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Sterilization and castration have been synonyms for thousands of years. Making 
an animal sterile meant to render them incapable of producing offspring. 
Castration or the physical removal of the testes was discovered to be the most 
simple but reliable method for managing reproduction and sexual behavior 
in the male. Today, there continues to be  global utilization of castration in 
domestic animals. More than six hundred million pigs are castrated every year, 
and surgical removal of testes in dogs and cats is a routine practice in veterinary 
medicine. However, modern biological research has extended the meaning of 
sterilization to include methods that spare testis removal and involve a variety 
of options, from chemical castration and immunocastration to various methods 
of vasectomy. This review begins with the history of sterilization, showing a 
direct link between its practice in man and animals. Then, it traces the evolution 
of concepts for inducing sterility, where research has overlapped with basic 
studies of reproductive hormones and the discovery of testicular toxicants, 
some of which serve as sterilizing agents in rodent pests. Finally, the most 
recent efforts to use the immune system and gene editing to block hormonal 
stimulation of testis function are discussed. As we  respond to the crisis of 
animal overpopulation and strive for better animal welfare, these novel methods 
provide optimism for replacing surgical castration in some species.
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1 Introduction and history

The purpose of this review is to look into the background related to the use of castration 
in male animals and examine the search for a replacement. This includes research on gonad-
sparing sterilization, contraception, and extensive studies on the effects of chemical toxicology 
in male reproduction. Reproductive sterilization is a procedure that used to make an individual 
incapable of producing offspring (infertile), but it can also render the male deficient in sex 
steroid hormones and, in some cases, is used for health purposes. Castration is a simple 
medical procedure for physical removal of the testes (gonadectomy), and for thousands of 
years, the two words, sterilization and castration, have been used interchangeably. However, 
modern science and medicine have extended the meaning of male sterilization to include 
methods for inhibiting the development of sperm capable of fertilizing an egg, chemical 
destruction of testicular parenchyma, and the blockage of sperm transport through the 
reproductive tract. The terms used for male sterilization are extensive and now include 
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‘chemical castration’, ‘immunocastration’, ‘emasculation’, ‘neutering’, 
and ‘vasectomy’. Some of these terms are associated with leaving the 
testes intact (sparing the gonad) and some provide only temporary 
infertility (or contraception), unless applied on a regular basis, 
although contraceptive methods can induce sterility if continued for 
a long period (1–5).

Evidence of castration reaches back in ancient times, with 
discoveries connecting its practice in animals and humans for 
thousands of years (6). Very early, it was discovered that castration 
provided control over sex hormone-induced behavior and breeding 
in domesticated herd kept for secondary animal products, such as 
wool and milk (7). Evidence exists that herd of castrated sheep and 
goats were maintained during the Uruk period approximately 
4,000 BC and some claim as early as 9,000 years ago (8). Archeologists 
have dated castrated cattle in burial sites by examining horn cores and 
skeletons, in which evidence of hormonal control over growth was 
observed, long before the field of endocrinology was even established 
(7, 9). The first recorded use of castration in domestic animals was for 
the creation of geldings, or castrated male horses, which was 
documented in the 7th Century BC by the Scythians (10). This 
practice continues to be performed today by veterinarians and trained 
farm personnel (11).

Human castration is generally considered repulsive in modern 
society, and its use has been limited to cases of violent sexual offenders 
or for medical treatment (8, 12). However, historically, castration of 
humans dates back for thousands of years. Some believe that castration 
of humans was derived from the established practice in animal herds. 
In the earliest recorded history, human slaves were castrated to make 
them display better behavior (8). In the Byzantine Empire and earlier, 
castration was an accepted practice and eunuchs served in unique 
systems of hierarchy as trusted servants in royal families (7, 8, 13–15). 
This practice in China lasted for over 2000 years and did not end until 
the 1900s (6). Castration became woven into the ancient society and 
was even performed for religious and spiritual reasons, and voluntary 
eunuchs can be found in some countries even today (6, 16). The early 
forms of male sterilization were invasive and carried significant risks, 
a far cry from the safe and controlled medical procedures was known 
today. Nowadays, when castration is used for sex offenders, there is 
debate over whether surgical removal of the testes should be replaced 
with chemical treatments (17, 18). In contrast, different methods of 
castration, including orchiectomy and Gonadotropin-Releasing 
Hormone (GnRH) agonists, are positively used as a form of androgen-
deprivation therapy for the management of prostate cancer (19).

Castration has become a mainstay in food production herd 
animals and expanded to include domesticated pet species and zoo 
animals (20, 21). From a purely biological perspective, this medical 
procedure has become a routine practice in cats and dogs to control 
reproduction, inhibit hormone-induced sexual behavior, and control 
androgen-induced cancers, such as prostate carcinoma. Castration in 
dogs and cats gained popularity as a method to prevent animal 
overpopulation and sexual behavior, long before it was studied for 
treating prostate hypertrophy and cancer in aging male dogs (22). 
Studies have even indicated that in dogs, castration increases the 
lifespan by several years, with neutered dogs being less likely to die of 
trauma and infectious, vascular, and degenerative diseases (23, 24). 
However, this hypothesis is being challenged at least for some breeds, 
such us the Rottweiler, as neutering at young ages can reduce the 
lifespan of a dog (25).

The age of the animal is a major factor to take into consideration 
when selecting a sterilization method to use in specific species and 
under specific conditions. For male pigs, the neonatal period is 
considered ideal for castration because piglets are easier to handle 
than older pigs (26), and gonad removal stops the production of 
androgens which is responsible for aggression in the growing boars 
and ‘boar taint’, an offensive odor or taste that occurs more frequently 
in pork from uncastrated male pigs (27). In domesticated dogs and 
cats, spays and neuters at 6 to 9 months of age are standard practice in 
veterinary medicine (28). In animal care and control facilities, surgical 
sterilization is performed as early as 7 weeks (pediatric spay/neuter) 
before animals are adopted out (29). Under certain conditions, such 
as cryptorchidism, it is recommended that castration can be delayed 
until the inguinal canal is closed, approximately 6 months of age (30). 
However, some studies suggest that early castration may increase the 
risk of specific diseases in certain breeds (23, 29, 31, 32). In cats, 
prepuberal castration (before 5 months) can cause adhesion of the 
prepuce to the penis at sexual maturity; however, this can be avoided 
by giving intramuscular testosterone treatments (33, 34). Thus, 
determining the appropriate age for sterilization depends on various 
factors for each animal species or breed and is relevant to the selection 
of an optimal method.

This review will provide a comprehensive background of the 
biological targets of sterilization in male animals and introduce 
purpose- and species-dependent methods of sterilization that are 
currently used by veterinarians and farmers. Products currently being 
tested and potential future methods are also discussed. Historically, 
the evolution of male sterilization in animals has gone through several 
phases, starting with surgical castration, ligation and crushing of the 
spermatic cord, and then moving to chemical (non-hormonal) 
sterilization. In the early 1960s, occurring during the early days in the 
establishment of toxicology as a discipline (35–37), chemicals were 
introduced for sterilization in mammals, primarily as rodenticides 
(38), but they were also tested in monkeys (39) and dogs (40). By the 
1970s and 80s, chemosterilants were being tested in numerous 
mammalian species (39, 41). Various methods of treatment were also 
studied, including direct injection of chemicals into the testis (42), 
epididymis (43), and vas deferens (44). While the use of chemicals in 
male sterilization continues to be  investigated today (45, 46), the 
pathological responses and inflammatory reactions, as well as general 
toxicity, have contributed to their lack of success in domesticated 
animals. In the case of male rodent species, the focus on basic research 
into the reproductive toxicity of various chemicals has led to the 
development of several sterilization products (47). The death of the 
animal and secondary health effects are not significant concerns in the 
control of pests, which has facilitated the approval and use of these 
sterilization products.

The use of hormones and hormonal agonists/antagonists formed 
the next phase for advancing the methods of sterilization in both male 
and female reproduction (48–56). In most cases, the results have not 
produced sterility, instead only contraception has produced (i.e., 
temporary inhibition of fertility). However, sterility can be produced 
by hormonal treatment, depending on the age at treatment (57). 
Congruently, immunocastration methods have been developed in the 
form of vaccines against specific peptide hormones and other proteins 
that are involved in the regulation of male reproduction. Some of these 
vaccines are already commercially used in farm animals while still 
being tested in cats and dogs. While immunocastration remains a 
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viable alternative to surgical sterilization, the next major phase in the 
development of male sterilants appears to be genetics, more specifically 
the use of gene editing.

2 Male reproductive system and 
potential targets for sterilization

Male reproduction is complex and depends on the development 
and physiology of several organs, including the brain, pituitary, testes, 
epididymides, vas deferens, ejaculatory ducts, and accessory sex 
organs, all of which can vary from species to species. For male 
sterilization, each of these organs and their specific cell types and 
unique functions have been considered as potential targets, although 
castration has been the method of choice for thousands of years. 
Today, sterilization is achieved by three main approaches; (1) surgical 
removal of the reproductive organ(s), i.e., castration and vasectomy; 
(2) pharmacological suppression of the function of reproductive 
organs; (3) inhibition of the development or maturation of the 
reproductive organs. The organs of the male reproductive system and 
the potential cellular targets within each which have received 
consideration for inducing sterilization are presented here.

2.1 Hypothalamus and pituitary

The male reproductive system begins in the brain region called 
hypothalamus. This region initiates the cascade of hormonal 
stimulations required for the development and function of peripheral 
reproductive organs. The hypothalamus along with the pituitary and 
gonads form the reproductive axis, hence called HPG axis, in which a 
hormone produced in one area either stimulates or inhibits the 
secretion of a hormone in the other organ via positive and negative 
feedback loops. Hypothalamic neurons produce two key hormones, 
Kisspeptin (KISS1) and GnRH (58–61). In a unidirectional regulatory 
mechanism, KISS1 binds to KISS1 receptor (KISS1R; also known as 
GPR54) on the GnRH neuron cell membrane, triggering the release 
of GnRH (62, 63). GnRH travels through a hypophyseal portal system 
to the anterior pituitary and stimulates the secretion of gonadotropins, 
luteinizing hormone (LH), and follicle-stimulating hormone (FSH), 
which stimulates the male gonads to produce sex steroids, peptide 
hormones, and spermatozoa (Figure 1). There are multiple sites within 
the HPG axis which are potential targets for the purpose of inducing 
contraception or sterilization in the male, and both GnRH and 
Kisspeptin neurons can be targeted through multiple approaches.

In the hypothalamus, two distinctive populations of Kisspeptin 
neurons regulate the secretory activity of GnRH neurons. One 
population is located in the arcuate nucleus (ARC), and the other is 
located in the anteroventral periventricular nucleus (AVPV) in rodents 
(64) or the preoptic area (POA) in humans (65). The pulsatile activity of 
ARC Kisspeptin neurons is synchronized with GnRH and LH pulse 
patterns in males and females (66–68). Maintaining physiological levels 
of circulating gonadotropin concentrations and LH secretion requires 
the proper interval of kisspeptin neuron activation (69, 70). There are 
considerable differences between males and females, especially males 
have a smaller population of anterior (i.e., AVPV) kisspeptin neurons 
and fewer fiber connections with GnRH cell bodies than females, 
resulting in the absence of an LH surge (71, 72).

Kisspeptin neurons are potential targets for sterilization, as a 
deficiency in the number of kisspeptin neurons results in infertility in 
both males and females. Indeed, the removal or mutation of either 
Kiss1 or Kiss1r genes resulted in hypogonadism and sterility (73–78). 
Interestingly, studies revealed that exposure to estrogen during the 
neonatal period was shown to decrease the number of kisspeptin 
neurons present in the AVPV and ARC regions (57, 79, 80). The 
detailed mechanisms related to this phenomenon have not been fully 
elucidated, but some studies suggest that estrogen-induced apoptosis 
of kisspeptin neurons is a contributing factor (80, 81).

