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Introduction: Programmed Death-Ligand 1 is a well-known immune checkpoint 
molecule. Recent studies evaluated its expression in different canine cancer 
types through different laboratory techniques. The present study aims to 
evaluate the surface membrane protein expression (mPD-L1) by means of flow 
cytometry (FC) in different canine lymphoma immunophenotypes. Furthermore, 
in a subset of cases, mRNA and plasmatic soluble protein (sPD-L1) have been 
assessed in the same patient, and correlations among results from the three 
analyses investigated.

Methods: Samples obtained for diagnostic purpose from untreated dogs with 
a confirmed lymphoma immunophenotype were included: surface protein 
was assessed via FC and quantified with median fluorescence index ratio (MFI 
ratio), gene expression was evaluated by real time quantitative polymerase chain 
reaction (RT-qPCR) and plasmatic concentration of soluble protein (sPD-L1) 
measured with ELISA. Statistical analyses were performed to investigate any 
difference among FC immunophenotypes, updated Kiel cytological classes, and 
in the presence of blood infiltration.

Results: Considering FC, most B-cell lymphomas (BCL) were positive, with 
higher MFI ratios than other subtypes (81%, median MFI ratio among positive 
samples  =  1.50, IQR 1.21–2.03, range 1.01–3.47). Aggressive T-cell lymphomas 
had a lower percentage of positive samples (56%) and showed low expression 
(median MFI ratio in positive samples  =  1.14, IQR 1.07–1.32, range 1.02–2.19), 
while T-zone lymphomas (TZL) were frequently positive (80%) but with low 
expression (median MFI ratio in positive samples  =  1.19, IQR 1.03–1.46, range 
1.02–6.03). Cellular transcript and sPD-L1 were detected in all samples, without 
differences among immunophenotypes. No correlation between results from 
different techniques was detected, but sPD-L1 resulted significantly increased in 
FC-negative lymphomas (p  =  0.023).

Discussion: PD-L1 molecule is involved in canine lymphoma pathogenesis, with 
differences among immunophenotypes detected by FC. Specifically, BCL have 
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the highest expression and aggressive T-cell lymphomas the lowest, whereas 
TZL need further investigations.
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Programmed Death-Ligand 1, lymphoma, dog, flow cytometry, polymerase chain 
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1 Introduction

In both human and, more recently, veterinary oncology, 
therapeutic approaches for cancer are shifting from traditional 
chemotherapeutics to innovative strategies focused on anti-tumor 
immunity (1–5). The increasing interest in cancer immunotherapy has 
prompted a deeper exploration of molecules that influence the 
immune system, promoting or avoiding its reactivation and thus 
regulating cancer growth (6, 7).

Programmed Death-Ligand 1 (PD-L1) is a well-established 
immune checkpoint molecule, typically expressed by antigen-
presenting cells. Its binding to Programmed Death-1 (PD-1) on 
T-lymphocytes initiates a signaling cascade culminating in the 
suppression of T-cell activation (8). When tumoral cells express PD-L1, 
the activation of immunosuppressive pathways through the PD-1/
PD-L1 axis facilitates immune system evasion by cancer cells, thereby 
contributing to tumor progression (9–11). The use of inhibitors that 
block the interaction between PD-L1 and the PD-1 has demonstrated 
potential in preventing this phenomenon in several cancer types (3, 12, 
13). In addition, the safety profile and clinical efficacy of an anti-canine 
PD-L1 monoclonal antibody were recently tested in a pilot study on 12 
dogs with recurrent, metastatic, or resistant tumors following surgery, 
radiation, or chemotherapy, with significant results (5).

