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Identification and functional 
prediction of lncRNAs associated 
with intramuscular lipid 
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Many studies have shown that long non-coding RNAs (lncRNAs) play key 
regulatory roles in various biological processes. However, the importance and 
molecular regulatory mechanisms of lncRNAs in donkey intramuscular fat 
deposition remain to be further investigated. In this study, we used published 
transcriptomic data from the longissimus dorsi muscle of Guangling donkeys 
to identify lncRNAs and obtained 196 novel lncRNAs. Compared with the 
coding genes, the novel lncRNAs and the known lncRNAs exhibited some 
typical features, such as shorter transcript length and smaller exons. A total of 
272 coding genes and 52 lncRNAs were differentially expressed between the 
longissimus dorsi muscles of the low-fat and high-fat groups. The differentially 
expressed genes were found to be  involved in various biological processes 
related to lipid metabolism. The potential target genes of differentially 
expressed lncRNAs were predicted by cis and trans. Functional analysis of 
lncRNA targets showed that some lncRNAs may act on potential target genes 
involved in lipid metabolism processes and regulate lipid deposition in the 
longissimus dorsi muscle. This study provides valuable information for further 
investigation of the molecular mechanisms of lipid deposition traits in donkeys, 
which may improve meat traits and facilitate the selection process of donkeys 
in future breeding.
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1 Introduction

Long non-coding RNA (lncRNA) is a class of non-coding RNAs with a length greater 
than 200 nucleotides. Increasing evidence suggests that lncRNA plays important roles in 
various biological processes, such as embryonic development (1, 2), gene expression 
regulation (3, 4), reprogramming (5, 6), and genomic imprinting (7, 8). Additionally, 
many lncRNAs have been found to be  involved in regulating lipid metabolism. For 
example, lncRNA IMFNCR promotes chicken myoblast differentiation by sequestering 
miR-128-3p and miR-27b-3p (9), lncRNA 332,443 inhibits preadipocyte differentiation 
by targeting Runx1, p38 MAPK, and ERK1/2-MAPK signaling pathways (10), and 
LncLSTR forms a molecular complex with TDP-43 to regulate the expression level of 
Cyp8b1, thereby affecting the FXR regulatory pathway, leading to increased apoC2 levels 
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and influencing triglyceride levels. LNCLSR directly binds to 
TDP-43 to inhibit Cyp8b1 expression and subsequently regulate 
triglyceride levels (11).

Guangling donkeys are distributed in Guangling County, Shanxi 
Province, China, and they are a local dominant breed that is carefully 
reared by local people using traditional production practices (12). 
Guangling donkeys have a stout physique and full muscles. Guangling 
donkeys used for meat production have a high intramuscular fat 
(IMF) content; however, the underlying molecular mechanisms 
underlying the IMF variation among donkey species are not 
fully understood.

IMF, also known as marbling, is an important indicator of the 
lean meat-to-fat ratio, which directly affects the tenderness, 
juiciness, and flavor of the meat (13). IMF content is one of the most 
important indicators used to evaluate meat quality (14). IMF 
content is a polygenic trait that is regulated by many genes affecting 
adipogenesis and lipid metabolism (15). At present, the underlying 
molecular variations affecting IMF content among donkey breeds 
are unclear.

This study used published transcriptome data from the 
longissimus dorsi muscle of a Guangling donkey to identify lncRNA 
and conducted differential expression studies of coding genes and 
lncRNA, constructing an expression regulation network, which lays 
the foundation for further analyzing the molecular mechanisms of 
lipid deposition traits in donkeys.

