears in dogs, is dependent on 
exogenous lipid sources due to the lack of a gene coding for fatty acid 
synthase in its genome (82). Huang et al. and Masuda et al. showed 
that M. pachydermatis can use different ceruminous FA for its growth 
in vitro [myristic acid, palmitic acid, margaric acid, stearic acid, oleic 
acid and linoleic acid (46, 47, 60)]. As such, cerumen appears to be a 
good nutrient source for M. pachydermatis in vitro. Whether other 
microorganisms can benefit from the presence of specific components 
in cerumen for their growth is unclear for now.

However, as discussed above, based on the high lipid content and 
the presence of both antimicrobial lipids and proteins, the presence 
of cerumen in the EEC could also complicate the growth and survival 
of certain microorganisms. Several studies tried to evaluate the effect 

of cerumen on the in vitro growth of bacteria. Campos et al. observed 
an enhancement of the growth of S. aureus, Staphylococcus 
epidermidis, Proteus mirabilis, E. coli, Serratia marcescens and 
Pseudomonas aeruginosa by adding a 3% cerumen suspension to 
bacterial cultures, whereas Chai et  al. and Stone and Fulghum 
observed a decrease in viability of the same bacterial species using 
the same concentration of cerumen suspension (83–85). However, 
these studies are hard to compare due to differences in applied culture 
medium, origin of the samples and sample processing. In a more 
recent study (86), a cerumen suspension was used to assess the 
inhibitory effect toward pathogens frequently involved in OE in 
humans: S. aureus, P. aeruginosa and C. albicans. Again, both an 
enhancement (which was the case for 4 out of 31 samples for 
S. aureus; 2 out of 31 samples for C. albicans and 27 out of 31 samples 
for E. coli) and an inhibition [which was the case for 27 out of 31 
samples for S. aureus, 31 out of 31 samples for P. aeruginosa, 29 out 
of 31 samples for C. albicans and 4 out of 31 samples for 
E. coli(control)] in growth was observed (86).

Based on the general inhibitory effects of cerumen in vitro as 
shown in the last study, it can be postulated that etiological factors 
involved in OE (86) intervene with this antimicrobial effect of 
cerumen, leading to the colonization of pathogens. To demonstrate, 
the regular insertion of water in the EEC of swimmers is associated 
with OE (51). Polluted water is a vehicle for certain pathogens such as 
P. aeruginosa and other Gram-negative bacteria (87, 88). Yet, 
additional factors are needed to allow these pathogens to colonize the 
EEC. For example, the excessive amount of water into the EEC 
could—in addition to the maceration of the stratum corneum (51)—
generate a mixture with a lower lipid content and a dilution of 
antimicrobial molecules, thereby facilitating the growth and 
colonization of pathogens.

Lastly, as cerumen reflects the (patho)physiology of the body with 
genetic material, lipids, proteins, trace elements, internal and external 
metabolites reaching earwax from the blood circulation (89), it is not 
yet clear how the general (patho) physiological state of the host may 
add to the cerumen’s role as barrier or nutrient source for 
microorganisms or which specific components may be important.

4.2 Studies on the healthy ear microbiome

In the past decades, a few studies tried to identify the microbial 
community in the healthy EEC of humans, dogs and horses by using 
culture-dependent methods (26, 39, 59, 90–98). Interestingly, the 
genera Staphylococcus, Corynebacterium and Bacillus were frequently 
identified by culture in different studies in humans, dogs and horses. 
Streptococcus and Micrococcus were found in the EEC of both humans 
and dogs but not in horses. Malassezia species were identified in 
humans (Malassezia slooffiae, Malassezia sympodialis, M. furfur and 
Malassezia obtusa), dogs (M. pachydermatis) and horses (Malassezia 
nana, M. pachydermatis and Malassezia globosa).

More recently, several studies tried to identify the microorganisms 
present in the healthy canine EEC using next-generation-sequencing 
(NGS), a culture-independent method (63, 99–107). Most bacteria 
identified during these studies belong to the following phyla: 
Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and 
Fusobacteria. Ascomycota and Basidiomycota were the most abundant 
phyla for fungi. A recent study suggests that the microbiome of the 
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canine EEC does not significantly differ from the microbiome of the 
tympanic bulla microbiome in healthy beagle dogs (108). Four 
NGS-based studies on the microbial community within the human 
EEC identified Firmicutes and Actinobacteria as the most abundant 
phyla (109–112). Studies on the microorganisms present in the equine 
EEC based on NGS data are currently lacking.