In dogs, either membrane PD-L1 (mPD-L1), mRNA and soluble 
protein concentration (sPD-L1) have been evaluated in various cancers, 
including mammary tumors, melanomas, and lymphomas (14–17). 
Considering canine lymphoma, Hartley and colleagues utilized flow 
cytometry (FC) to investigate PD-1 and PD-L1 expression both at the 
time of diagnosis and at relapse in nodal aspirates from dogs with B-cell 
lymphoma (BCL), T-cell lymphoma and healthy controls. The findings 
revealed an increase of PD-L1 expression in BCL, but not in T-cell 
lymphoma (18). In a separate study, Aresu et al. applied the RNA-scope 
technique to canine diffuse large B-cell lymphoma (DLBCL) 
histopathological sections and observed that an increasing amount of 
mRNA encoding for PD-L1 was associated with a worse prognosis (19). 
Finally, a study by Song et al. reported a significant difference in sPD-L1 
plasmatic levels between healthy dogs and those with different tumors, 
including lymphoma (20). Notably, none of these studies assessed 
plasmatic, membrane protein expression, and cellular transcript in the 
same dog. Thus, nothing is known about the link among different forms 
of expression of PD-L1, leading to possible misinterpretation of results 
when considering studies using different techniques.

Here, our primary goal was to evaluate the different stages of 
PD-L1 expression in different canine lymphoma immunophenotypes. 
Results about transcript amount and sPD-L1 were compared to those 
obtained via FC in the same patient. This multiple approach aims to 
enhance the knowledge about the biological role of PD-L1 in dogs 
presenting with different lymphoma subtypes.

2 Materials and methods

Samples for the present study were prospectively enrolled at the 
FC service of the Veterinary Teaching Hospital (VTH), University of 
Milan, from August 2022 to December 2023. All samples were 
obtained for diagnostic purposes from lymph node (LN) aspirates of 
privately-owned dogs with suspect of lymphoma. An informed 
consent of the owner was always obtained. Thus, specific Ethical 
Committee approval to use leftover specimens for research purposes 
was not required (Ethical Committee decision 29 October 2012, 
renewed with protocol 02–2016, University of Milan).

Nodal aspirates were collected and processed for diagnostic FC as 
already described (21). If provided by the referring veterinarian, 
peripheral blood (PB) samples were processed as well, and infiltration 
by neoplastic cells was quantified as the percentage of cells showing 
the same morphological and phenotypical properties shown in the 
LN. A cutoff of ≥0.56% was applied to define positive PB samples. This 
cut-off was chosen in alignment with recommendations in the 
literature for DLBCL (22). However, it was uniformly applied to all 
samples, as no definitive analytic cutoff has been established for any 
other lymphoma subtype.

Cases were enrolled in the study if fulfilled the following inclusion 
criteria: (1) diagnosis of lymphoma based on clinical presentation, 
cytology and FC; and (2) adequate quality and cellularity for FC 
assessment of mPD-L1 expression. Cases were excluded if they were 
submitted for minimal residual disease (MRD) assessment in a dog 
already diagnosed and treated for lymphoma, or in the event of 
suspected relapse in a treated patient. Additionally, patients who had 
already undergone a chemotherapeutic agent before receiving a 
definitive lymphoma diagnosis were excluded.

Following FC assessment of mPD-L1 expression, when feasible, 
excess nodal material underwent centrifugation. The supernatant was 
removed, and the cell pellet was re-suspended in RNA-later 
(Invitrogen™ RNAlater Stabilization Solution™, catalog number 
AM7020) and stored at −20°C for assessment of transcript amount. If 
PB was available, centrifugation was performed, and plasma was 
separated and stored at −20°C for sPD-L1 quantification.

For each included case, the following data were recorded, if 
available: sex (female, spayed female, male, neutered male), breed 
(mixed, purebred), age (years), cytological subtype according to the 
updated Kiel classification (23), FC PB infiltration (presence/absence).

2.1 Flow cytometry

For FC assessment of mPD-L1, the LN sample was divided into 
three tubes, each containing 500,000 cells. Subsequently, 25 μL of a 
blocking solution containing 10% fetal bovine serum (FBS) and 0.2% 
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sodium azide in RPMI 1640 (catalog number R0883) were added to 
each tube. The first tube served as an unstained control, the second as 
an isotypic control (Clone39, adivo GmbH, Germany), and the third 
was utilized to assess mPD-L1 expression (Clone1, adivo GmbH, 
Germany).