2 Materials and methods

2.1 Data sources

A total of 30 Guangling donkeys were raised on a commercial 
donkey farm in Fanshi County, Xinzhou City, Shanxi Province, 
China, and 6 donkeys with IMF differences and similar ages were 
selected (age: 2–3 years old, weight: 232–245 kg; female) for use in 
this study. All Guangling donkeys were reared under the same 
natural conditions of uncontrolled room temperature and light 
with unrestricted access to food and water. The longissimus dorsi 
samples at the 13th rib were aseptically and quickly obtained 
within 30 min of harvest. The collected samples were stored in 
liquid nitrogen for immediate storage, and long-term storage was 
carried out at −80°C. According to the China National Standard 
GB5009.6-2016 “Determination of Fat in Foods in National Food 
Safety Standard,” the IMF content was determined by the Soxhlet 
method. A Soxhlet extraction apparatus was used to remove fat 
and dry the ground meat samples for fat extraction. Petroleum 
ether was used as a solvent. This was recycled and dried for 8 h. 
Then, it was weighed to obtain the weight of the bottle containing 
fat. The IMF content was calculated by a formula. The three 
longissimus dorsi samples with the highest IMF contents and the 
other three with the lowest IMF contents were selected for 
transcriptome analysis (12). A total of six RNA-seq datasets were 
obtained from a previously published study and downloaded from 
the NCBI’s GEO database (PRJNA658642) (12). The donkey gene 
annotations were downloaded from https://ftp.ensembl.org/pub/
release-110/gtf/equus_asinus. Moreover, the Non-Redundant 
Protein Sequence (NR) Database was downloaded from 
ftp://ftp.ncbi.nih.gov/blast/db/. The uniref90 database was 

downloaded from https://ftp.uniprot.org/pub/databases/uniprot/
uniref/uniref90.

2.2 RNA-seq reads mapping and 
transcriptome assembly

The quality of sequencing reads was evaluated by FastQC 
command. The raw reads were filtered and trimmed by Trimmomatic 
(version 0.39) with default parameters (16). The clean reads were then 
mapped to the donkey reference genome [Ensembl: ASM1607732v2 
(GCA_016077325.2)] by HISAT2 v2.2.1 with the default parameters 
(17–20). StringTie (version 2.2.1) was used to assemble the mapped 
reads with default parameters (17). Then, the merge tool of StringTie 
was used to merge the six assembled transcript files (GTF format) of 
the two groups into a non-redundant transcriptome. In addition, by 
using the assembled GTF file, StringTie software was used to estimate 
the expression levels of genes and transcripts in all samples for 
subsequent studies with the parameters “-e” and “-B” (17, 18, 21).

2.3 LincRNAs identification pipeline

The pipeline for lincRNA (long intergenic non-coding RNA) 
identification was as follows (Figure 1): (1) retained those transcripts 
with “u” category categorized by using gffcompare, which indicated 
intergenic transcripts (20, 21). (2) According to the merged GTF file, 
the transcripts with single exons and less than 200 bp in length were 
removed (18, 21). (3) The CPC2, CNCI, PLEK and LGC were used to 
assess the protein-coding potential of complete transcript sequences, 
and the transcripts that cannot encode proteins based on protein-
coding potential were retained (22). (4) The HMMER was used to 
identify the transcripts translated in all six possible frames with 
homologs that were concluded in any of the known protein family 
domains in the Pfam database, and transcripts that matched to the 
Pfam hit (E-value < 1e-5) were excluded (18–21, 23). (5) BLASTX 
program (24) was used to filter out any transcripts that have 
similarities to known proteins in the NCBI NR and UniRef90 
databases (E-value < 1e-5) (20, 21). (6) Reserve transcripts with 
FPKM values greater than 0 in at least one sample (18–20).

2.4 Comparisons between lncRNAs and 
protein-coding transcripts

We selected the transcripts annotated as “protein-coding” in the 
gene annotation file, and the obtained lncRNAs were screened with 
“known” and “novel” by “blastn” command. The transcript length, 
exon length, and exon number of lncRNAs were compared with those 
of protein-coding transcripts (20).

2.5 Analysis of differentially expressed 
genes and differentially expressed lncRNAs

DESeq2 tool was used to perform differential expression analysis 
of protein-coding genes and lncRNAs between the high (H) fat group 
and low (L) fat group (25). |log2 fold change | ≥ 1 and adjusted p-value 
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(padj) < 0.05 were used to screen differentially expressed genes 
(DEGs) and lncRNAs (26).