In Figure 2, we tried to display the most abundant genera identified 
in different NGS-based studies on the microbial community in the 
human and canine EEC, as reported by the respective authors. Yet, as 
most studies applied different techniques for DNA-extraction, PCR and 
data processing, this comparison should be interpreted carefully.

In dogs, different genera such as Alternaria, Acinetobacter, 
Conchiformibius, Corynebacterium, Flavobacterium, Fusobacterium, 
Porphyromonas and Sphingomonas were identified in at least 2 
different studies. Pseudomonas, Staphylococcus and Malassezia—
common OE-pathogens—were also frequently identified in healthy 
canine ears, with Staphylococcus being described in 5 different studies. 
Still, many genera were only identified in one single study, which can 
represent the variations in applied techniques and data reporting, 
differences in breed and/or environment and living circumstances as 
well as strong individual variability and/or instability of the 
community of microorganisms present in the outer ear canal.

The genera Staphylococcus and Cutibacterium have been identified 
in 3 NGS-studies describing the human ear microbiome, whereas 
Allaiococcus and Malassezia were identified in 2 of the described studies. 
Interestingly, all genera that were highly abundant in both the human 
and canine healthy EEC represent facultatively pathogenic bacteria. 
Staphylococcus and Corynebacterium species are known OE-pathogens 
in humans and dogs (see Table  1). However, Cutibacterium and 
Malassezia are, so far, only associated with human and canine OE, 
respectively. In our opinion, species-specific differences in anatomy and 
physiology of the EEC, the composition of cerumen, underlying 
conditions as well as microenvironmental factors, may account—at least 
partly—for the capability of lipophilic Cutibacterium to colonize the 
human and not the canine EEC. The association of the genus Malassezia 
with canine OE only might be related to similar variations, parallel to 
differences in pathogenic features of the dog specific M. pachydermatis, 
compared to the Malassezia species identified in human ear canals.

Based on present data, it may be interesting to consider how these 
bacteria and other microorganisms are able to survive and grow in the 
microenvironment of the EEC. In other words, which of the 
microorganisms identified in the studies described above, are just 
passing by and which species have specifically developed certain 
strategies to survive, grow, and even colonize in this 
microenvironment? Recently, the interest in the human and canine ear 
microbiome is increasing and new, culture-independent methods offer 
the ability to obtain a more thorough understanding of this 
microbiome. However, NGS cannot easily distinguish between viable 
and dead microorganisms, as it is based on the presence of bacterial 
DNA at a certain sampling moment. Moreover, the studies described 
above used different techniques for sample collection, DNA extraction 
and data analysis, which makes it hard to compare the results. Ear 
samples may—similar to skin samples—be considered as low-biomass 
samples, which require caution during processing to avoid 
contamination. Recent recommendations for obtaining reliable results 
using 16S rRNA sequencing on low-biomass-samples suggest a 
minimal concentration of 106 bacteria per sample and an improved 
protocol for DNA extraction and PCR (113). Unfortunately—to the 
best of our knowledge—no quantitative data are available on the total 

number of bacteria present in the ear samples analyzed by NGS in the 
different studies investigating the ear microbiome.

Lastly, until now, no information is available yet on the microbiome-
host interactions and the potential benefits of the presence of a 
microbiome in the EEC. We  conclude that—at this moment—the 
existence, complexity and stability of an ear microbiome has not been 
sufficiently demonstrated in available studies and needs further research.