Both Clone39 and Clone1 were isolated from adivo’s proprietary 
fully canine antibody library using phage display methodologies 
(adivo GmbH, Germany). Antibodies are fully canine and belong to 
the IgG HC-B subtype and containing a lambda light chain. Clone1 
was selected against recombinant canine PD-L1 and tested for binding 
recombinant antigen in Enzyme-Linked Immunosorbent Assay 
(ELISA) as well as for its ability to recognize native canine PD-L1 
expressed on HEK-293 cells and endogenous PD-L1 on the squamous 
cell carcinoma cell line SCC1. In addition, the antibody was checked 
for unspecific binding to unrelated proteins, such as protein that were 
present during the antibody selection process, e.g., FBS and other 
blocking reagents. Moreover, binding to untransfected HEK-239 cells 
was tested demonstrating no stickiness/binding to unrelated proteins 
on the surface of cells (data not shown). Clone39 was raised against 
an unrelated protein by similar methodologies. Antibodies were 
biotinylated using No-Weigh™ EZ-Link Sulfo-NHS-LC-Biotin kit 
(Thermo Fisher Scientific, catalog number A39256) according to the 
manufacturer instructions and were tested side-by-side with the 
non-biotinylated variant to ensure that biotinylation did not impair 
antigen binding. Antibodies used in FC experiments were diluted to 
achieve the same concentration.

After 10 min of incubation at room temperature and a washing 
step, 1 μL of an avidin kit (Avidin, Alexa Fluor™ 488 conjugate, 
Thermo Fisher Scientific, Waltham, Massachusetts, USA, catalog 
number A21370) was added to each tube. Both antibodies and avidin 
kit were titrated before use to determine the optimal working 
dilutions, utilizing a canine lymphoma cell line (CLBCL-1) previously 
reported to express PD-L1 (14). The tubes incubated for 10 min and 
finally were washed and resuspended with Phosphate Buffered Saline 
Solution (PBS) for acquisition at the flow cytometer. All samples were 
acquired with the same flow cytometer (BriCyte E6, Mindray, 
Shenzen, China), with constant settings and compensation matrices 
and data were analyzed with “MRflow” software (Mindray) by a single 
experienced operator (VM). Analyses were restricted to neoplastic 
cells, by setting a gate in an FSC versus SSC scattergram after doublets 
exclusion (Figure 1). The degree of mPD-L1 expression was calculated 
as the ratio between the Median Fluorescence Index (MFI) of the anti-
PD-L1 antibody-stained tube and the isotypic control one (MFI ratio). 
Samples were considered positive if MFI ratio was >1, negative if 
it was =1.

2.2 Enzyme-linked immunosorbent assay 
(ELISA)

Plasmatic sPD-L1 levels were quantified using the specific 
Canine PD-L1 ELISA kit (MyBioSource Inc., San Diego, USA, 
catalog number MBS9349782) following the manufacturer’s 
protocol as suggested by Song et  al. (20). This kit applies the 
competitive ELISA technique, using a polyclonal anti-PD-L1 
antibody and a PD-L1- HorseRadish Peroxidase (HRP) conjugate, 
where the sample PD-L1 and PD-L1-HRP conjugate compete for 
binding to the anti-PD-L1 antibody site. Undiluted canine plasma 

samples and standard sPD-L1 samples (ranging from 10 to 0.5 ng/
mL), always tested in duplicates, were incubated together with the 
PD-L1-HRP conjugate in an anti-sPD-L1 pre-coated plate for 1 h at 
37°C. After washing the wells five times, the plate was incubated 
with the HRP enzyme substrate for 15–20 min at 37°C avoiding 
sunlight. At the end of the incubation, a stop solution (sulfuric acid, 
0.18 M) was added, causing wells to change color from blue to 
yellow. The color intensity was measured with an ELISA microplate 
reader (Titertek Multiskan, Flow Laboratories, McLean, VA, USA) 
at 450 nm, expressing the results as Optical Density (OD). Given 
the competitive nature of the ELISA, the color intensity was 
inversely proportional to the concentration of PD-L1. The 
concentrations of canine plasma sPD-L1 were interpolated from the 
standard curve.