Rodent studies revealed that kisspeptin neurons influence male 
sexual behavior, including mounting and thrusting, as well as the 
typical male-like olfactory partner preferences (82). This highlights an 
essential role for KISS1 signaling in the development and expression 
of sexually dimorphic behavior (82). Recent studies on the regulation 
of sexual behaviors have uncovered a role for KISS1 expression in the 
amygdala (MeA) (83, 84), with MeA kisspeptin neurons playing a 

FIGURE 1

The HPG axis in male reproduction. The diagram illustrates the three 
components of the Hypothalamus/Pituitary/Gonadal axis in the 
male. In the hypothalamus, Kisspeptin (KISS1) from Kisspeptin 
neurons stimulates the release of GnRH from the GnRH neuron. 
GnRH stimulates the synthesis and release of gonadotropins (LH and 
FSH) in the pituitary. LH and FSH travel via the vasculature to the 
testis where they stimulate Leydig and Sertoli cells, respectively. 
Leydig cells in the testis interstitial space produce sex steroids, such 
as testosterone, which provides negative feedback to the 
hypothalamus and pituitary by binding to androgen receptors on 
both the Kisspeptin neurons and the gonadotrophs. Aromatase is 
also found in the hypothalamus, which allows for the conversion of 
testosterone to estradiol, providing a local negative feedback to 
decrease KISS1. Sertoli cells within the seminiferous tubules produce 
inhibin-B, which provides negative feedback to the gonadotrophs in 
the pituitary. Thus, the HPG axis has a regulatory system that 
maintains the required levels of hormones for stimulation of 
testicular function.
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crucial role in the olfactory reproductive pathways (85), especially in 
males (86). Inhibition of this pathway could be a method for inducing 
male infertility by blocking sexual behaviors that are necessary for 
animal breeding.

The expression of neurokinin B and its receptor in the ARC is 
crucial for postnatal testis development. In the mouse knockout of 
Tacr3, the neurokinin B (NKB) receptor gene resulted in significantly 
smaller testes and lower FSH levels than normal animals (87). In the 
ARC, most of the cells expressing KISS1 also express NKB, but some 
cells do not. Approximately 67% of kisspeptin neurons express TAC3 
and 84% of NKB neurons express KISS1 in cats. In dogs, nearly 100% 
of the kisspeptin neurons expressed NKB and 49% of the NKB 
neurons expressed KISS1 (88). Therefore, blocking both kisspeptin 
and NKB neurons could be an ideal approach for inhibiting functional 
development of the gonads and provides a new target of sterilization.

The GnRH neuron is also a major target for controlling male 
reproduction. Much of the effort to target GnRH neurons has focused 
on chemical inhibition of GnRH release, as well as the use of 
antibodies against the peptide (see sections 3.4 and 3.5.4). An indirect 
method has also been used to inhibit the function of GnRH neurons 
by targeting VAX1. This transcription factor is known to be essential 
for the maturation of GnRH neurons and directly activates the GnRH 
promoter by binding to specific sites, which is crucial for fertility 
regulation. In mice, the deletion of Vax1 from GnRH neurons led to 
infertility in both males and females, as well as delayed puberty and 
hypogonadism (89).

The anterior pituitary consists of five major hormone-producing 
cell types: somatotrophs, thyrotrophs, lactotrophs, corticotrophs, and 
gonadotrophs. Each of these secretes specific hormones, growth 
hormone, thyrotropin, prolactin, ACTH, and gonadotropins, 
respectively. The pulsatile releases of the gonadotropins into the blood 
are crucial for normal male reproduction (90), although all of these 
peptide hormones have indirect effects on testis development and 
function. GnRH stimulates the secretion of LH and FSH from 
gonadotrophs, but continuous GnRH stimulation of the pituitary 
results in decreased LH and FSH secretion via desensitizing the GnRH 
receptor (69). Thus, long-term inactivation of gonad function can 
be  achieved through continuous treatment with GnRH agonists; 
however, in many species, including dogs, cats, sheep, and primates, 
this effect is reversible (91–94).

In the testis, LH binds to receptors on Leydig cells in the 
interstitium, stimulating the production of testosterone, whereas FSH 
binds to Sertoli cells lining the seminiferous tubules and helps to 
regulate their proliferation prior to puberty. After puberty, once Sertoli 
cells begin to express androgen receptor (AR), FSH enhances the 
action of testosterone, which provides the support needed for germ 
cell progression through the final phases of spermatogenesis (95, 96). 
In males, a feedback loop in the HPG axis is established by the 
secretion of testicular hormones. In addition to responding to estrogen 
and testosterone, cells in the hypothalamus are also capable of 
converting testosterone to estrogen (specifically, 17β-estradiol, or E2) 
by expressing aromatase (97). ARC neurons express estrogen receptor 
1 (ESR1) and AR (98), and the removal of androgen production by 
castration causes increased KISS1 expression in the ARC, which 
results in GnRH stimulation of gonadotropin secretion. Thus, 
androgens are negative regulators of ARC kisspeptin neurons (98, 99). 
Inhibin-B, a major peptide hormone produced by Sertoli cells in 
response to FSH, also contributes to the negative feedback loop 

between testes and the pituitary by suppressing the secretion of 
FSH (100).

2.2 Testes

The testis has two major compartments: seminiferous tubules 
and interstitial space or intertubular region. Sertoli and germ cells 
occupy the seminiferous tubule epithelium, both of which can 
be targeted for sterilization (101). Sertoli cells are the somatic cells 
whose cytoplasm extends as complex thin arms around the 
developing germ cells, guiding their proliferation and 
differentiation through multiple phases of spermatogenesis to 
produce spermatozoa that are released into the lumen (102). The 
intricate physical association of Sertoli cells with germ cells begins 
with the Sertoli–Sertoli tight junction, which is a major part of the 
blood–testis barrier (BTB). The BTB must be traversed by large 
cohorts of preleptotene spermatocytes held together by thin 
cytoplasmic bridges (103). Part of this tight junctional complex 
between Sertoli cells is a structure called the basal ectoplasmic 
specialization, an actin filament/endoplasmic reticulum-associated 
structure, which, if disrupted chemically, renders the male infertile 
(104–107). The ectoplasmic specialization is retained in the apical 
cytoplasm and serves as the anchoring device to allow Sertoli cells 
to hold and traffic germ cells within the epithelium until they are 
released by spermiation (108, 109). A review of the molecular 
components maintain Sertoli cell physiology, and the BTB reveals 
an array of potential targets for impeding spermatogenesis, several 
of which have been experimentally targeted by chemical exposure 
and proposed as potential male contraceptives (106). Due to the 
close relationship between the Sertoli cell membrane and 
developing germ cells, any disturbance in Sertoli cell physiology 
will always result in abnormal development or loss of germ cells 
within the epithelium (110).

Sertoli cells are required for the formation of the seminiferous 
tubules and maintenance of germ cell development. During fetal and 
neonatal development, Sertoli cells are partially dependent on FSH for 
proliferation and establishment of the adult population, but in adults, 
both FSH and testosterone are required for Sertoli cells to maintain 
quantitatively normal spermatogenesis (111, 112). Therefore, Sertoli 
cells are a potential target for inducing infertility; however, blocking 
FSH stimulation alone would not necessarily induce sterility but 
rather produce a significant decline in sperm production. In contrast, 
blocking testosterone production would prevent Sertoli cell’s 
maintenance of sperm production and stop sexual behavior.

Some chemicals directly affect the germ cells, as it is possible to 
target spermatocytes and the process of meiosis (105), spermiogenesis 
or formation of the spermatids (105, 113), and specific steps in sperm 
release (105, 114, 115). However, the best germ cell target for 
sterilization would be  the spermatogonium. Spermatogonia may 
be directly inhibited or indirectly inhibited by disrupting the integrity 
and function of the BTB, which is essential for spermatogenesis in 
adulthood (105). Destruction of spermatogonial stem cells results in 
progressive loss of all germ cells, leaving only Sertoli cells and inducing 
permanent sterility (116, 117). Spermatogonial stem cells are regulated 
by hormones and growth factors from Sertoli, Leydig, and peritubular 
cells, and their self-renewal is dependent on specific genes such as 
GDNF, ETV5, and ID4 signaling pathways (118, 119). Although 
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spermatogonial stem cell renewal can be inhibited (118), in light of 
the importance of stem cell biology in other organs, careful 
consideration must be given to potential serious multisystemic side-
effects. Specifically, GDNF, ETV5, and ID4 signaling play crucial roles 
in the differentiation and survival of neurons, as well as in the 
quiescence of stem cells (120–122). Therefore, the disruption of these 
signaling pathways by intervention of exogenous chemicals could 
potentially lead to dysfunctions in the brain and spinal cord.

Leydig cells of the testis synthesize androgens, most importantly 
testosterone, and are a primary source of intratesticular estrogen. 
Thus, Leydig cells are targeted if the goal is to inhibit androgen 
production and sexual behavior in addition to inducing sterility, as 
they synthesize androgens, most importantly testosterone, and are also 
a primary source of intratesticular estrogen (123, 124). Leydig cells are 
located in the space identified as the interstitium, between 
seminiferous tubules, which also contains blood vessels, open 
lymphatics and sinusoids, immune-reactive cells, and peritubular cells 
(125). This location is important because testosterone is released into 
circulation for stimulation of masculine characteristics throughout the 
body and serves as an essential Sertoli cell stimulus for the 
maintenance of spermatogenesis (110, 126). A crucial factor in 
targeting Leydig cells is age of the male. During gestation, LH is not 
required for fetal Leydig cell synthesis of testosterone (127). However, 
after birth, there is a shift to LH dependency for Leydig cell maturation 
at puberty and androgen production (125, 128). Thus, after birth, the 
Leydig cell could be  indirectly targeted by inhibiting the HPG 
axis (129).

2.3 Male reproductive tract (efferent 
ductules, epididymis, vas deferens)

Spermatozoa leave the testis via rete testis chambers and enter the 
male reproductive tract, where they travel slowly during storage and 
maturation before ejaculation. The testes have tracts that consist of 
multiple efferent ductules coming from the rete testis, forming single 
epididymal tubes, and ending with the vas deferens and a common 
ejaculatory duct (130).

Efferent ductules are thin, convoluted tubules that connect rete 
testis with the epididymis and thus are found adjacent to the testis 
(131). This proximal location provides a unique target for sterilization, 
as blockage of the lumens in the ductules will prevent sperm from 
entering the epididymis and, in some species and under specific 
conditions, can lead to testicular atrophy (132, 133). Efferent ductules 
are the only site in the male tract having motile (kinetic) cilia, which 
vigorously agitate the luminal fluid (134, 135), an activity required for 
the maintenance of fluid reabsorption (131, 132, 136). Efferent 
ductules have kidney-like physiology and reabsorb nearly 90% of the 
fluid in the lumen, thereby increasing sperm concentration 28-fold 
before passage into the epididymis (137). Both the ciliated and 
non-ciliated cells are potential targets for male sterility. Disturbing the 
function of either cell type can result in permanent damage to the 
head of the epididymis and, consequently, reduced fertility or cause 
sterility in some cases (131–133, 135, 138, 139). However, the basic 
anatomy of these tubules differs between large and small mammals. 
In smaller mammals, such as rodents, several ductules near the rete 
testis merge into a single, very thin, common duct near the head of the 
epididymis, thus forming a funnel. This forces the fluid and sperm to 

release into the epididymis through a single small tubule, creating a 
potential problem. In larger mammals (dogs, cats, pigs, cattle, and 
human) and birds, numerous efferent ductules released from the rete 
testis with only a few cranial ducts merging to enter the top of the 
epididymis, while most remain independent, providing multiple 
entries into the side of the epididymis. Thus, smaller mammals will 
be more susceptible to blockage and fluid accumulation than larger 
mammals due to the funnel formation leaving only one exit for sperm 
(133). On the other hand, fluid reabsorption is inhibited rather than 
creating a blockage; as observed in the Esr1-knockout male (138–140), 
it would be possible to induce sterilization in all mammals by diluting 
the semen and affecting sperm maturation in the lumen.