2.6 Prediction of potential target genes

We predicted the molecular functions of protein-coding genes 
regulated by RNA in cis and trans. First, the neighboring protein-
coding genes near DELs (<100 kb) were identified based on 
cis-prediction principles using Bedtools (18–20, 27, 28). For the trans-
regulation of DELs, we calculated the Pearson’s correlation coefficient 
(r) between DELs and protein-coding genes. We selected protein-
coding genes with a Pearson’s correlation coefficient |r| ≥ 0.95, p-value 
≤ 0.01 as potential target genes (PTGs) of DELs (21, 29).

2.7 Functional enrichment analysis

Gene Ontology (GO) enrichment analysis was performed by 
clusterProfiler (30, 31). KOBAS v3.01 was used for the Kyoto 

1 http://kobas.cbi.pku.edu.cn

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analysis (32). A p-value of less than 0.05 was considered statistically 
significant (33).

3 Results

3.1 Summary of RNA-seq data mapping 
and transcripts assembly in longissimus 
dorsi muscles

RNA-seq data involving two groups of Guangling donkeys were 
obtained from a previously published study (12). The six longissimus 
dorsi muscles (three in each group) with the lowest and highest IMF 
contents were named the L group and H group, respectively. The 
individual samples in the groups were named L1, L2, L3, H1, H2, and 
H3. The clean reads were mapped to the donkey reference genome 
using HISAT2. Approximately 86.02–90.51% of clean reads from each 
library were mapped to the donkey reference genome, and 79.76–
84.78% of the reads were uniquely mapped to the genome. Then, the 
transcriptome was assembled for each library by StringTie, and all 
transcripts were synthesized into non-redundant transcripts using 
StringTie-Merge. After merging non-redundant transcripts, 
approximately 1.07% (944 of 87,886) of the transcripts were intergenic 

FIGURE 1

Pipeline for the identification of putative lincRNAs in this study. The frames in the direction of the arrow show the filtering process and the number of 
screened transcripts. “u”: Unknown, intergenic transcript; CPC2: coding potential calculator 2; nr: non-redundant protein sequence database; FPKM: 
fragments per kilobase of transcript per million mapped reads.
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transcripts. The 196 putative lincRNAs were obtained according to the 
illustration shown in Figure 1 (Supplementary Table S1).

3.2 Comparison of coding genes and 
lncRNA features

Previous studies showed that there are many differences between 
protein-coding transcripts and lncRNAs (18–20, 27, 34–36). 
According to the assembled transcriptome, the characteristics of 
lncRNA and protein-coding transcripts were compared. A total of 
51,112 protein-coding transcripts, corresponding to 20,553 protein-
coding genes annotated in donkeys, were acquired. In addition, the 
donkey annotation file contains 7,615 known lncRNA transcripts that 
correspond to 4,709 lncRNA genes (Supplementary Table S1).

The average transcript length of the protein-coding transcripts 
(2,919 bp) was longer than the novel lncRNA transcripts (1,217 bp) 
and the known lncRNA transcripts (2,394 bp) (Figure 2A). In terms 
of average exon length, the novel lncRNA is 448 bp in length, shorter 
than the known lncRNA gene (766 bp) but longer than the protein-
coding transcripts (271 bp) (Figure 2B). In addition, we found that the 
average number of exons in the protein-coding transcripts is 10.7, 
which is significantly higher than that of the novel lncRNA (2.7) and 
the known lncRNA (3.1) (Figure 2C).

3.3 Differential expression analysis of 
coding genes and lncRNAs

To explore their potential biological functions, we  performed 
differential expression analysis of coding genes and lncRNAs. A total 
of 272 DEGs were obtained by comparing the high-fat group with the 
low-fat group of the longissimus dorsi muscle samples. Among them, 
147 genes were upregulated in the high-fat group, and 125 genes were 
downregulated (Figure 3A). Additionally, 52 differentially expressed 
lncRNAs (DELs) were identified, with 25 lncRNAs upregulated and 
27 lncRNAs downregulated in the high-fat group compared to the 
low-fat group (Figure 3B).