2.3 RNA extraction and RT-qPCR

Total RNA was extracted by using TRIzol reagent (Invitrogen, 
catalog number 15596026), according to manufacturer’s instructions 
for tissue samples. After quantification by QUBIT Fluorimeter, cDNA 
was synthesized starting from 1 μg of total RNA using the QuantiTect 
Reverse Transcription kit (Qiagen, catalog number 205311).

To assess the relative amounts of the PD-L1 gene expression, real-
time quantitative PCR (RT-qPCR) was performed using IQ SYBR 
Green Supermix (BioRad, catalog number 1708882) and IQ5 
Thermocycle (BioRad). GAPDH was used as housekeeping gene and 
RT-qPCR experiments were performed in duplicate. Quantitative 
RT-PCR primer sequences were as follows: primer pair PD-L1 
5′-GAGAATCACAGGCACCTACAA-3′ (forward) and 5′-CGACAA 
GACTCCAAAGACTCAA-3′ (reverse) and primer pair GAPDH 
5′-GGCACAGTCAAGGCTGAGAAC-3′ (forward) and 5′-CCAGCA 
TCACCCCATTTGAT-3′ (reverse).

Gene expression was calculated using the formula of 2−ΔΔCt (fold 
increase), where ( ) ( )∆∆ = ∆ − ∆Ct Ct sample Ct control  and ΔCt is 
the Ct of the target gene subtracted from the Ct of the 
housekeeping gene.

2.4 Statistical analysis

For statistical purposes, enrolled cases were subdivided into BCL, 
T-zone lymphomas (TZL) and T-cell lymphoma-Not Otherwise 
Specified (T-NOS) as previously reported (24). This was due to the 
distinctive morphology and phenotype of TZL, which predict an 
indolent clinical behavior (25–27). Conversely, despite marginal-zone 
lymphomas (MZL) being traditionally classified as an indolent 
subtype, they were included in the BCL group, due to their FC 
features, clinical behavior, and prognosis overlapping with those of 
DLBCL (28).

Data distribution for continuous variables was assessed with a 
Shapiro–Wilk test and visual inspection of histograms and q-q plots. 
Normally distributed data are presented as mean and standard 
deviation, whereas non-normally distributed data are presented as 
median and range. Thereafter, differences in MFI ratio, transcript 
amount and sPD-L1 concentration among the three lymphoma 
immunophenotypes (BCL, T-NOS and TZL) and among different 
cytological subtypes were assessed with Kruskal-Wallis or ANOVA 
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FIGURE 1

Gating strategy applied to assess PD-L1 expression via flow cytometry in 93 lymph node aspirates from dogs with lymphoma. First, samples were 
labeled to identify neoplastic cells based on phenotype (A–E). Then, the same gating strategy was applied to the tubes incubated with anti-PD-L1 

(Continued)
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test and appropriate post-hoc analyses (Mann Whitney test with 
Bonferroni correction for multiple comparisons).

Two contingency tables were prepared to calculate possible 
differences in FC positive and negative samples among different 
immunophenotypes and cytological subtypes, respectively. Fisher’s 
exact test was applied.

Mann–Whitney and Student t test were applied to assess 
differences in PD-L1 transcript amount and sPD-L1 concentration 
between FC positive and negative samples, and possible difference in 
sPD-L1 concentration between infiltrated and non-infiltrated PB 
samples. Spearman non-parametric correlation was applied to assess 
possible correlation between MFI ratio, fold increase in transcript 
amount, and sPD-L1 concentration. Immunophenotype was not 
considered for these tests.

All analyses were performed with SPSS v 28.0 for Windows, and 
significance was set at p ≤ 0.05 for all tests.

3 Results

In total, 93 dogs were enrolled in the present study. PD-L1 
expression was investigated in all cases via FC, in 41 (44.1%) via 
ELISA, and in 31 (33.3%) via qPCR. Twenty-one (22.6%) cases were 
tested with all techniques.

Among the enrolled dogs, there were 30 (33.3%) mixed-breed and 
60 (66.7%) purebred dogs, whereas the breed was not reported in 3 
cases. Sex was reported for 90 dogs, including 39 (43.3%) males, 27 
(30.0%) spayed females, 16 (17.8%) females, and 8 (8.9%) neutered 
males. The mean age at diagnosis was 8.8 ± 3.0 years.