Numerous efforts have also been made to create a male 
contraceptive or induce sterility by targeting the epididymis to disrupt 
sperm maturation or block sperm transport (141, 142). The epididymis 
forms a single highly convoluted tubule between the efferent ductules 
and vas deferens. As spermatozoa pass through the epididymis, they 
acquire progressive motility and fertilizing ability; thus, the epididymal 
epithelium is uniquely established to create a nurturing environment 
to facilitate these physiological functions. In general, there are four 
major regions beginning with the head of the epididymis (initial 
segment and caput), the corpus (middle), and cauda (storage area). It 
has often been overlooked that the head of the epididymis in larger 
mammals consists almost entirely of coiled efferent ductules that enter 
the single epididymal tube (130). This important distinction must 
be considered when comparing chemical effects on the epididymis in 
different species, but older literature often used the entire epididymis 
for analyses and called it “epididymis” while including all the efferent 
ductules. Analysis of the rat epididymal transcriptome revealed at least 
19 distinct segments of the epididymis, based on differential gene 
expression patterns (143). Each segment has distinct and overlapping 
functions, derived from structural and molecular differences among 
the basic epithelial cell types. Thus, there are numerous potential 
targets for contraception and sterilization within the epididymis (142). 
Principal cells synthesize essentially all proteins secreted into the 
lumen but also support long, branched, microvilli that continue the 
reabsorption of luminal fluids. Narrow and clear cells actively secrete 
protons into the lumen, thereby lowering the fluid pH, which helps to 
maintain the maturing sperm in a non-motile state (144). The basal 
cells have stem cell features and may be  able to regenerate the 
epithelium (145). Most importantly, they have axiopodia that can 
reach the lumen in some regions and participate in transepithelial 
transport and physiological cross-talk with the clear cells (144). In 
addition to the basic epithelial cells, the epididymis has a highly 
regulated immune environment consisting of monocytes, 
macrophages, lymphocytes, and intraepithelial dendritic cells 
(144, 146).

The vas deferens is a muscular tube that transports sperm from 
the cauda epididymis to the ejaculatory duct. The three layers of 
smooth muscle across a folded epithelium with branched microvilli 
provide a powerful propulsion of sperm at ejaculation (147). Because 
the vas deferens is easily located and palpable, vasectomy has become 
one of the most successful, simple sterilization methods for men (148) 
and has also been proposed for use in dogs and cats (3, 149). Based on 
its success in men, there have been numerous attempts to adapt a 
non-surgical method of vas occlusion by injecting various types of 
sclerosing agents that induce fibrosis and blockage of the lumen (see 
Section 3.3.2). Although this method has been focused on adult males, 
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there is no reason to believe that it could not also be performed in 
prepubertal animals, resulting in sterility while maintaining testicular 
function and testosterone production. In feral animals, epididymal 
blockage and vasectomy have been proposed as being advantageous 
in some species by providing breeding competition in the population 
(150, 151).

In summary, the male reproductive system across all mammalian 
species begins with a peptide hormone regulatory pathway in the 
hypothalamus and pituitary. This system sets up a feedback loop with 
hormones produced in the target sexual organ, the testis. Because the 
goal is to produce mature germ cells (spermatozoa) that can 
be ejaculated and fertilize eggs in the female reproductive tract, there 
are numerous checkpoints to target for potential sterilization of the 
male (Figure 2). Some targets can provide a permanent infertility, 
while others have the potential for recovery and thus would be labeled 
as contraceptive. Some targets will inhibit the production of 
testosterone and thus dampen or remove sexual behavior, as well as 
prevent the production of sperm, while other targets will only block 
the release of sperm by ejaculation.

3 Methods of sterilization

3.1 Surgical sterilization

There are four main procedures for surgical sterilization: physical 
removal of the gonad (castration or gonadectomy), gonad-sparing by 

cutting the vas deferens (vasectomy) or insertion of a plug, and 
ligation of the testicular artery (Figure 3).

3.1.1 Removal of testis
Surgical castration, recently also called desexing (152), has been used 

for thousands of years as a method of sterilization in numerous animal 
species (7). In dogs and cats, it has become the method of choice for 
inhibiting male reproduction to mitigate overpopulation, especially in 
free-roaming animals (153–156). Castration provides the added benefit 
of removing the major source of testosterone production and thus helps 
to control sexual and aggressive behaviors and androgen-associated 
diseases, such as prostate enlargement (benign prostatic hyperplasia) and 
testicular neoplasia (30, 157, 158). Some studies have reported a 13.8% 
increase in life span for gonadectomy in male dogs possibly due to a shift 
in the causes associated with death and in animal behavior (23, 24). 
However, others have indicated that when accounting for the age at 
castration, early testis removal reduces the lifespan at least in some dog 
breeds (25). Some specific cancers, such as the osteosarcoma, are more 
common in neuter that intact male dogs (159). Moreover, neutering 
leads to persistent supraphysiological levels of LH, which may affect 
multiple organs that express LH receptors (159). Although the 
mechanism for these phenomena has not yet been firmly established, 
considerable attention is being paid to help the owners determine the 
optimal age for gonad removal in each dog breed (23, 30, 160, 161).

Castration is also used in large animal production with the 
main purpose of suppressing the production of androgens, such as 
in beef cattle (162, 163) and pigs (27, 164), but is also called 

FIGURE 2

Overview of potential methods for replacing castration for inducing sterility in male animals. Sterilization methods for male mammals (i.e., dogs), can 
be broadly categorized into three approaches that result in the blocking of sperm production and fertility in the male: (A) Targeting of the 
hypothalamus/pituitary region is a common approach. Estrogens (E2) and androgens (T) and their antagonists inhibit sexual behavior and testicular 
function by indirectly inhibiting GnRH production and, if given neonatally, can induce permanent infertility. Another approach involves the use of GnRH 
agonists/antagonists, but these require periodic administration to achieve complete sterilization. (B) Direct chemical targeting of the testis and 
reproductive tract has been attempted using several methods, including intra-organ injections. Direct injection into the testis, epididymis, or vas 
deferens can induce tissue necrosis and fibrosis, which blocks the transport of sperm. Blockage can also induce sterility by injecting a polymer into the 
vas deferens lumen. A variety of chemicals have also been given orally, subcutaneously (SC), or intra-peritoneally (IP) to produce specific effects that 
involve testicular toxicity, or inhibition of specific pathways (e.g., cholesterol synthesis), as well as inflammation, which contributes to cellular necrosis. 
(C) Immunological castration uses antibodies or stimulation of antibody production to target components within the HPG axis, including KISS1, GnRH, 
LH, and FSH in the hypothalamus and pituitary. Immunological methods can also directly target the testes by inducing antibodies against the 
gonadotropin hormone receptors, LHR and FSHR, as well as target sperm proteins to inhibit motility or fertilizing ability. However, vaccine-induced 
infertility is only temporary and requires periodic administration.
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‘physical castration’ in bulls because it can be  performed in a 
rather crude manner without anesthesia. For example, one method 
uses an elastic band to constrict the blood supply causing necrosis 
(165) but a method called Burdizzo castration involves crushing 
the spermatic cord of each testis within the scrotum (163). The 
benefit of surgical castration in pigs has been recognized for 
centuries, not only for controlling the presence of ‘boar taint’ in 
pork but also for reducing male aggression on large commercial 
farms (27, 166–168). Castration in dogs and cats is performed 
under strict regulations by licensed veterinarians using either 
general anesthesia or sedation and local anesthetics (153, 169). 
However, male pigs are typically castrated soon after birth without 
anesthesia (27), and calves are castrated with or without local 
anesthesia (162). Significant concern has been raised over the 
resulting pain experienced by the young pigs, cattle, and horses 
(27, 164, 170, 171). However, general anesthesia would be  too 
costly on the farms and still not account for post-operative pain. 
Various methods for pain reduction have been discussed (168, 
172), and alternatives to surgical removal of the testes, such as 
immunocastration, have been proposed and tested (173–175). In 
the horse, castration is reportedly best done in a standing position, 
with induced sedation and local analgesia. Although fairly routine 
in practice, the risk of complications is not trivial, with edema, 
infection, and hemorrhage being the most frequently reported 
problems (171, 176–178).

While castration helps to address animal welfare problems created 
by overpopulation of certain animal groups, especially among free-
roaming dogs and cats (179, 180), there is now considerable 

push-back on the continued use of this method of sterilization, and 
several reviews have examined alternative methods (20, 21, 154, 181–
188). Animal welfare concerns are repeatedly being raised regarding 
the associated risks of pain, stress, and post-surgical complications 
(163, 184, 189–191). Such issues have led to the proposal of numerous 
alternatives and potentially more humane methods, especially for 
raising male pigs (168, 191–195).

3.1.2 Vasectomy
Vasectomy involves surgical isolation of the vas deferens, ligation 

in two areas, and then removal of the ligated region. This is also called 
gonad-sparing because it preserves intact testes and their ability to 
produce hormones (3). The method is performed under general 
anesthesia, typically involving a simple incision of the scrotum in men 
and inguinal incision in dogs and cats (153, 158). Vasectomy is one of 
the most common, convenient, and effective methods of sterilization/
contraception in men, with nearly 500,000 being performed annually 
in the United States (196, 197). Although vasectomy is considered safe 
and reliable, a few complications have been shown to arise post-
surgery, such as infections, chronic scrotal pain, and sperm 
granulomas (198). Vasectomy was first explored in dogs and then 
attempted in men in the late 1890s (199, 200).

In dogs, vasectomy is becoming a popular choice as a form of 
gonad-sparing surgery, with some evidence suggesting better health 
and behavior outcomes than testis removal, despite not preventing 
reproductive diseases, such as prostate enlargement (2). However, in 
one experimental study with dogs, vasectomy was shown to induce 
testicular damage and thus may not be  reversible (201). A new 

FIGURE 3

Surgical methods for sterilizing the male. 1. Surgical removal of the testis by castration is the oldest method and remains the most reliable even today. 
2. Vasectomy, which involves ligation and removal of a section of the vas deferens, is a commonly used method in humans and has been proposed as 
a gonad-sparing method in domesticated animals when it is desirable to maintain androgen output by the testis. 3. Insertion of a plug, made of 
polyurethane or other types of polymers, has been tested in humans. 4. Surgical ligation of the testicular artery has been proposed as a way to induce 
testicular atrophy, without complete removal of the organ. Adapted and modified from Biorender.
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technique called ‘laparoscopic castration’ and ‘vasoligation’ was 
introduced for use in dogs, whereby ligation or fusion of the tissues is 
performed on the vas deferens and/or the testicular blood vessels, 
without removing the testes (202–204). This method caused total 
testicular atrophy and epididymal fibrosis, with testosterone 
concentrations equivalent to that after surgical castration. Another 
method is simply to induce blockage of the vas deferens, without 
ligation, by injecting substances directly into the lumen (as discussed 
in section 3.3.2).

Testicular effects after vasectomy appear to be dependent on two 
events: increased pressure and expansion of the luminal contents into 
the head of the epididymis (205) and/or formation of sperm 
granulomas (198, 206). While some studies have reported no swelling 
or back-pressure in the testis (as sperm and fluid continue to 
be  produced by the seminiferous epithelium), they did observe 
degenerative changes in the seminiferous epithelium leading to 
atrophy. An immune reaction within the testis and formation of 
antibodies to sperm would induce testicular lesions without back-
pressure being the cause (207–209). In most cases, it is thought that 
the formation of sperm granulomas in the epididymis will help to 
prevent swelling of the testis by reabsorbing the build-up of fluids and 
sperm after vasectomy. The immune response and the potential for 
testicular orchitis depend on a leukocyte (regulatory T-cell) cell 
response, which can lead to a prolonged tolerance state in mice (210). 
However, the formation of circulating antibodies is quite variable, with 
approximately 7–30% of vasectomized men showing anti-sperm 
autoantibody production (198). Vasectomy in immature dogs caused 
a delay in testis maturation but had no effect on testosterone 
concentrations after either immature or adult vasectomies, although 
some dogs showed significant pathology in the testes (211).