3.4 Functional analysis of differentially 
expressed genes

To investigate the function of DEGs, we performed GO and KEGG 
analyses, respectively. GO analysis of DEGs showed that integrin-
mediated signaling pathway, cellular response to lipopolysaccharide, 
trachea development, cellular response to molecule of bacterial origin, 
and positive regulation of myeloid leukocyte-mediated immunity were 
the most abundant terms in the biological process category. In terms of 
cellular component category, actin cytoskeleton, phagocytic cup, cell 
leading edge, TORC2 complex, and basolateral plasma membrane were 
the top five terms, while rRNA binding, pattern recognition receptor 
activity, motor activity, protein kinase binding, and ion channel binding 
were most prevalent in the molecular function (Supplementary Table S2). 
Some GO terms were significantly associated with lipid metabolisms, 
such as response to lipids, cellular response to lipids, glycerophospholipid 
metabolic process, glycerolipid metabolic process, unsaturated fatty acid 
biosynthetic process, and phospholipid dephosphorylation. KEGG 

analysis indicated that DEGs were significantly enriched in 62 KEGG 
pathways, of which several pathways were related to lipid metabolism, 
such as the Sphingolipid signaling pathway and MAPK signaling 
pathway. In addition, some other pathways are related to lipid 
metabolism, namely fatty acid metabolism, glycerophospholipid 
metabolism, biosynthesis of unsaturated fatty acids, PI3K-Akt signaling 
pathway, fatty acid degradation, ether lipid metabolism, cholesterol 
metabolism, PPAR signaling pathway, TGF-beta signaling pathway, and 
Wnt signaling pathway (Supplementary Table S3).

3.5 Prediction and functional analysis of 
lncRNA target genes

Many studies have indicated that lncRNA may regulate adjacent 
genes in a cis manner (18–20, 29, 37–41). For PTGs regulated by 
lncRNAs in cis (<100 kb), we  identified a total of 323 PTGs, 
corresponding to 52 DELs (Supplementary Table S4). To explore the 
function of putative lncRNAs, GO and KEGG analyses were performed 
on expressed protein-coding genes transcribed near lncRNA (<100 kb). 
The results indicated that 102 of 323 PTGs were significantly involved 
in 143 biological processes (Supplementary Table S5). Of them, 59 
PTGs significantly participated in 32 pathways (Supplementary Table S6), 
including 2 pathways related to lipid metabolism, such as biosynthesis 
of unsaturated fatty acids and fatty acid metabolism.

LncRNAs can not only regulate the expression of neighboring 
protein-coding genes through a cis mechanism but also regulate the 
expression of genes located on other chromosomes via a trans 
mechanism (42). In this study, we carried out the trans analysis to find 
the PTGs that were significantly correlated (|r| ≥ 0.95, p ≤ 0.01) to the 
DELs. In total, 3,366 PTGs were highly correlated with 52 DELs. Among 
these genes, 132 PTGs were differentially expressed in groups as 
DEPTGs, suggesting that most of the lncRNAs regulated gene expression 
through trans regulation. GO enrichment analysis showed that 3,366 
PTGs were enriched in 835 biological processes and 132 DEPTGs were 
enriched in 143 biological processes (Supplementary Tables S7, S8). In 
cases of biological process, some GO terms were significantly associated 
with lipid metabolism, such as negative regulation of the lipid catabolic 
process, regulation of the lipid metabolic process, negative regulation of 
the lipid metabolic process, regulation of the lipid biosynthetic process, 
cellular lipid catabolic process, negative regulation of the lipid 
biosynthetic process, regulation of fatty acid transport and regulation of 
the lipid catabolic process (Figures 4A,C). In addition, 3,366 PTGs and 
132 DEPTGs were enriched in 74 pathways and 7 pathways, respectively 
(Supplementary Tables S9, S10). KEGG pathways were involved in the 
MAPK signaling pathway, PI3K-Akt signaling pathway, glycerolipid 
metabolism, ether lipid metabolism, fat digestion, and absorption 
(Figures 4B,D). The results indicated that DELs had an important role 
in regulating their PTGs that regulate lipid metabolism in longissimus 
dorsi muscles.