Considering lymphoma subtype, 58 (62.4%) dogs were diagnosed 
with BCL, 25 (26.9%) with T-NOS, and 10 (10.7%) with TZL. In 64 
cases, a cytological smear was available for review, leading to the 
following classification: 27 (42.2%) centroblastic polymorphic, 10 
(15.6%) pleomorphic mixed, 8 (12.5%) centroblastic monomorphic, 
8 (12.5%) small clear, 4 (6.2%) plasmacytoid, 3 (4.7%) pleomorphic 
large, 3 (4.7%) marginal zone, and 1 (1.6%) was defined as unclassified. 
Peripheral blood infiltration was tested in 71 cases (54 positive, 76%).

3.1 Flow cytometry

Surface membrane expression of PD-L1 was detected in 69 
(74.2%) samples via FC, with a median MFI ratio of 1.38 (IQR 1.12–
1.80; range 1.01–6.03) among positive samples. The remaining 24 
(25.8%) samples had an MFI ratio equal to 1 and were considered 
negative. Results among different lymphoma immunophenotypes are 
shown in Figures 2, 3. Based on the Fisher’s exact test, the prevalence 

of mPD-L1-positive samples among the three lymphoma categories 
was not significantly different (p = 0.063; Figure  2 and Table  1). 
Considering positive samples, the median MFI ratio significantly 
varied among BCL, T-NOS and TZL (p = 0.011; Figure  3A and 
Table  1). In particular, post-hoc analyses revealed a significantly 
higher MFI ratio in BCL than in T-NOS (p = 0.023), but no difference 
either between BCL and TZL or between T-NOS and TZL. One TZL 
sample had an outlier MFI ratio of 6.03. When considering Kiel 
subtypes, no difference in the prevalence of positive samples and 
median MFI ratio was detected (p > 0.050 for both analyses).

3.2 qPCR

PD-L1 transcript was detected in all 31 samples tested via 
qPCR. Among them, 19 (61.3%) were BCL, 8 (25.8%) were T-NOS 
and 4 (12.9%) were TZL. Overall median fold-increase in transcript 
amount was 0.23 (IQR 0.16–1.40; range, 0.01–5.45), with no 
differences among lymphoma immunophenotypes (p = 0.247; 
Figure 3B and Table 1) and Kiel subtypes (p = 0.597). However, none 
of the T-NOS samples had a fold-increase >1, differently from BCL (8 
samples out of 19, 42.1%) and TZL (1 sample out of 4, 25.0%). The 
TZL sample with an outlier MFI ratio had a 5.45-fold increase in 
PD-L1 transcript amount.

3.3 ELISA

Plasmatic sPD-L1 was detected in all 41 samples tested via 
ELISA. Among them, 28 (68.3%) were BCL, 9 (22.0%) were T-NOS 
and 4 (9.7%) were TZL. The overall mean sPD-L1 concentration was 
7.88 ± 3.78 ng/mL, with no differences observed among lymphoma 
immunophenotypes (p = 0.993; Figure  3C and Table  1) and Kiel 
subtypes (p = 0.360). Finally, sPD-L1 concentration did not vary 
between dogs with and without PB infiltration (p > 0.050).

3.4 Comparison among techniques

When comparing FC positive and negative samples, no difference 
in fold increase of transcript amount was detected (31 samples, 
p = 0.486), whereas sPD-L1 concentration was significantly higher in 
FC negative samples (41 samples, p = 0.023). Indeed, mean sPD-L1 
concentration was 6.95 ± 3.39 ng/mL in FC positive samples and 
10.13 ± 3.87 ng/mL in FC negative samples.