In summary, surgical castration is the predominant method for 
sterilizing animals, whereas vasectomy is more commonly utilized in 
humans. The advantage of surgically removing the testes in animals 
lies in the established techniques for the swift cessation of both sperm 
production and the primary secretion of testosterone, resulting in 
permanent sterilization. Surgical excision of any component of the 
male reproductive tract can induce sterility; however, its application 
and utility will be context-driven. Traditionally, veterinarians and pet 
owners have favored castration as a form of inducing sterility while 
decreasing sexual behaviors, which necessitates either the suppression 
of Leydig cell activity or the complete excision of these androgen-
producing cells. However, gonad-sparing surgery is gaining popularity, 
especially among dog breeders, as increasing evidence suggests health 
benefits from maintaining reproductive steroid production at least in 
young animals. In contrast, vasectomy is not a feasible alternative to 
castration in farm animals due to its time-consuming nature and the 
skill required. Therefore, its use is limited to specific situations, such 
as producing teaser bulls for estrus detection.

3.2 Systemic chemical sterilization

The idea of using chemicals or drugs to induce male sterility was 
originated from toxicology studies of chemical compounds, some of 
which were identified as chemosterilants (36). For example, exposure 
to highly toxic environmental chemicals such as cadmium resulted in 
the complete destruction of the seminiferous epithelium (212). 
However, these chemicals can induce systemic problems, such as 

neurotoxicity (213), limiting their specific application for inducing 
sterility, especially in larger mammals. However, this category of 
sterilization has a significant application for use in smaller animals, 
especially rodent pests, in which death of the animal is not of 
significant concern (38, 214–217). While hundreds of chemicals have 
demonstrated toxicity to the male reproductive system or act as 
inhibitors of specific pathways crucial for spermatogenesis, as 
observed in endocrine-disrupting compounds (218–222), only a few 
have been proposed for potential use as male sterilants or long-term 
contraception in domesticated species [see the following reviews (45, 
223, 224)]. A few examples are discussed here but others are presented 
in Table 1.

Ketoconazole (Nizoral) is a good example of a chemical that was 
developed for therapeutic use but later explored for its potential as a 
male sterilant or contraceptive. It was initially developed as an 
imidazole antifungal drug for humans (225, 226), as well as for use in 
dogs, cats, and other animals (227–229). Its mode of action involves 
inhibiting ergosterol biosynthesis and disrupting membrane lipids in 
fungi (229). Further research revealed its ability to inhibit cytochrome 
p450 enzymes in mammals, to impede steroid synthesis (230). Its 
inhibitory effect on androgen synthesis (231, 232) raised the possibility 
that a derivative could be used as a male contraceptive (233), as well 
as a therapeutic method to suppress gonadal and adrenal hormone 
synthesis for treatment of prostate cancer and Cushing’s syndrome 
(230, 234).

Ketoconazole demonstrated the ability to inhibit sperm motility 
in dogs, primates, and humans, following oral administration at the 
optimum dose (233, 235–237). Most importantly, the drug inhibited 
testosterone synthesis and interstitial fluid production directly in the 
testis, without inhibiting pituitary function (238, 239). In contrast, 
other imidazole compounds were shown to first decrease LH, which 
indirectly decreased testosterone. At higher dosages, ketoconazole 
induced germ cell apoptosis, producing oligospermia and 
azoospermia, and lead to a reduction in testicular weight with partial 
atrophy. Additionally, it caused decreases in epididymis and ventral 
prostate weights due to steroid synthesis inhibition (237). Male 
sterility was rapidly achieved, as treatments resulted in infertility 
within 3 days, using 200–400 mg/kg in rats (236). However, the 
adverse effects included not only central nervous system toxicity but 
also adrenal insufficiency, with decreased adrenal corticosteroid 
production and could lead to death (236, 240). Therefore, analogs of 
ketoconazole were synthesized hoping to reduce toxicity and be potent 
spermicides (236). Ultimately, none of these compounds have been 
marketed for human contraception, possibly due to their potential 
interaction with the oral contraceptive pill (241). While the drug is 
used in dogs as an antifungal, it has not been approved for inhibiting 
reproduction in domestic animals.

4-Vinylcyclohexene diepoxide (VCD), a metabolite of vinyl 
cyclohexene (VCH), is an industrial chemical that is used as a diluent in 
the production of epoxides, epoxy resins, plastics, rubber, and pesticides 
(242, 243). During the study of its potential toxicity to human exposure, 
it was discovered that VCD was a reproductive toxicant in both males 
and females (243). In the male, VCD caused germ cell degeneration 
(244) and was later proposed as a non-surgical contraceptive or sterilant 
in dogs and cats, especially for the female (245–248). However, its 
systemic toxicity, particularly its potential negative effects on the brain 
(249), was a major concern and limited its further development. 
Nevertheless, VCD is an example of careful targeting of a chemical for 
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TABLE 1 Systemic non-hormonal chemicals that induce potential sterilizing effects in male animals.1

Target 
organ

Admin2 Chemical Trade 
name3

Species Dosage Original 
use

Short-term 
pathology

Long-term 
pathology

Mechanisms 
of action

T
decreased3

Inflammation Side-effects

Testis Oral, s.c. Ketoconazole Nizoral Mouse, Rat, 

Dog, Monkey

10–300 mg/kg Imidazole 

antifungal drug

Germ cell 

apoptosis

Decrease testis wt; 

germ cell loss; 

testicular atrophy; 

azoospermia

Inhibition of 

cytochrome p450 

enzymes, blocking 

steroidogenesis; 

reduces testosterone

Yes Yes Inhibits steroid 

synthesis; central 

nervous system 

toxicity; adrenal 

insufficiency

Embelin N/A Dog,

Rat,

Mouse

20–80 mg/kg Anti-cancer Reversible 

infertility; 

decrease T

Spermatogenesis 

arrest; decrease 

testis wt

Inhibition of energy 

metabolism and 

sperm motility

Yes No None

Dibromochloro-propane N/A Rat 50 mg/kg Nematicide Multinucleated 

giant cells; sperm 

granuloma

Azoospermia Inhibit sperm glucose 

metabolism

No No Damage to liver, 

kidneys, stomach

4-Vinylcyclo-hexene 

diepoxide

N/A Rat 100–500 mg/kg Industrial 

chemical

Decrease sperm 

count; decrease T

Testis necrosis Induces oxidative 

stress

Yes Yes Liver, kidney, 

stomach, and 

brain toxicity

20,25-diazacholesterol 

dihydrochloride

DiazaCon™ Rat, Mouse, 

Bird, Squirrel

8–100 mg/kg Lower serum 

cholesterol

Decrease T; germ 

cell loss; 

multinucleated 

giant cells

Leydig cell 

degeneration; testis 

atrophy

Inhibits 

steroidogenesis

Yes No Inhibits synthesis 

of glucocorticoids

Quinestrol and 

Levonorgestrel

EP-1 Rat, wild rodent 0.33–0.67 mg/kg Female 

contraceptive; 

synthetic 

hormones

Decreased 

epididymal 

weight; decreased 

cauda sperm 

number; germ 

cell loss

Testis recovers Inhibits HPG axis No Not determined Increased weight 

adrenal gland

Testicular and 

epididymis

Oral, s.c. Methyl 

1-(butylcarbamoyl)-2-

benzimidazole-carbamate

Benomyl 

(Benlate)

Carbendazim

Rat 25–500 mg/kg Fungicides Increase testis wt; 

sloughing germ 

cells; inhibit 

mitosis; occlusion 

of efferent ducts

Testis atrophy; 

decrease testis wt; 

fibrosis of efferent 

ducts; azoospermia

Inhibits microtubule 

polymerization; 

occlusion of efferent 

ducts

No Yes Hepatotoxicity; 

genotoxicity; fetal 

malformations

Lonidamine derivatives Gamendazole

Adjudin

Rat, Mouse, 

Monkey, Dog, 

Rabbit

25–100 mg/kg Anti-cancer Sloughing germ 

cells

Testis atrophy; 

azoospermia

Disruption of Sertoli 

cell junctions; 

occlusion of efferent 

ducts;

No Yes Reduced motor 

activity, palprebral 

ptosis, lacrimation, 

tremors, and 

dyspnea

Epididymis Oral, s.c. 3-Chloro-1,2-propanediol α-Chlorohydrin

Epibloc®

Rat, Mouse, 

Hamster, Dog, 

Guineapig, 

Sheep, Boar, 

Monkey

10–140 mg/kg Organic 

chemical food 

contaminant

Immobilization 

of sperm

Testis atrophy; 

necrosis; 

azoospermia

Occlusion of efferent 

ducts; formation 

spermatoceles; inhibits 

epididymal function; 

inhibits glycolysis

No Yes High doses are 

neurotoxic and 

nephrotoxic

1For supporting references see: Supplementary Table S1 References. 2Administration of the chemical/drug; oral, subcutaneous, or cutaneous (s.c.). 3N/A, not applicable; T, testosterone.

https://doi.org/10.3389/fvets.2024.1409386
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Hess et al. 10.3389/fvets.2024.1409386

Frontiers in Veterinary Science 10 frontiersin.org

sterilization in a species where general toxicity or even death is of less 
concern, as long as the compound induces male sterility. With further 
development, the testicular toxicant triptolide (250) was added to VCD 
and marketed as ContraPest® (251–254). This commercial product is 
approved by the US Environmental Protection Agency (EPA) as a 
rodenticide, but unfortunately the doses used will not achieve sterility 
and the rodents must receive continual exposure for sustained 
infertility (217).

20,25-diazacholesterol dihydrochloride was first developed by 
G.D. Searle, as a potential drug for lowering serum cholesterol levels in 
humans (255, 256). Subsequent studies of this drug found secondary 
effects on reproduction, which made it a potential reproductive toxicant 
in several species (257–259). The compound inhibits side-chain cleavage 
of cholesterol, thus reducing the synthesis of reproductive steroid 
hormones by blocking the conversion of cholesterol to pregnenolone 
(260). In male birds and rodents, this chemical decreased testosterone 
levels, caused the loss of germ cells, induced seminiferous tubule atrophy, 
and resulted in the degeneration of Leydig cells (257–259, 261). The 
compound was given the trademark DiazaCon™ and was marketed first 
as Ornitrol to control bird populations (260, 262). However, at higher 
doses, there were non-reproductive health effects and, in one study, 
caused the death of two birds (259). It has also been used in the control 
of other mammalian wildlife, including the prairie dog (263, 264) and 
grey squirrels (265–267). However, DiazaCon is no longer registered for 
use in the USA.

Some chemicals show broad-spectrum effects due to their 
mechanistic actions that disrupt biochemical pathways in both the testes 
and the male reproductive tract (Table  1). Two examples are the 
benzimidazole-carbamate compounds and lonidamine. Because 
the outcome depends on dose and time of exposure, the interpretation 
of the mechanisms leading to infertility has proven to be difficult. At the 
lower dosages, these chemicals tend to have direct effects on the 
seminiferous epithelium, such as disruption of Sertoli cell function, 
sloughing of germ cells, and disruption of the BTB, while at the higher 
doses, the overwhelming effects can be found in the reproductive tract, 
such as ciliostasis and occlusion of efferent ductules, inflammation, and 
fibrosis, which ultimately lead to testicular atrophy.

Benomyl (BEN) and Carbendazim (CBD) (methyl 
1-(butylcarbamoyl)-2-benzimidazole-carbamate) are systemic 
fungicides used for the application on plants. BEN is rapidly degraded in 
water to form CBD. The fungicidal effects are mediated by the binding 
of the compounds to β-tubulin thereby causing depolymerization of 
microtubules, which disrupts the formation of the mitotic spindle, thus 
blocking cell division (268). Because mitosis is essential in both plants 
and mammalian cells, the potential toxicological effects of this class of 
compounds was carefully tested for reproductive toxicity in rats (269).