4.3 Effect of allergic dermatitis on the 
microorganisms in the EEC

The skin of atopic humans is defined by a decrease in bacterial 
diversity, richness and evenness and a change in skin microbiome 
composition, with higher abundances of Staphylococcus species (112, 114) 
and Cutibacterium species (112). The use of artificial intelligence and 
machine learning may aid in the interpretation of complex metagenomics 
and even transcriptomics data to differentiate between healthy and atopic 
dermatitis patients (115). Whether this dysbiosis is a cause or result of 
atopic dermatitis is currently unknown. As the pathogenesis of human 
and CAD is very similar (116), CAD can potentially affect the colonization 
capabilities of facultative pathogens in the EEC as well. A few studies tried 
to compare the microbial composition and diversity of the EEC of healthy 
and atopic dogs (99, 102, 104), however, a significant decrease in microbial 
diversity in the ears of atopic dogs compared to healthy dogs was not 
demonstrated so far. Nonetheless, some interesting differences between 
healthy and atopic ears were observed, such as an increase in the 
abundance of the genera Staphylococcus, Sphingomonas, Ralstonia, 
Methylotenera, Lactobacillus, Hymenobacter, Chryseobacterium, 
Alcaligenes and Malassezia and a decrease in the abundance of the genera 
Macrococcus, Brevibacterium and Escherichia in the EEC of atopic dogs 
compared to healthy individuals. It was recently described that 16S 
amplicon profiling appears to be a more sensitive method to describe 
bacterial populations in canine otitis cases compared with conventional 
culture-dependent methods (117).

Studies on the effect of CD in humans and IBH in horses on the 
microbial communities in the EEC of these species are 
currently lacking.

5 The development of allergic 
dermatitis and OE: impact of neonatal 
events and the gut and skin 
microbiome

Although one of the main topics of the current review is the 
effect of the characteristic changes of AD on the ear microbiome 
to better understand the development of OE in AD patients, it is 
intriguing to discuss another possible correlation between the 
microbiome, allergic disease and OE. Recent insights point toward 
the importance of the early-life (gut) microbiome as an important 
factor in the development of allergic disease in humans (12, 118, 
119) and dogs and cats (120).

Without going into detail, it has been suggested that prenatal and 
early-life postnatal events that may interfere with the establishment of 
the child’s microbiome, such as diet, antimicrobial exposure, 
environmental bacterial load and early-life cytomegalovirus infection, 
may increase the risk of allergic dermatitis (121–125) and even otitis 
media (126) in these children or dogs (127). It was recently even 

https://doi.org/10.3389/fvets.2024.1413684
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Houtsaeger et al. 10.3389/fvets.2024.1413684

Frontiers in Veterinary Science 09 frontiersin.org

suggested that artificial intelligence-supported analysis of the gut 
microbiota may be used to accurately diagnose atopic dermatitis in 
humans (115).

In addition, the auditory-gut-brain axis has very recently 
become a topic of research interest, suggesting that connections 
have been found between the external ear, the central auditory 

FIGURE 2

Comparative analysis of different studies on the ear microbiome in dogs and humans using next-generation sequencing (63, 99, 100, 102–107, 109, 
110, 112). (A) This panel gives an overview of the most abundant genera in different studies on the canine ear microbiome, as reported by the 
respective authors. Genera that were among the most abundant genera in the respective study, and not in other studies, are displayed outside the 
diagram. Genera that were among the most abundant genera in at least 2 different studies are included in the diagram. (B) Comparison of the most 
abundant genera identified in 2 different studies on the human ear microbiome. (C) This panel shows highly abundant genera identified in both canine 
and human studies.
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system and the gut microbiome (128). An interesting study found 
that colonization of the gut with Candida albicans in mice was 
associated with the presence of pro-inflammatory cytokines in the 
ear (129). Furthermore, inflammatory bowel disease in humans 
is associated with hearing loss in autoimmune inner ear disease 
and Cogan’s syndrome (130).

To our knowledge, the correlation between OE and prenatal/early 
postnatal disruption of the skin, ear or gut microbiome has not yet 
been studied in humans or animals, but could be included in future 
epidemiologic surveys to further understand the risk factors associated 
with the development of OE.