When restricting analyses to FC positive samples alone, 22 
samples were included to compare MFI ratio and fold increase in 

antibody and the respective isotypic control (F–H). (A) Density plot, all events are shown; a gate (P1) was set to exclude platelet and debris. (B) Density 
plot, P1 events are shown; a gate (P2) was set to exclude doublets. (C) Density plot, P2 events are shown; neoplastic cells are identified based on cell 
size and phenotype; in the example shown, a gate (P3) was set to include only large CD21-positive cells. (D) Dot plot, P2 events are shown; P3 
neoplastic cells are back-colored (blue dots). (E) Dot plot, P2 events are shown; a gate P4 was set to include only neoplastic cells based on the 
distribution of blue dots in panel (D). (F) Density plot, all events are shown; P1 gate was copied and pasted from panel (A), to exclude platelet and 
debris. (G) Density plot, P1 events are shown; P2 gate was copied and pasted from panel (B), to exclude doublets. (H) Dot plot, P2 events are shown; 
the gate (P3) was copied and pasted from panel (E) (P4) to include only neoplastic cells. (I,J) Histogram overlay showing FITC-fluorescence in PD-L1 
stained tubes (green line) compared with the respective isotypic control (red line); both samples shown were considered positive for PD-L1 expression, 
with lower (I) and higher (J) median fluorescence intensity (MFI) ratio.

FIGURE 1 (Continued)
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transcript amount, while 29 were included to compare MFI ratio and 
sPD-L1. No significant correlation between MFI ratio and either fold 
increase in transcript amount or sPD-L1 concentration was found 
(p = 0.254 and p = 0.150, respectively).

4 Discussion

To the authors’ knowledge this is the first comprehensive 
assessment of PD-L1, combining evaluation of surface membrane 
expression, cellular transcript amount, and plasmatic concentration 
within the same patient in different canine lymphoma subtypes.

Overall, surface membrane protein expression by FC was detected 
in the majority of samples (74.2%). However, even among positive 
samples, the median MFI ratio was quite low, thus suggesting that 
canine lymphomas often express PD-L1, but with a substantial low 
level. This result aligns with previously published data, indicating 
lower PD-L1 expression in canine lymphomas compared to other 
cancers examined in vitro (29). Speculatively, this might suggest that 
lymphomas may exhibit a mild to low response to immunotherapy 
targeting PD-L1/PD-1 axis. Higher PD-L1 expression has been 
reported in chemotherapy-resistant than non-chemotherapy selected 
lymphoma cells in dogs (18). Thus, future studies including lymphoma 
relapses, may lead to results different from ours. In this perspective, 
PD-L1 immunotherapy could represent a more reliable rescue 
treatment than a first-line option.

Herein, BCL exhibited a significantly higher likelihood of being 
positive, and when positive, demonstrated a higher degree of 
expression compared to T-NOS, in line with the literature (14, 18). In 
particular, Hartley et al. (18) reported a higher expression of surface 
protein in neoplastic B-cells compared to their non-neoplastic 
counterparts, whereas this phenomenon was not observed in T-cells. 
Taken together, the data suggest a more significant role of PD-L1 in 

BCL than in T-NOS, possibly due to its suppressive activity on 
non-neoplastic anti-cancer T-cells (8). Concerning TZL, there is 
currently a lack of data on PD-L1 expression. In our case series, they 
showed a high prevalence of positive samples, comparable to BCL (80 
and 81%, respectively) (Figure 2). Conversely, they exhibited a low 
MFI ratio, similar to T-NOS (Figure  3A). Most likely, the lack of 
statistical significance regarding TZL could be  attributed to the 
relatively low number of cases enrolled.

Interestingly, among the 10 TZL samples assessed by FC, an 
outlier case with an extremely high MFI ratio and transcript amount 
was observed. In this dog, the concentration of sPD-L1 was only 
slightly over the mean value. The dog, a 13-years-old Akita Inu 
neutered female, received no treatment after diagnosis, and 
unfortunately died of causes unrelated to the neoplasm within 35 days. 
Consequently, no further insights could be  drawn regarding the 
clinical relevance of the outlier PD-L1 expression. Nevertheless, 
reporting this case may provide valuable information related to either 
the biological variability of the cancer or the patient itself.