Early studies found that these compounds induced infertility by 
decreasing cauda epididymal sperm counts and producing testicular 
atrophy (269–273). These effects were dependent on age at exposure, 
dosage, and duration of exposure. First, the focus was on the microtubule 
effects, as cell proliferation in the seminiferous epithelium was disrupted, 
and there was massive sloughing of germ cells into the lumen (272). 
However, subsequent experiments showed that these initial testicular 
effects were rapid, happening within minutes after exposure (274–277), 
while simultaneous pathological changes were occurring downstream in 
the efferent ductules, where the lumens became occluded. The ductal 
effect blocked the passage with compacted sperm, indicating that 
treatment had interfered with fluid reabsorption (277–280). An increased 

rate of fluid reabsorption would cause an over-concentration of the 
sperm, creating a luminal plug and thereby inhibiting sperm transport 
into the epididymis. This pathological response has now been shown to 
occur after inhibiting motile cilia in the efferent ducts (135, 281). BEN 
has been demonstrated to induce ciliostasis also in the trachea (282). 
Ultimately, the obstruction of efferent ductules results in the 
accumulation of sperm and fluid in the lumen, leading to back-pressure 
in the testis and dilation of rete testis chambers and seminiferous tubules. 
Over time, the testis weight nearly doubles until it peaks, followed by a 
gradual regression until total atrophy, resulting in sterility. This 
pathological mechanism is common to several animal species (133). 
However, its ability to induce male sterility appears to be limited to the 
rat species and is dependent on the induction of a rapid, strong 
inflammatory response leading to permanent occlusion by fibrosis (283). 
However, these compounds have never been developed as rodenticides.

Lonidamine is an indazole carboxylic acid derivative that produces 
male sterility through a mechanism similar to the benzimidazole-
carbamate compounds. This chemical was first developed for the 
treatment of cancer (284) and later identified as an anti-spermatogenesis 
compound (285). As an anti-cancer agent, it inhibited cellular energy 
metabolism (286, 287) and showed no toxicity in rats, monkeys, and 
dogs at low doses. However, at higher dosages, the compound had severe 
effects on the testis (288, 289), which were similar to BEN and CBD, as 
it produced Sertoli cell effects in the testis that resulted in the sloughing 
of immature germ cells (290–295), loss of epididymal sperm, and 
testicular atrophy (294, 296). Consequently, the potential use of 
lonidamine as a rodenticide by inducing sterility in male rats and mice 
was studied. Instead, at lower doses, the effects were primarily on Sertoli 
cells, causing disruption of the blood-testis-barrier (293, 297), and the 
effects were reversible. Therefore, lonidamine was studied as a male 
contraceptive under the names Gamendazole and Adjudin (107, 236, 
286, 290, 293, 294, 298, 299).

Although this compound has received extensive attention for fertility 
control in pests, the mechanism that produces testicular atrophy and loss 
of epididymal sperm has not been completely elucidated. Data reported 
thus far point to an occlusion of the efferent ductules, although 
histopathology of these ductules has never been evaluated. First, there is 
evidence that the seminiferous tubule may go through transient dilation 
(291) before atrophy (294, 296). Second, high-dose treatments resulted 
in the loss of epididymal sperm (288). Finally, lonidamine inhibited the 
cystic fibrosis transmembrane conductance regulator (CFTR) in the 
epididymis (300, 301) and, like the benzimidazole-carbamate chemicals, 
inhibited microtubule polymerization (302). CFTR is highly expressed 
in the efferent ductule epithelium and epididymis (303–306), and 
downregulation of CFTR is associated with ductal occlusions (304, 307). 
Thus, lonidamine-induced sterility in rodents appears to involve 
reproductive tract occlusions and testicular back-pressure atrophy, 
similar to BEN and CBD.

α-Chlorohydrin (3-Chloro-1,2-propanediol) is a chemical solvent that 
also targets the efferent ductules. This compound is classified as a 
chemosterilant (308) and registered with the EPA as a rodenticide. It is 
marketed under the name Epibloc® (Reg. No. 42882–2), but despite its 
application in rodents (309), the observed toxicity found in 
non-reproductive organs at higher doses (310–312) has precluded its 
further development as a contraceptive or a sterilant in larger mammals. 
Anti-fertility activity of α-chlorohydrin was discovered in the 1960s 
through compound screening for activity on post-testicular spermatozoa 
(313). At first, it appeared that the chemical might be the perfect male 
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reversible contraceptive because it was shown to act directly on sperm 
within the epididymis by inhibiting sperm motility and thus fertilizing 
capability and was effective in a number of species (310, 314–316). 
Subsequent studies revealed that low doses of α-chlorohydrin inhibited 
glyceraldehyde-3-phosphate dehydrogenase activity, which caused the 
dramatic decrease in motility (311, 317–321). The effect on sperm was 
rapid and direct (311, 322), but other effects were also found in the 
epididymis such as inhibition of fluid reabsorption in the cauda region, 
where sodium and water transport were inhibited by 50% (323, 324). 
Moreover, sugar transport across the epithelium of the rat caput 
epididymides was disrupted (325).

While lower doses of α-chlorohydrin had low toxicity, they only 
produced a contraceptive effect and no sterility. However, it was 
discovered that a single high-dose administration in the rat could make 
the males permanently infertile (41, 311, 314, 326–329). The higher 
doses caused rapid formation of spermatoceles and sperm granulomas, 
which at first were thought to be located in the caput epididymis, but 
further study revealed the lesions to be in the efferent ductules and initial 
segment of the epididymis (327, 328). These lesions near the testis were 
found to cause complete blockage of the reproductive tract, ultimately 
resulting in sterility (311, 327, 329). This pathology was similar to that 
observed with the benzimidazole-carbamate compounds and 
lonidamine, as any occlusion of the efferent ductules can cause fluid 
accumulation in the testis and produce atrophy (133). However, it was 
found that the high doses also led to neurological and kidney 
damage (311).

In summary, systemic exposure to chemicals for the purpose of 
inducing male sterility is basically an offshoot of toxicology studies. 
Although hundreds of chemicals have shown detrimental effects on male 
reproduction, only a few have given promise for clinical use to inhibit 
male fertility in domesticated species. Most efforts were initiated as 
potential ways of inducing contraception in men, but testing in a wide 
range of animals found that sterility could also be induced at higher 
dosages. However, the potential toxicity displayed in other organ systems 
has drastically limited the application of these technologies for 
contraception in men and companion animals. Noticeably, because 
toxicity in organs outside the reproductive system is not a limiting factor 
for use in controlling pest animals, it has permitted those chemicals to 
be developed into rodenticides. Regarding farm animals, because most 
of the tested chemicals are classified as having systemic and reproductive 
toxicity in humans, their use has not been considered or approved due 
to food safety concerns.

3.3 Chemical castration

Chemical sterilization has primarily been focused on the testis, but 
some treatments affect both the testis and epididymis, while others target 
only the epididymis and/or vas deferens. Treatments have included a 
wide variety of chemical classes and methods of delivery, including organ 
injections (testis, epididymis, and vas deferens), oral dosing, and 
subcutaneous or intramuscular injections. Some chemicals are effective 
after a single dose, but others require multiple treatments. The 
mechanism of action for each chemical depends on the primary cellular 
target within the organ and physiochemical pathways involved, as well 
as the delivery method (Tables 2, 3). A large number of chemicals given 
by direct injection into the reproductive organs have been studied for 
inducing infertility, but most of these fall under the classification of 

‘sclerosing agents’. This category is based on the typical reactions 
observed in tissues following treatment, which include necrosis (death 
of tissue), inflammation, fibrosis (an increase in connective tissue), 
formation of granulomas, and obstruction of the tubular lumens.

3.3.1 Testicular injection
Direct injection of chemicals into the testis to induce sterility was 

begun as a method for potentially by-passing adverse systemic 
reactions that would typically be  observed in other organs if a 
chemical was taken orally or by subcutaneous or intramuscular 
injection (Table 2). Treatment by direct injection into the testis could 
theoretically reduce the effective dosage of a compound. For example, 
testicular damage with subcutaneous injections of CaCl2 required 
approximately 2.5 mg/kg dosage, whereas direct injection of 0.15 mg/
kg into the testis was sufficient to induce testicular atrophy (330). 
Intra-testicular injections have also been used in toxicology studies 
because systemic exposures may inhibit pathways that indirectly 
damage the testis or induce death before specific effects on testicular 
cells can be analyzed (331).

A point to consider is the potential effects of the injection itself. 
Russell et al. (331) found that the injection of any volume greater than 
50 μL caused testicular swelling and an increase in turgidity of the 
testis in rats and volumes of greater than 75 μL could cause fluid back-
flow within the testis. There was no investigation of the volume 
required to induce damage due to increased pressure alone; however, 
it is well recognized that back-pressure swelling of the testis can 
induce rapid damage to the seminiferous epithelium (132, 133). 
Because many of the studies listed involved the use of high volumes 
(as high as 500 μL in the rat), caution is warranted when trying to 
interpret the dosages given in each case. An additional consideration 
is that while the injected substances were observed to disseminate 
rapidly throughout the testis within a few hours, the effects observed 
were less severe in regions further from the site of injection. Some of 
the chemicals presented in Table  2 are capable of inducing total 
testicular atrophy, but the mechanisms of action are not fully 
understood. Some responses are due to a direct action on cellular 
pathways within the organ, while indirect effects can be  linked to 
several causes, including the following: (a) general alterations in blood 
flow (by coagulative necrosis), (b) dehydration of tissues by hypertonic 
solutions, (c) induction of tissue damage and fibrosis due to the caustic 
nature of the chemicals, and (d) severe inflammation (linked to 
several responses).

Although some compounds have shown remarkable success for 
inducing sterility in the male, they reached clinical trials rarely and 
only one received approval for use in animals by the Food and Drug 
Administration (FDA) in the US (332). Included in this section are 
some of the chemicals that have been tested with this mode of 
delivery: zinc compounds and hypertonic salt solutions.

3.3.1.1 Zinc compounds
Of the chemicals studied for testicular injection, only zinc 

compounds have received FDA approval for use in animals, specifically 
in the male dog (332). Although these compounds were initially 
developed for other purposes, such as dietary supplements and the 
treatment of zinc deficiency, researchers began experimenting using 
direct injection into the testis and the reproductive tract, as a substitute 
for castration. The first compound tested was zinc tannate and was called 
Kastrin (42, 333), which produced considerable variation in testosterone 
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TABLE 2 Chemical castration by intratesticular administration and potential sterilizing effects in male animals.1

Target 
organ

Admin2 Chemical3 Trade 
name5

Species Dosage Original 
use

Short-term 
pathology

Long-term 
pathology

Mechanisms 
of action

T
Decreased5

Inflammation Side-effects

Testis Intra-testicular2 Zinc compounds Kastrin, 

Neutersol™, 

Zeuterin™, 

EsterilSol™, 

Testoblock®, 

Infertile®

Rat, Dog, Cat, 

Monkey, Bear, 

Pig

2.6–58 mg/mL Dietary 

supplement; 

treatment of 

common cold

Multinucleated giant 

cells; acute 

inflammation; 

edema; testis 

swelling

Seminiferous 

tubule necrosis; 

atrophy;

Sertoli cell barrier 

damage; massive 

neutrophilic 

inflammation; 

necrosis; tubular 

fibrosis

Yes Yes Scrotal ulceration and 

dermatitis; 

necrotizing reactions

4-allyl-2-

methoxyphenol

Eugenol

Clove oil

Dog 1 mL Cosmetics; 

anti-

anthelmintic; 

expectorant

Testis swelling Seminiferous 

tubular fibrosis

Testicular necrosis; 

inflammation

Yes Yes Epididymal 

vacuolation

CaCl2 ± ethanol & 

hypertonic NaCl

Calchlorin™, 

Salts

Rat, Dog, Cat, 

Bull, Goat, 

Donkey, Ram, 

Guinea pig, 

Buffalo

20–50% in water 

or ethanol

Inorganic salt; 

food additive; 

deicing salt; 

desiccant

Testis swelling; 

inflammation

Testicular atrophy Testicular 

dehydration; 

necrosis; coagulative 

fibrosis

Yes Yes Scrotal necrosis if 

leakage

CdCl2 Metallic salt Rat, Mouse, 

Dog, Rabbit, 

Hamster

150 μ/kg Inorganic salt 

pigment

Hemorrhage; edema; 

inflammation

Testicular atrophy Decreased blood 

flow; ischemia; 

oxidative stress

Yes Yes Toxic to numerous 

organs, if given oral

1,2,3-trlhydroxypropane Glycerol Rat, Dog, Cat, 

Monkey, Rabbit

10–70% Food additive; 

soap; laxative

Seminiferous tubule 

disruption

Testicular atrophy Hyperosmotic 

dehydration

Yes Yes None

Lactic acid Chem-Cast® Rat, Dog, Bull 85–92% Organic 

synthesis; food 

additive

Germ cell 

degeneration

Testicular atrophy Sclerosing, caustic 

chemical; necrosis; 

fibrosis

Yes Yes Scrotal necrosis if 

leakage

KMnO4 N/A Pig 0.25 g/17 mL 

acetic acid

Inorganic 

oxidizing agent; 

water treatment

N/A Seminiferous 

tubular atrophy; 

fibrosis efferent 

ducts

Sclerosing, caustic 

chemical

N/A Yes Leydig cell 

hypertrophy

Metallic & rare earth 

salts

N/A Rat, Mouse, 

Monkey

0.02–0.08 mM/

kg

Salts Focal necrosis Testicular total 

necrosis for some 

salts

Cytolysis, ischemia, 

necrosis

N/A Yes Some Leydig cell loss; 

early effects on vas 

deferens sperm; some 

salts showed no effect

Ethanol Alcohol Bull 100%; 10 mL Organic solvent Testis swelling; 

necrosis

Testicular atrophy Necrosis; 

inflammation; 

edema; fibrosis

Yes Yes Only 50% became 

infertile

Intra-

Testicular; s.c or 

i.m

Inflammatory 

induction agents4

N/A Guinea pig, 

Monkey, Rat, 

Rabbit; Dog; 