6 The effect of OE prevention and 
treatment on the ear microbiome

While allergic dermatitis and the presence of OE can have a 
significant effect on the microbial community of the EEC, also 
preventive interventions or OE treatments, often including the 
use of agents with antimicrobial properties (8, 131), may affect 
the ear microbiome. Aqueous canine otic treatment products aim 
to approximate the pH range of a healthy dog’s ear in order to 
be less likely to disrupt the micro-environment of the EEC (132) 
or may even be used to re-acidify it (133). Preventive use of a 
topical anti-inflammatory glucocorticoid in atopic dogs without 
clinical signs of otitis does not seem to affect the ear canal 
microbiota and mycobiota (134). Treatment of dogs with OE with 
an anti-inflammatory pomegranate otic treatment mainly had an 
effect on the mycobiome with markedly lowered M. pachydermatis 
presence after treatment (135). Chermprapai et al. (136) showed 
that a topical antimicrobial treatment increased the diversity of 
bacterial and fungal compositions in course of time on both AD 
and healthy skin in dogs. Matsui et  al. (137) showed that 
doxycycline not only inhibited Staphylococcus aureus strains 
isolated from skin lesions of patients with atopic dermatitis in a 
mouse model, but also had a strong inhibitory effect on epidermal 
Langerhans cells and Th2 cell development, thereby suppressing 
the acute inflammation.

Even though probiotics are currently being considered for the 
prevention of otitis media in human medicine, no similar attempts 
have yet been reported in either human or veterinary medicine for 
otitis externa to the best of our knowledge (138–140). On the other 
hand, the microbiome has been suggested as a potential early-life 
target to prevent the development of allergic dermatitis and may 
therefore also indirectly add to the prevention of AD-related 
complications, such as otitis externa (12).

7 Discussion

This review provides a cross-species comparison of the 
current knowledge on the EEC, revealing structural and 
physiological differences between humans, dogs and horses. The 
relevance of these species-specific differences is highlighted by 
the example of atopic dermatitis, which manifests differently in 
humans and dogs, despite a similar pathophysiology. In humans, 
atopic dermatitis shows a low prevalence of otitis externa (OE), 
whereas in dogs, it shows a high prevalence. This review 

attempts to explain this difference in predisposition by 
identifying differences in anatomy, lipid composition and 
differences in the composition of the potential ear 
microbiome (141).

Additionally, this review compiles, for the first time to the author’s 
knowledge, studies on the molecular composition of cerumen in humans, 
dogs and horses, identifying interesting species-specific differences. 
Cerumen is known to trap microorganisms and protect the epithelium, 
thereby preventing adhesion and exerting direct antimicrobial effects 
through molecules such as oleic acid and antimicrobial proteins. Together, 
these findings indicate that the EEC creates a hostile environment for 
microbes across all observed host species.

Given the different prevalence of allergy-induced OE in at 
least three mammalian species, this review aimed to identify key 
factors in the development of OE in patients with allergic 
dermatitis. In cases of OE, certain pathogens, such as 
Staphylococcus and Malassezia species, manage to survive and 
multiply within the hostile environment of the EEC, as various. It 
is hypothesized that in allergic dermatitis-related OE, the 
pathophysiological processes may counteract the antimicrobial 
properties of the EEC. Studies suggest that allergic dermatitis 
impacts skin parameters such as pH, lipid content, and the 
presence of antimicrobial molecules. Nevertheless, more research 
is needed to understand the effect of allergic dermatitis on the 
EEC and to unravel the link between allergic dermatitis and OE.

Recently, there has been increasing interest in investigating the 
existence of an ear microbiome, suggesting that microorganisms can 
also survive and multiply in a healthy ear canal. Currently, little 
evidence exists on which species can counter the antimicrobial 
features of cerumen and form a stable, balanced ear microbiome. 
Although inter-and intra-species comparisons of available studies on 
the ear microbiome are challenging, it appears that the few species 
identified across most studies are facultative pathogenic micro-
organisms associated with ear infections. Considering the low 
biomass of ear samples and the associated challenges related to 
appropriate experimental set-up and interpretation of results, there 
is still a need for high quality ear microbiome studies both in human 
and veterinary medicine.

The microbiome has been suggested as a potential target for 
treatment and prevention of OE. However, the impact of the 
microbiome—including the ear microbiome and the gut microbiome 
(“auditory-gut-brain axis”)—on the development and persistence of 
ear infections such as OE, otitis media, and otitis interna requires 
further investigation.

In conclusion, this review identifies several gaps in the 
research on the unique environment within the EEC in three 
mammalian species with known allergic dermatitis-related 
prevalence of OE. More research, combining known and yet-to-
be-explored processes in different species using a ‘One Health’ 
approach, could provide exciting new insights. These insights may 
lead to improved prevention and therapeutic options in both 
human and veterinary medicine.
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