Concerning PD-L1 transcript, Ambrosius et al. (30) reported a 
greater expression in LN from dogs with DLBCL than from healthy 
controls, even if no statistical analysis was performed. Based on the 
lack of differences among lymphoma subtypes in the present study, it 
is plausible that the results obtained by Ambrosius and colleagues 
were associated with the presence or absence of lymphoma rather than 
the specific subtype considered. The same study failed to identify a 
prognostic role for PD-L1 transcript amount (30). Conversely, Aresu 
et al. found that the increased PD-L1 score quantified by RNAscope 
was associated with a higher risk of progression and tumor-related 
death in dogs with DLBCL (19). In the present study, prognostic 
evaluations were not performed. Thus, prognostic relevance of PD-L1 
transcript amount is still controversial.

As for soluble protein, Song et al. (20) reported a difference of 
plasmatic concentrations between healthy and tumor-bearing dogs 

FIGURE 2

Stacked bar plots showing the percentage of samples expressing PD-L1 protein on the surface of neoplastic cells, assessed via flow cytometry on 
nodal aspirates from 93 dogs, according to lymphoma subtype. Green column: positive samples. Red column: negative samples. BCL, B-cell 
lymphoma; TZL, T-Zone lymphoma; T-NOS, T-cell lymphoma-Not Otherwise Specified.
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FIGURE 3

Boxplots showing the level of expression of PD-L1 assessed with different techniques, according to lymphoma subtype. BCL, B-cell lymphoma; TZL, 
T-Zone lymphoma; T-NOS, T-cell lymphoma-Not Otherwise Specified. The boxes with different superscript letters are significantly different. 

(Continued)
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without assessing whether any difference existed among cancer 
histotypes. In the present study, no healthy dogs were included for 
comparison, since we only focused on lymphoma-bearing dogs. The 
sPD-L1 values we  obtained were higher than those reported in 
literature (20), with no differences based on lymphoma subtype or 
presence of PB infiltration. This is likely due to the fact that, 
differently from the study of Song et  al. (20), patients with 
comorbidities were retained in the present study, possibly leading 
the lymphoma-unrelated increase of sPD-L1. Inclusion of such dogs 
was aimed at enrolling a case-load representative of the standard 
population of oncological patients, with possible co-morbidities 
often linked to aging. Pairwise, the same cause might explain the 
lack of correlation between surface expression and soluble protein, 
as also documented in human medicine (31, 32). Unfortunately, 
most of the samples included in the present study were sent from 
referring veterinarians across Italy, and a complete anamnesis was 
scarcely available, preventing us from assessing the influence of 
other clinical variables on the concentration of sPD-L1. Nevertheless, 
the presence of sPD-L1, irrespective of its biological origin, should 
be  considered in the context of immunotherapies, as it has the 
potential to bind and saturate the administered antibodies. 
Therefore, investigating its variation in a patient’s plasma and 
assessing it before initiating anti-PD-L1 therapies might aid in 
planning treatment dosage to achieve optimal effects during 
clinical trials.

When comparing the three techniques, the only significant result 
was found with sPD-L1 and FC. In particular, the sPD-L1 resulted 
significantly more concentrated in FC-negative cases. This could 
be explained by different mechanisms, including sPD-L1 release by 
non-neoplastic cells (i.e., dendritic cells) (33), and enzymatic cleavage 
of the protein on the surface of neoplastic cells (34, 35), leading to 
higher amount of soluble protein, while less surface protein remained.

Another interesting result is that the amount of cellular 
transcript does not seem to correlate with either mPD-L1 or 
sPD-L1. This has implications when selecting the technique to 
evaluate PD-L1 during future clinical trial involving 
immunotherapy. In the therapeutic context of human medicine, 
this has been already considered, and assessing surface proteins is 
recommended (36, 37). Relying only on mRNA expression might 
be misleading when trying to predict expected results of PD-L1 
antibody administration.

The major pitfall of the present study is linked to the low caseload 
for some specific lymphoma subtypes, which might have affected the 
significance of statistical analyses. Anyway, the sample pool was 
representative of the reported prevalence of lymphoma subtypes in the 
canine population, with BCL being more frequent than T-NOS and 
TZL (38, 39). Similarly, the low number of samples analyzed by qPCR 
and ELISA could have impacted on the significance of those results, 
and it would be interesting in the future to collect a larger number of 
cases to eventually confirm our results.