4 Discussion

In the present study, transcriptome sequencing of longissimus 
dorsi tissues with different IMF contents from Guangling donkeys was 
used to investigate genes and lncRNA related to lipid metabolism in 
the longissimus dorsi muscle. A total of 20,553 protein-coding genes, 
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7,615 known lncRNAs, and 196 novel lincRNAs were obtained. 
We  compared the known and novel lincRNAs with the donkey 
protein-coding genes and found that known and novel lincRNAs have 
shorter transcript lengths, longer exon lengths, and fewer exon 

numbers compared with protein-coding transcripts, which is 
consistent with some previous studies (18–20, 27, 34–36, 43–46).

Differential expression analysis identified 272 DEGs, with 147 
genes upregulated and 125 genes downregulated in the high-fat group 

FIGURE 2

Comparison of the characteristics of protein-coding genes and lncRNA genes. (A) Comparison of transcript length, (B) comparison of exon length, and 
(C) comparison of exon number.
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compared to the low-fat group. Some of these genes may play a key 
role in lipid metabolism. As expected, GO analysis revealed the 
involvement of a significant number of DEGs in lipid metabolism-
related biological processes, including response to lipid, cellular 
response to lipid, glycerophospholipid metabolic process, glycerolipid 
metabolic process, unsaturated fatty acid biosynthetic process, and 
phospholipid dephosphorylation. KEGG analysis showed significant 
enrichment of 62 KEGG pathways in the DEGs. Enriched pathways 
included the sphingolipid signaling pathway, MAPK signaling 
pathway, fatty acid metabolism, glycerophospholipid metabolism, 
biosynthesis of unsaturated fatty acids, PI3K-Akt signaling pathway, 
fatty acid degradation, ether lipid metabolism, cholesterol metabolism, 
PPAR signaling pathway, TGF-beta signaling pathway, and Wnt 
signaling pathway, which are involved in lipid metabolism.

Previous studies indicated that lncRNAs can regulate gene 
expression in a cis-acting manner (18, 20, 29, 35, 41). In the present 
study, a total of 196 novel lincRNAs and 7,615 known lncRNAs, were 
identified. Moreover, 52 DELs were detected, 25 of which were 
upregulated and 27 downregulated in the high-fat group compared 
with the low-fat group. To predict the function of these lncRNAs, 
protein-coding genes transcribed near lncRNAs (<100 kb) were 
screened. A total of 323 PTGs were identified, corresponding to 52 
DELs. Exploration of lncRNA function through GO and KEGG 
analysis of PTGs revealed that 102 of 323 PTGs were significantly 
involved in 143 biological processes, and 59 PTGs significantly 
participated in 7 pathways, including 2 pathways related to lipid 
metabolism, such as biosynthesis of unsaturated fatty acids and fatty 
acid metabolism. In addition, four other pathways are related to lipid 
metabolism, namely the Wnt signaling pathway, glycerolipid 
metabolism, PPAR signaling pathway, and glycerophospholipid 
metabolism. These pathways can affect lipid metabolism to 
some extent.

An intriguing observation is that the same DEL 
ENSEAST00005078264 acts on both FADS1 and FADS2, which are 
the key enzymes that catalyze adenylation of flavin mononucleotide 
(FMN) to form flavin adenine dinucleotide (FAD) coenzyme (47, 48). 
These two PTGs are involved in the biosynthesis of unsaturated fatty 
acids and fatty acid metabolism. The DEL ENSEAST00005078264 
may be involved in lipid metabolism via biosynthesis of unsaturated 
fatty acids and fatty acid metabolism signaling pathway. Another DEL 
ENSEAST00005069204 was found to target AGPAT5, which converts 
lysophosphatidic acid to phosphatidic acid, the second step in de novo 
phospholipid biosynthesis (49). These lncRNAs may regulate target 
genes involved in lipid metabolism pathways through 
cis-acting mechanisms.