Ram

N/A Antibody 

stimulating

Inflammation; 

seminiferous tubular 

dilation; testis 

swelling

Granuloma; 

necrosis; testicular 

atrophy

Inflammation; No Yes Injection outside testis 

required for 

azoospermia for some 

agents

1For supporting references see: Supplementary Table S2 References. 2Administration of the chemical/drug directly into the testis; subcutaneous or cutaneous (s.c.), intramuscular (i.m.). 3Some of these are considered to be sclerosing agents and have also been tested as 
intra-epididymal sterilants. 4Testicular antigens ± killed bacteria; killed mycobacteria; Freund’s complete adjuvant injected into foot after intratesticular injection of turpentine; Freund’s complete adjuvant plus testis homogenate. 5N/A, not applicable; T, testosterone.
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levels and testicular pathology (334). This led to the development and 
use of the FDA approved, pH-neutralized zinc gluconate (335), which 
was marketed by Pet Healthcare International, Inc. (Columbia, MO, 
USA) as Neutersol® (336). Ark Sciences, Inc. rebranded the compound 
as Zeuterin™ in 2014. Although it was marketed heavily in the US, with 
specific training of veterinarians on the correct procedure for injection, 
and even sold outside the US under the trade name EsterilSol™ (337, 
338), in 2015, the trademarks for these products were abandoned. 
Similar zinc gluconate sterilants have been launched in Brazil under the 
names Infertile® (RhobiPharma Ind. Farm., Hortolândia, SP, BR) (339, 
340) and Testoblock® (BioRelease Technologies LCC, Birmingham, AL, 
USA) (341–344). Overall, this approach has not received a broad market 
acceptance due to inconsistencies in results and concerns regarding 
animal welfare.

Testicular injection of zinc compounds produced sterility primarily 
in pubertal and adult dogs but was also found to work in prepubertal 
puppies (345). However, the observed pathology showed inconsistent 
results, which included testicular swelling, scrotal ulceration, and 
necrotizing orchitis (332, 334, 345–348). Effects on testosterone 
concentrations were also inconsistent (337, 344, 345, 348–350). The 
primary purpose of using the zinc compounds was to induce complete 
testicular atrophy in the adult dog, with a corresponding reduction in 
testosterone, as would occur following surgical castration. The 
inconsistent results that were obtained led others to test several types of 
modifications, such as adding DMSO (dimethyl sulfoxide) to the zinc 
gluconate solution, as a way to increase dispersion of the solution 
throughout the testis. This along with using two injections instead of one 
resulted in a more severe histopathological response and a highly 
significant reduction in testosterone levels (351–353). This method has 
also been tested in cats (151, 341, 342), bulls (338), monkeys (348), and 
bears (354) but with limited success in these species.

In some cases, a transient swelling of the testis with dilation of 
seminiferous tubules was observed. This suggested that in some animals, 
the injections may have been displaced, causing either a disturbance in 
blood flow, acute inflammation, and/or failure of fluid reabsorption in 
the efferent ductules (132, 133). Although an investigation of the efferent 
ductules has never been reported, in 2009, another zinc gluconate patent 
was published in which more specific instructions were given for 
administration. These included direct injection into the rete testis/
efferent ductule region, specifically to cause blockage of the reproductive 
tract, which was claimed to induce sterility without affecting testosterone 
production. The stated goal of this refined approach was for use in free-
roaming dogs, to allow the introduction of treated dogs back into the 
feral population for breeding competition, which would not occur if the 
males lost androgen stimulation (355).

An important pathological response common to zinc gluconate and 
other compounds has been an acute, massive inflammatory reaction, 
leading to local edema, hemorrhage, vascular degeneration, swelling of 
the testis, and necrosis, with evidence of direct effects on Sertoli cells and 
degeneration of the blood–testis barrier (334, 338, 342, 343, 345, 346, 
349, 350). These reactions have led to considerable debate on whether 
such intense pathology is required for zinc gluconate to induce sterility. 
To test this hypothesis, zinc gluconate injections were co-treated with 
anti-inflammatory drugs, primarily COX-2 inhibitors and the 
glucocorticoid dexamethasone (343, 350). Surprisingly, the anti-
inflammatory drugs did not interfere with the sterilizing action of the 
zinc compounds (343, 350). However, the inflammatory responses were 
similar to those observed with autoimmune orchitis in dogs, which T
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included lymphocytic infiltration associated with disruption of the 
blood–testis barrier (356). The major health concern appears to 
be testicular swelling, followed by scrotal ulceration and dermatitis and, 
in some cases, necrotizing orchitis (223, 338, 347, 357, 358). The 
occurrence of necrotizing reactions ranged from 3 to 38% (223, 359), 
leaving some to speculate that the severity of treatment was dependent 
on the injection technique (346). Another hypothesis was that the 
injections had induced vascular injury, along with scrotal ulcers, edema, 
hemorrhage, and tissue granulation (338). The failure to uncover precise 
mechanisms involved in testicular atrophy and the inability to control 
those pathways for consistency, together with concerns regarding animal 
welfare, led to the ultimate removal of zinc gluconate as a dog sterilant 
from the USA market.

3.3.1.2 Hypertonic salt solutions
Salt solutions can be  hypertonic to body tissues and have been 

explored in various species as male sterilants using direct testicular 
injection. The idea came from the injection of hypertonic solutions into 
tumors and cysts (360). CaCl2 is one of the salts that has been around the 
longest (361) and happens to be non-toxic inexpensive and simple to 
formulate. Treatments have varied from a 5% solution to 75%, the 
maximum solubility in water (75 g/100 mL), as well as addition to 95% 
ethanol. Injections have successfully induced testicular atrophy in rats 
(362–364), dogs (365–374), cats (46, 375, 376), bulls (162, 361, 377–379), 
goats (380), water buffaloes (381), and guinea pigs (382). Only in the 
donkey, the treatment was not recommended for sterilization (383); 
however, this could have been due to the use of a lower concentration 
(20%). The decrease in testosterone in the dog was shown to be dose-
dependent, with 30% CaCl2 providing azoospermia (367). In the cat, 20% 
CaCl2 with 0.5% DMSO or 95% ethanol resulted in azoospermia (46, 
368). Although a 20% solution was effective in dogs, it appears that in 
larger mammals, up to 30–50% was required for necrosis and total 
atrophy (162, 361, 377–379). Hypertonic NaCl solution has also been 
tested in numerous species (376, 384–390) but was less consistent than 
CaCl2. Although higher concentrations were required for effectiveness 
in some species, in the bull, even the higher concentration was less 
effective after 5 months of age (390).

Hypertonic salt solutions appear to have some advantages over zinc 
solutions. Contrary to zinc solutions, the salt solutions seem to be more 
consistent in causing the loss of Leydig cells, consequently decreasing 
serum testosterone and sexual behavior, while also destroying the 
seminiferous tubules. The pathological responses to intra-testicular 
injection of hypertonic salts are similar to those with zinc solutions, 
including tubular necrosis and inflammatory cell infiltration, which 
results in testicular atrophy and tubular calcification (389, 391). However, 
adverse effects are generally minimal, except at very high concentrations 
and also if there is leakage from the testicular capsule. The Parsemus 
Foundation (San Francisco, CA, US), which is dedicated to animal health 
and welfare, recommends the use of CaCl2 intra-testicular injections for 
sterilization in dogs and has obtained a trademark for Calchlorin™, but 
this inexpensive and non-proprietary sterilant has yet to receive 
regulatory approval (369).

3.3.2 Injections into the epididymis and vas 
deferens

In addition to testicular injections, administering chemicals 
directly into the reproductive tract (Table 3) has also been tested as a 
replacement for surgical vasectomies (44, 392). Although vasectomy 

is minimally invasive and highly effective in dogs and cats, the 
injection of a chemical directly into the epididymis or vas deferens 
could be in principle more efficient and with less risk. Blockage of the 
reproductive tract has been achieved by two types of injections. The 
first involves injecting sclerosing chemicals that induce tissue scarring 
or hardening by non-specific, inflammatory fibrosis in the tubular 
wall, which causes luminal stenosis and obliteration (393). A wide 
range of sclerosing agents have been tested in several different species 
(Table 3). The second type of injection is the use of sealing agents that 
plug the vas deferens lumen.

Sclerosing agents have been clinically employed to induce fibrosis 
and eradication of varicose veins (394) and even epididymal cysts (395). 
Therefore, it is not surprising that their inflammatory properties could 
be used for chemical vasectomy and epididymal obstruction. Several 
studies have shown this method which is capable of inducing permanent 
blockage of the epididymal lumen, resulting in azoospermia (44, 396, 
397). Many of the sclerosing chemicals are caustic or hypertonic to 
tissues and capable of producing permanent damage. However, the 
results have shown considerable variation between studies, depending 
on the species, dosage injected, and the technique used. Overall, the 
rodent species appear to be more susceptible to permanent blockage than 
others. In one study, ethanol induced only approximately 70% infertility 
in the rat (392), while two other studies resulted in 100% infertility (398, 
399). Technical challenges, such as ensuring accurate injection into the 
vas deferens, have been reported (400), suggesting that administration 
may require a more experienced technician using echography guidance 
(373). Recanalization of the duct is another potential problem, as well as 
other unwarranted side effects including abscess formation, scrotal 
hematomas and sperm granulomas (43, 151, 223, 401). These problems 
and the inconsistency in larger mammals have reduced enthusiasm for 
its use, along with its failure to reduce testosterone levels and sexual 
behavior (151).

Non-sclerosing methods for occluding the vas deferens have also 
been developed using silicone, polyurethane elastomers, hydrogels, and 
various co-polymers. Several have been developed for human 
contraception, with trade names including, RISUG®, ADAM™, and 
Vasalgel® (4, 402). Some of these methods produce plugs that are 
reversible to some extent, but others produce sterility.

In summary, chemical castration is a term generally applied to the 
injection of a substance directly into the testis or reproductive tract. 
While chemical injections into the testis have never been proposed for 
use in men, this method has received huge support for inducing sterility 
in a variety of domesticated animals. The particular use of zinc 
compounds for injections received the greatest effort more recently, 
resulting in a product that was commercialized for use in dogs. Another 
promising method is the injection of hypertonic salt solutions into the 
testis, which appears to be as efficacious, if not better than the zinc 
compounds. However, these methods work by inducing an inflammatory 
reaction in the tissues, producing sclerosis, and possibly inhibiting blood 
flow, which results in tissue necrosis. The associated pain has discouraged 
their use in companion animals. An alternative method has been 
developed for humans, whereby the vas deferens is injected with a 
substance that results in plugging the lumen. Whether this could 
be developed for rapid use in pet animals would require considerable 
investigation. Regarding farm animals, in addition to concerns about 
animal welfare, the potential for chemical diffusion reaching muscle 
tissues and affecting food safety reduces the likelihood of these 
approaches being utilized in livestock.
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3.4 Hormonal sterilization

Hormones, including steroids and synthetic peptides, have been 
explored for controlling male reproduction. However, the focus has 
been on reversible contraception for both men and domestic or 
wildlife animals (21, 156, 182, 197, 403–406) rather than inducing 
sterility. For instance, anabolic steroids such as testosterone 
undecanoate can be used alone or with a progestin to temporarily 
suppress gonadotropins, leading to azoospermia, or the absence of 
sperm. In general, this approach has not worked consistently and can 
result in undesirable side effects, including hypokalemia, hypokalemic 
periodic paralysis, depression, and reduced libido (5, 197). However, 
a synthetic progesterone with a testosterone derivative is being tested 
for contraception in men under the name DMAU (dimethandrolone 
undecanoate) with promising results (407).