A second limitation is that the population of neoplastic cells in FC 
was identified based on morphological properties (FSC) without 
employing a multicolor approach. This was due to the fact that the 
staining kit showed an undesired fluorescent signal in different 
channels, which was difficult to remove even with relevant 
compensation. The identification of neoplastic cells via FSC is usually 
straightforward in clinically aggressive lymphomas, mostly constituted 
by large cells. On the other hand, identification of neoplastic cells 
based on FSC is more challenging for TZL and it is possible that a 
proportion of residual lymphocytes has been included in the analysis, 
while a proportion of neoplastic cells has been excluded. However, 
such a condition is not likely to have grossly biased MFI ratio analysis, 
since TZL cells represented the vast majority of the population within 
each sample, and their FSC is actually higher than the one of residual 

(A) Degree of expression on the surface of neoplastic cells, assessed via flow cytometry and quantified as the ratio between the Median Fluorescence 
Index (MFI) of the anti-PD-L1 antibody-stained tube and the isotypic control one (MFI ratio). Only positive samples are shown (69 dogs). One TZL case 
with an extremely high MFI ratio was excluded from the figure to ameliorate the graphical aspect. (B) Fold increase in transcript amount, assessed via 
RT-qPCR in 31 cases. One TZL [same case excluded in panel (A)] with an extremely fold increase was excluded from the figure to ameliorate the 
graphical aspect. (C) Plasmatic concentration of soluble PD-L1, assessed via ELISA in 41 cases.

FIGURE 3 (Continued)

TABLE 1 Median MFI ratio, fold increase in the transcript amount and mean plasmatic concentration of sPD-L1 in a group of dogs with lymphoma, 
according to immunophenotype of neoplastic cells.

Lymphoma immunophenotype

All BCL T-NOS TZL

Number of FC positive samples 69 (74.2%) 47 (81.0%) 14 (56.0%) 8 (80.0%)

Median MFI ratio of positive samples

1.38

IQR 1.12–1.80

range 1.01–6.03

1.50

IQR 1.21–2.03

range 1.01–3.47

1.14

IQR 1.07–1.32

range 1.02–2.19

1.19

IQR1.03–1.46

range 1.02–6.03

Median fold increase in transcript amount

0.23

IQR 0.16–1.40

range 0.01–5.45

0.31

IQR 0.17–1.53

range 0.05–2.06

0.19

IQR 0.05–0.30

range 0.01–0.33

0.24

IQR 0.14–4.16

range 0.11–5.46

Plasmatic concentration of sPD-L1 (ng/

mL) (mean ± SD)
7.88 ± 3.78 7.89 ± 4.10 7.95 ± 3.66 7.68 ± 1.83

IQR, interquartile range; SD, standard deviation; FC, flow cytometry; MFI, median fluorescence index; BCL, B-cell lymphoma; T-NOS, T-cell lymphoma-Not Otherwise Specified; TZL, 
T-Zone Lymphoma.

https://doi.org/10.3389/fvets.2024.1412227
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Ubiali et al. 10.3389/fvets.2024.1412227

Frontiers in Veterinary Science 09 frontiersin.org

lymphocytes (40), although perhaps less immediately identifiable by 
unexperienced operators. No further small cell lymphoma was 
included in the present study.

Lastly, clinical and follow-up data, when retrieved, were 
fragmentary, thus preventing us from including them. Future studies 
assessing correlations between the variables evaluated and prognosis 
are warranted.

5 Conclusion

PD-L1 is often expressed on cells’ surface in canine lymphomas, 
typically with low intensity. BCL are frequently positive and have the 
highest amount of surface protein compared to TZL and 
T-NOS. Although cellular transcript resulted present in all samples, 
no correlation with lymphoma categories or other techniques was 
found. sPD-L1 is higher in the samples with no surface protein 
expression, as possible result of the cleavage and release of surface 
proteins in the plasma.

Future studies should carefully consider the technique for 
assessing PD-L1 expression, since results are not correlated and 
interchangeable. This consideration is crucial when admitting dogs 
with lymphoma to immunotherapies targeting the surface 
membrane PD-L1.
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