The analysis of PTGs by trans-acting lncRNAs was conducted, and 
enriched analysis was also performed. Among the 3,366 PTGs, 1,352 
were significantly involved in 835 biological processes. Pathway 
analysis showed that 710 PTGs were significantly involved in 74 
pathways, including MAPK signaling pathway, PI3K-Akt signaling 
pathway, glycerolipid metabolism, ether lipid metabolism, fat 
digestion, and absorption, all of which are related to lipid metabolism. 
Other pathways related to lipid metabolisms, such as 
glycerophospholipid metabolism, fatty acid metabolism, biosynthesis 
of unsaturated fatty acids, sphingolipid signaling pathway, cholesterol 
metabolism, adipocytokine signaling pathway, Wnt signaling pathway, 
fatty acid elongation, regulation of lipolysis in adipocytes, sphingolipid 
metabolism, TGF-beta signaling pathway, fatty acid biosynthesis, and 
fatty acid degradation, were also identified. For 132 DEPTG, 56 were 
significantly involved in 143 biological processes. Pathway analysis 
showed that 27 DEPTGs were significantly involved in 7 pathways, 
including arachidonic acid metabolism. Other pathways involved in 
lipid metabolism have also been identified, including biosynthesis of 
unsaturated fatty acids, fat digestion and absorption, ether lipid 
metabolism, fatty acid metabolism, MAPK signaling pathway, PPAR 
signaling pathway, glycerophospholipid metabolism, and PI3K-Akt 
signaling pathway.

It was found that SCD, targeted by four  
DELs (ENSEAST00005042127, ENSEAST00005051768, 
ENSEAST00005052324, and ENSEAST00005072263), is a key gene 
that regulates lipid metabolism. Studies have shown that SCD plays an 
important role in lipid biosynthesis (50–52). In addition, two DELs, 

FIGURE 3

Volcano plots in analyzing differentially expressed genes (DEGs) 
(A) and differentially expressed lncRNAs (DELs) (B) in longissimus 
dorsi muscles with high and low intramuscular fat contents. The 
green plot represents upregulated expression in the high group; the 
blue plot represents downregulated expression in the high group; 
and the gray plot represents no significance.
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ENSEAST00005052438 and ENSEAST00005076477, were all found to 
act on PLA2G3, which is involved in lipid metabolism and catalyzes 
the calcium-dependent hydrolysis of the sn-2 acyl bond of 

phospholipids to release arachidonic acid and  
lysophospholipids (53–56). It is noteworthy that THRSP was targeted 
by four DELs (ENSEAST00005042127, ENSEAST00005048792, 

FIGURE 4

Gene Ontology and pathway analysis of PTGs of DELs. (A) Biological processes analysis of PTGs of DELs, (B) pathway analysis of PTGs of DELs, 
(C) biological processes analysis of DEPTGs of DELs, and (D) pathway analysis of DEPTGs of DELs. PTGs, potential target genes; DELs, differentially 
expressed lncRNAs; DEPTGs, differentially expressed potential target genes.
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ENSEAST00005051768, and ENSEAST00005052324). Previous studies 
showed that THRSP is important for the biosynthesis of triglycerides 
with medium-length fatty acid chains and plays a role in the regulation 
of lipogenesis, which may modulate lipogenesis by interacting with 
MID1IP1 and preventing its interaction with ACACA, may function 
as a transcriptional coactivator and may modulate the transcription 
factor activity of THRB (57, 58). These lncRNAs may regulate target 
genes involved in lipid metabolism pathways through trans-
acting mechanisms.