GnRH agonists and antagonists, which suppress gonadotropin 
synthesis and secretion, have been widely tested in domestic and 
wildlife animals. GnRH agonists, such as deslorelin, have been used 
successfully for temporary inhibition of reproduction in both males 
and females (20, 92, 152, 156, 186, 408–415). Suprelorin® (Virbac) is 
commercially available in Australia, New Zealand, and Europe for 
contraception in male dogs. However, GnRH agonists may not work 
in all species (53), and so far, there has been no indication of producing 
sterility. In men, the results using this method have been too 
inconsistent to be relied on as a contraceptive. GnRH analogs have 
also been tested in neonatal and juvenile male animals (rodents, cats, 
dogs, and monkeys), with variable long-term results, but in each case, 
there was only a delay in the onset of puberty (51, 416–421). In one 
study following postnatal treatment with Deslorelin, 2 of 6 dogs 
experienced cryptorchidism, and at 108 weeks of age, testes histology 
had not returned to normal (419). These preliminary results raise the 
possibility that neonatal treatment with GnRH agonists might 
be adapted for induction of sterility in some species.

Sterility can occur with androgen treatments, as evidenced by 
cases of permanent infertility in adult males following unsupervised 
use. The best example is the use of anabolic-androgenic steroids for 
enhancing athletic performance and building muscle mass, especially 
among professional athletes and bodybuilders (422). Anabolic steroids 
are also used to generally improve male appearance and emotional 
mood. This practice has been labeled ‘substance abuse’ because many 
of these compounds are synthetic testosterone derivatives, which can 
increase its potency by several folds (423). Consequently, their use can 
lead to male infertility by their negative feedback on the HPG-axis, 
resulting in reduced gonadotrophin stimulation of the testis and 
subsequent hypogonadotropic hypogonadism (422). While testicular 
function typically recovers within 2 years after discontinuation (424), 
gonadotropin replacement injections may be necessary to expedite 
recovery in some cases (425). In other instances, hypogonadism can 
be permanent, even after discontinuing the use of synthetic androgens.

As related to food animal production, androgens are given 
together with estrogens for the purpose of promoting growth, as in the 
pig and bull (426–428). While there is negative feedback on the HPG 
and reproductive behavior and fertility can be inhibited, the decrease 
in testosterone and the inhibition of gonad function are transient (426, 
428). On the other hand, there is debate regarding the safety of steroid 
hormone treatment in food-producing animals, especially when 
administered close to the time of slaughter. Thus, some countries, such 
as EU, have banned their use, and others, such as the USA, allowed 

them with the condition of removing and discarding the site of 
administration (the ear) at slaughter.

Estrogen treatment in the adult male also suppresses testosterone 
production by negative feedback on the HPG and is used in gender-
affirming hormone therapy (429). While the negative feedback on the 
HPG did suppress LH, FSH, and testosterone and, in general, resulted 
in hypoplasia of germ cells, it has been surprising to find that estrogen 
treatment did not arrest spermatogenesis (430). The effects appear to 
be reversible after treatment has stopped (431). However, observed 
changes in the rete testis and epididymis, which included epithelial 
hyperplasia and interstitial fibrosis (430), suggest that infertility could 
be permanent by blockage of the reproductive tract.

Overall, estrogen or androgen treatments in the adult male do not 
induce sterility consistently and could be  problematic due to the 
adverse effects on other organs (429, 432). However, a transient 
neonatal administration of sex steroids, prior to the onset of puberty, 
has shown potential for inducing sterilization. Androgens, progestins, 
and estrogenic compounds have been tested, but it appears that 
estrogen or estrogen plus an androgen give the strongest response for 
permanent inhibition of spermatogenesis and decreases in testosterone 
(79, 433–439). On the other hand, long-term effects have not been 
consistent across studies, with some showing full recovery, while 
others showed persistent hypogonadism. Thus, the possibility of using 
neonatal steroid treatments to induce sterility is a complex matter, 
depending on several factors including species, type of steroid, age at 
exposure, and total dosage.

Experimental studies have shown that neonatal estrogen treatment 
(soon after birth) resulted in a more targeted effect on the male 
reproductive system, with fewer side-effects, but considerable variation 
between species. For example, in a recent study, newborn male rats 
injected daily with estradiol benzoate for 10 days, showed profound 
suppression of Kiss1 expression in the ARC region of the hypothalamus, 
and resulted in permanent inhibition of testicular growth and 
spermatogenesis (79). Similar research on females concluded that 
production of sterility was due to the precise targeting of the kisspeptin 
neurons during a critical period of neonatal development, which 
permanently suppressed pituitary gonadotrophins LH and FSH (57). 
Regardless of testicular effects, estrogen also has direct effects on the 
reproductive tract, particularly targeting the efferent ductules, where ESR 
has the highest expression and is co-expressed with AR (440, 441). 
Disrupting the ESR1 or AR pathway in the male reproductive tract can 
permanently disrupt luminal physiology, leading to back-pressure atrophy 
of the testis, independent of the HPG axis (132, 133, 139, 440). 
Accordingly, two distinct hormonal target mechanisms can cause 
testicular atrophy and sterility: (a) permanent suppression of the 
hypothalamic Kisspeptin pathway leading to the reduction in pituitary 
gonadotropin secretion, testosterone production, and sexual behavior and 
(b) direct inhibition of steroid hormone receptor function in the male 
reproductive tract, which may or may not affect testosterone levels but can 
result in sterility due to blockage of sperm transport (133).

It is well established that exposure to estrogenic compounds during 
fetal development can induce male infertility, and a variety of detrimental 
health effects now associated with what is called ‘testicular dysgenesis 
syndrome’ (TDS) in most mammalian species (442–447). Thus, fetal or 
neonatal over-exposure to steroid hormones in the male is of greatest 
concern. Symptoms of TDS include cryptorchidism (undescended testes), 
hypospadias (abnormal urethral opening), poor semen quality, and 
testicular cancer (448–454), as well as stimulated growth of the prostate 
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gland (455, 456). Indeed, loss of testosterone action during the neonatal 
period not only blocked the required stimulus for germ cell development 
but it also prevented normal descent of the testis into the scrotum, 
producing cryptorchidism (79, 457, 458). Because cryptorchidism alone 
induces testicular degeneration (459–461), similar to that observed after 
neonatal treatment with estrogens, further development of this 
sterilization method would require careful study of testis descent in each 
species, considering that in some species, the testes are already descended 
through the inguinal canal at birth (462). Overall, further study is required 
to determine if an optimum dose and treatment duration can be achieved 
to induce male sterility without incurring the side effects associated with 
the use of steroid hormones in developing male animals, such as 
cryptorchidism (79, 437, 463–466).

In summary, the use of hormone treatment to induce sterility does 
not appear to be  an efficient method, as it typically induced only 
temporary infertility or contraception. The most successful for companion 
animal use has been the GnRH agonists/antagonists, but the need of 
repeated injections raises issues of convenience and costs. The use of 
androgenic compounds in men has resulted in numerous side effects, and 
in some cases, reversal of gonad inhibition has been challenging. Estrogen 
treatments also inhibit male reproduction simply by providing negative 
feedback to the HPG axis, but this method has shown inconsistency and 
could potentially produce serious side effects on other organs. On the 
other hand, inducing permanent infertility through the administration of 
steroid hormones during the neonatal period would be a viable method 
with great potential for application in pets and livestock. Nevertheless, 
such treatments will require careful attention to dose and timing of 
exposure. It is also important to notice that the use of hormones in food-
producing animals is highly regulated due to food safety considerations.

3.5 Immunological sterilization

The induction of sterilization using a vaccine, also called 
immunocastration, has historically been one of the most explored 
alternatives to castration of males. However, the term 
‘immunocontraception’ is often used interchangeably with 
‘immunocastration’ because of the potential reversibility of the infertility 
effects. In principle, this is a quite versatile method, as it allows targeting 
any component of the HPG axis by stimulating the immune system to 
produce specific neutralizing antibodies against the host proteins. As 
described below, numerous studies have successfully tested vaccines in 
companion, farm, and wildlife animals (254). In the US, the technology 
for antibody-mediated immunocontraception received a patent in 2014 
(467). Although most immune methods that only provide contraception 
and reimmunizations are necessary, studies have shown that sterility can 
be  achieved by using specific methods and immune targets (195, 
468, 469).

Immunocastration has shown great success in livestock, including 
ram, buck, boar, and bull (190, 195, 470). Immunization against GnRH 
or KISS1 not only inhibits spermatogenesis, rendering the animal infertile, 
but also decreases androgen-related male behaviors and odors. This 
approach is safe for the food chain and relatively easy to integrate with 
other routine vaccinations. Moreover, it can potentially minimize the 
negative effect that a decrease in androgens has on animal growth by 
waiting until pubertal age to administer the vaccine. However, some 
management-related issues have limited their widespread application in 
commercial settings. In specific, GnRH and KISS1 vaccines developed for 

livestock need two doses to achieve the desired testis-blocking effect (190, 
471), leading to increased costs and labor. This is not the case for 
GonaCon™, a GnRH vaccine developed by the National Wildlife 
Research Center (Fort Collins, CO) to control wildlife populations (472, 
473); but, it is only registered for use in female wild equids, white-tailed 
deer, and prairie dogs, and booster vaccinations are necessary to prolong 
its effect.

The use of immunocastration as an alternative to neuter surgery of 
male cats and dogs is also of great interest because it has the potential to 
prevent male sexual behavior, as well as inducing infertility. In cats, 
immunocastration has been proposed as a potential cost-effective tool for 
controlling populations of free-roaming animals (474). Finally, 
immunocastration is a useful method for wildlife management as an 
alternative to massive culling (473). Some models estimate that a method 
involving contraception can be as effective as culling (475). In addition, it 
has the advantage of allowing for remote delivery (e.g., using preloaded 
darts), therefore reducing the stress of capture and restraining the animals 
(473). However, except for species that have a harem mating system, 
almost every male would need to be treated to affect the population size, 
whereas a more efficient outcome can be  achieved by targeting 
females (476).

3.5.1 Anti-sperm antibodies
Impaired fertility or complete infertility has been achieved by antigens 

targeting sperm, as reviewed by others (477–480). First attempts involved 
the use of whole sperm extracts to immunize females. A 1932 study 
reported infertility in women during a year-long trial after being injected 
with their partner’s semen (481). However, this is no longer regarded as a 
feasible approach, as the shared antigens between sperm and somatic cells 
led to pathological side effects (477). Thus, the search for a specific sperm 
membrane antigen was initiated, as such specificity would likely be safer 
and treatment could be targeted to the male rather than the female.

The current list of sperm antigens which has been targeted for their 
immunocontraceptive potential keeps increasing as the functions of more 
sperm membrane proteins are elucidated. Table  4 highlights some 
successful examples of active immunization against sperm proteins. 
Moreover, passive immunization with anti-sperm antibodies (ASA) has 
also been explored. For example, antibodies against 80 kDa HAS induced 
infertility in both male and female rats due to agglutination of epididymal 
sperm and impairment of sperm motility (482). However, variable levels 
of contraception were achieved, partly due to the overlap of sperm protein 
functions with other cell types.