SCD plays an important role in the regulation of lipid deposition, 
and it can catalyze the conversion of saturated fatty acids (SFAs) to 
monounsaturated fatty acids (MUFAs) (59). It was found that SCD 
expression was positively correlated with SCD protein levels, and pigs 
with higher SCD protein levels had higher levels of IMF, indicating a 
conserved trend between transcriptional and translational levels (60). 
Smith et al. (61) found that SCD expression was closely related to 
marbled adipocyte differentiation and that grain diets increased SCD 
expression, resulting in higher intracellular levels of MUFA (especially 
oleic acid), and thus increased adipocyte differentiation. In addition, 
increased FA levels in IMF tissues were found to be associated with 
tissue-specific activation of SCD expression under the influence of a 
low-protein protein diet, and the low-protein protein diet significantly 
increased the expression and activity of SCD proteins in muscle, but 
not in subcutaneous adipose tissue (AT) (62). These results suggest 
that the high specific expression of SCD in IMF cells may be related 
to meat quality and that reduced protein intake may affect IMF 
content by modulating SCD activity. Notably, SCD was significantly 
up-regulated in the high-fat group compared with the low-fat group 
in this study. The results show that SCD may play an important 
function in donkey IMF deposition. The thyroid hormone-sensitive 
protein (THRSP; Spot14; S14) is a nuclear protein that is abundantly 
expressed in lipogenic tissues such as in the liver, mammary gland, AT 
and lipogenic breast cancers (63–66). A previous study indicated that 
the polymorphisms and genotype distribution of THRSP were closely 
related to the potential for fat production in pig breeds (67). It was 
found that miR-195 may inhibit lipid accumulation in adipocytes by 
regulating THRSP (68). THRSP is regulated by insulin both in vivo in 
human AT and in vitro in adipocytes, and its expression is 
downregulated by insulin resistance. As THRSP silencing decreases 
mitochondrial respiration and fatty acid oxidation, its downregulation 
in human AT could contribute to mitochondrial dysfunction. 
Furthermore, disturbed sphingolipid metabolism could contribute to 
metabolic dysfunction in obese AT (69). The current RNA-seq results 
revealed that THRSP had higher expression in the high-fat group than 
in the low-fat group, which suggested that THRSP may be a key gene 
involved in IMF deposition in donkeys. Taken together, some DEGs, 
including SCD and THRSP, may be key candidate genes for donkey 
meat quality improvement.

It is noteworthy that SCD was targeted by four DELs 
(ENSEAST00005042127, ENSEAST00005051768, ENSEAST0000 
5052324, and ENSEAST00005072263). Moreover, four DELs 
(ENSEAST00005042127, ENSEAST00005048792, ENSEAST0000 
5051768, and ENSEAST00005052324) were found to target 
THRSP. These lncRNAs may influence donkey IMF deposition by 
regulating the expression of their target genes. The relationship of 
these lncRNAs with their target genes and with fat deposition in 
donkey muscle needs to be further investigated in the future using 
molecular biology, gene editing, etc. These lncRNAs may improve 

meat quality and facilitate the selection process of donkeys in 
future breeding.

5 Conclusion

In the study, we identified 196 putative lncRNAs and analyzed the 
characteristics of lncRNAs compared with protein-coding genes in the 
longissimus dorsi muscles of Guangling donkeys. We  observed 
numerous DELs and protein-coding genes in longissimus dorsi 
muscles with different IMF contents. Some DEGs were found to 
be involved in various biological processes related to lipid metabolism. 
Functional enrichment analysis of PTGs by DELs revealed that some 
lncRNAs (such as ENSEAST00005042127, ENSEAST00005051768, 
ENSEAST00005052324, ENSEAST00005072263, ENSEAST0000 
5052438, ENSEAST00005076477, ENSEAST00005042127, ENSEAST 
00005048792, ENSEAST00005051768, and ENSEAST00005052324) 
may act on PTGs (such as SCD, PLA2G3, and THRSP), participate in 
lipid metabolism processes, and regulate IMF deposition in the 
longissimus dorsi muscle. This study provides valuable resources for 
future analyses of lipid deposition traits and may contribute to the 
improvement of donkey meat quality and the selection process in 
donkey breeding.
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