Overall, sperm-immunization is mainly interesting from the male 
human contraception perspective, in which the aim is to impair sperm 
function without affecting hormone synthesis. Instead, targeting 
components outside the HPG axis appear to have little value for 
companion and farm animals, as the prevention of male reproductive and 
aggressive behaviors is often more important than inducing infertility.

3.5.2 Anti-LH or LHR antibodies
Two N-terminal fragments of the porcine LH receptor were used for 

active immunization of prepubertal male mice and achieved a reduction 
in testosterone, azoospermia, and infertility in 75% of the males (483). In 
the rabbit, this approach did not work because the receptor antibodies 
showed both LH agonistic and antagonistic activities (484). Attempts were 
also made using vaccines based on ovine LH and LH receptors (isolated 
from sheep testis), which were tested in rabbits and monkeys (485). 
Overall, these studies showed that ovine LH vaccines produced desirable 
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antibody titers and resulted in a drastic decrease in serum testosterone 
(~90%), a reduction in seminiferous tubule spermatids (>90%), and, 
consequently, azoospermia and infertility (485). However, due to side 
effects related to the lack of androgen production, such as muscle loss or 
alopecia, the pursuit of an anti-LH contraceptive vaccine for men was 
soon abandoned.

3.5.3 Anti-FSH or FSHR antibodies
Early trials of ovine FSH itself or FSHβ subunit vaccines led to 

encouraging results in non-human primates (485). In these, 
spermatogenesis was impaired without affecting testosterone levels, and 
a low proportion of non-responders (i.e., individuals with low antibody 
titers) was achieved (485). Although sperm production was only 
qualitatively and not quantitatively impaired, monkeys were rendered 
infertile. Similarly, immunization against FSH receptor (FSHR) induced 
a decrease in sperm concentration and sperm motility in monkeys, as well 
as infertility in subsequent mating trials (486). Moreover, passive 
immunization of male bonnet monkeys with ovine FSH also resulted in 
testicular dysfunction, oligozoospermia, and infertility (487). However, 
long-term contraceptive efficacy with FSH immunization was not 
achieved, as the antibody titer did not last more than 90–100 days (488). 
Consequently, further testing was discouraged due to the nature of 
transient effects, which would necessitate continuous immunization to 
maintain contraception.

The improvement of methods for synthesis of recombinant proteins 
has allowed for the optimization of these vaccines by targeting specific 
peptides that can induce a higher immune response. For instance, four 
FSHR extracellular domain (ECD) peptides involved in FSH binding that 
are potent B-cell epitope peptides were identified as specific inducers of a 
B-cell immune response (489). Vaccines were then engineered by 
conjugating an ECD peptide in tandem with a T-cell epitope. Three of the 
four peptides tested induced infertility in male mice, which showed 
decreased serum testosterone and sperm concentration (489). They later 
refined this method by performing simultaneous immunization with 
B-cell epitopes of both human FSHR and Eppin, a sperm antigen (490). 

This dual FSHR-Eppin target enhanced the contraceptive effect, causing 
up to 95% infertility in male mice.

In conclusion, FSH or FSHR vaccines received attention as a method 
for immunocontraception in men, which would induce reversible 
infertility without side effects related to a reduction in androgen synthesis. 
Unfortunately, they failed to reach an acceptable level of contraception. 
As related to companion and farm animals, the LH/LHRH vaccines 
showed more potential for preventing androgen-related behaviors and 
odors, but the greatest success thus far has been from targeting GnRH for 
immunocastration (depending on the species), as it has the potential to 
disrupt the entire HPG axis and work in both males and females.

3.5.4 Anti-GnRH antibodies
GnRH has been the main target for immunocastration of domestic 

male animals. In fact, commercial vaccines are available for bovine (bulls) 
and swine (boars). One of the major appeals is that identical GnRH 
vaccines can potentially be utilized for both females and males of the same 
species. By preventing the binding of native GnRH to its receptor on 
pituitary gonadotrophs, the release of both LH and FSH is inhibited. 
Consequently, both spermatogenesis and ovulation are disrupted, and the 
production of steroid hormones is inhibited. Therefore, GnRH vaccines 
can prevent male aggressive and mounting behaviors, in addition to 
inducing infertility.

There are 30 structurally different forms of GnRH that have been 
identified in animals (491). GnRH-I is the one mainly utilized for 
immunocastration, as it has four residues in the N-terminus and 
C-terminus that are involved in receptor binding and are conserved across 
species (491). Because GnRH is a small decapeptide, it needs to 
be conjugated to a carrier protein to become immunogenic (174). Thus, 
effective vaccines have been developed in male rats by conjugating GnRH 
with tetanus toxoid (TT) (492), diphtheria toxoid (DT) (493), and 
ovalbumin (OA) (494), among others. Other approaches for constructing 
non-conjugated GnRH vaccines with enough immunogenic capacity 
involve the polymerization of the GnRH peptide, such as the D-Lys6-
GnRH-tandem-dimer peptide (TDK) (495).

TABLE 4 Examples of anti-sperm antibodies (ASA) used for active immunization.

ASA Species Protein type Protein function Main results

Sperm adhesion molecule 1 

(SPAM1) or PH-20

Guinea Pig Hyaluronidase and Receptor Penetration through the 

cumulus cells surrounding the 

egg. Also binds to the zona 

pellucida after acrosome 

reaction.

Temporal infertility (1 year or longer) and 

absence of normal sperm in the epididymis

Epididymal Protease Inhibitor 

(Eppin)

Monkey WFDC (whey-acidic protein 

four-disulfide core) protease 

inhibitor family

Binds to the semen coagulum 

protein semenogelin-1 

(SEMG1), which transiently 

inhibits sperm motility after 

ejaculation.

Temporal infertility (approx. 2 years)

Human fertilization antigen-1 

(FA-1)

Mouse Glycoprotein Binds to the zona pellucida 

(ZP3)

Temporal reduction in fertility (for up to 

10 months) and blocked binding to zona 

pellucida in vitro fertilization

ADAM metallopeptidase 

domain 2 (ADAM2) or Fertilin 

or PH-30

Guinea pig ADAM family member 

(membrane-anchored protein)

Sperm-egg adhesion and fusion 

with the egg plasma membrane

Infertility (recovery not determined)

80 KDa Human sperm antigen 

(80 kDa HSA)

Marmoset Glycoprotein Progressive motility Temporal infertility (8–10 weeks after booster 

dose). Loss of sperm progressive motility
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Studies in male rats have validated that GnRH immunization reduces 
GnRH content in the median eminence of the hypothalamus, leading to 
a decrease in serum LH, FSH, and testosterone and, consequently, 
suppression of spermatogenesis and testicular atrophy (496). Moreover, 
GnRH vaccination decreases the hypothalamic mRNA expressions of 
GnRH, GnRH receptor, AR, Kiss1, and Kisspeptin receptor (GPR54) 
(496, 497). Therefore, it appears that anti-GnRH immunization further 
decreases GnRH release and disrupts the HPG axis by decreasing the 
entire androgen-AR-Kisspeptin-GPR54 signaling pathway. Interestingly, 
the basic structural organization of the testicular components is 
maintained after GnRH immunization (492), which indicates that an 
eventual recovery of function is possible. In fact, total recovery of 
spermatogenesis was observed 300 days after GnRH vaccination of male 
rats (493). However, atrophic changes observed in the epididymis 
suggested that prolonged GnRH immunization may lead to irreversible 
damage and sterility (492). In addition, the decrease in androgen synthesis 
also affects the size of accessory organs, including vesicular gland and 
prostate (494), which is why GnRH vaccines have gained attention for the 
management of prostate cancer in men.

A summary of recent advances in GnRH immunocastration of farm 
and companion animals is presented in Table 5. Although some of these 
studies used experimental vaccines, most were commercial products. 
GonaCon™ (National Wildlife Research Center, Fort Collins, CO), 
which was developed for wildlife population control (498) and contained 
GnRH-I conjugated to keyhole limpet hemocyanin (KLH), had been used 
mostly in females (499–501). Improvest® or Improvac® (Zoetis, NJ), 
which is commercially available for male pigs in the USA and EU, 
respectively, contains an incomplete GnRH analog conjugated to DT; 
Bopriva™ (Zoetis). GnRH analog conjugated to DT was developed for 
beef cattle. Equity® (Zoetis) is a GnRH-DT conjugate which is indicated 
for estrous control of horses. Vaxstrate® (Arthur Webster Pty Ltd, NSW), 
currently a discontinued GnRH-OA conjugate, was developed for 
pregnancy prevention in cows. Canine GnRH Immunotherapeutic® 
(Pfizer Animal Health, PA), also a GnRH-DT conjugate, was developed 
for treating benign prostatic hyperplasia in dogs but is currently 
discontinued. Note that the goals of immunocastration in farm animals 
include reduction of male aggressive/reproductive behavior, improvement 
of meat and carcass characteristics, improvement of feed efficiency relative 
to physical castrates, and prevention of male-associated odors (502). Male 
pigs, specifically, are mainly castrated to prevent boar taint (Figure 4), and 
the unpleasant odor in pork meat from intact boars is indirectly caused 
by androgen synthesis and the buildup of androstenone and skatole (503, 
504). Therefore, in Table 5, studies targeting these specific production 
characteristics are included. On the other hand, in companion animals, 
immunocastration is regarded as an alternative to neuter surgery, and 
thus, the end-goal in cats and dogs is to induce permanent or temporary 
infertility while reducing male behaviors (505, 506).

GnRH immunocastration has received greater attention for hog 
production, as denoted by the vast number of published studies in male 
pigs. The immunization requires a second injection before puberty to 
be effective (4 weeks after the first dose is recommended by the vaccine 
manufacturer). Clearance of androstenone from fat was achieved 3 weeks 
after the second GnRH immunization (507). The need for two doses 
decreases the attractiveness of immunocastration for some producers, 
simply due to the higher costs and repeated handling of larger animals. In 
addition, the timing of the two doses relative to slaughter is particularly 
important, as reproductive function tends to recover over time. While 
disrupted testis morphometry and spermatogenesis are reported in 

GnRH-immunized pigs at slaughter age (~6 months old) (497, 508, 509), 
boars treated with two doses of Improvest® at 10 and 15 weeks of age 
recovered testosterone levels by 40 weeks of age and sperm concentration 
and motility by 60 weeks (509). Because hogs are usually sent to market 
by 24–26 weeks of age, before the testis can recover, the immunization 
procedure is considered equivalent to castration. The exception is heavy 
pork production systems, in which hogs are fattened up to higher weights 
and age (>37 weeks old) to produce cured ham meat. In these systems, 
one or two additional booster vaccines (total of 3–4 doses) can prevent 
boar taint up to the late slaughter ages (510, 511).

On the other hand, others have argued that the cost of the vaccine, 
including the increased workload, may be compensated by better growth 
performance and higher carcass leanness compared with surgical 
castrates (512). A meta-analysis concluded that GnRH-immunocastrated 
pigs had higher average daily gain (ADG; g BW/day) compared with 
barrows and intact boars (513). Thus, boar taint is reduced to levels of 
castrates without significantly affecting growth. Moreover, they stated 
that immunocastrates had a lower feed conversation ratio (kg of feed 
needed for kg of BW) than barrows, although higher than intact boars 
(513). In terms of hot carcass weight, dressing percentage, fat deposition, 
and meat quality parameters, immunocastrated boars fell in between 
barrows and intact boars (513). The maintenance of testicular activity in 
immunized males until second dose or booster is believed to account for 
the higher ADG and lower fat deposition compared with barrows (514). 
However, variability in the timing from booster to the biological response 
has been noted in pigs, which, in turns, affects their production 
performance (515). The age at vaccination and time before slaughter can 
also affect fat deposition and meat quality attributes (470).

Despite the relative success of GnRH immunocastration in bulls, 
preventing both spermatogenesis (516) and bull aggressive behavior 
(517), the inability to maintain these effects until slaughter age has likely 
hampered its application in beef cattle. For instance, bulls immunized 
against GnRH at 3 and 6 weeks of age recovered spermatogenic capacity 
by approximately 68 weeks of age (518). Because spermatogenesis and 
testosterone production recover over time, accurate timing of vaccines is 
needed for the effects to last until slaughter age. Regarding small 
ruminants (rams and bucks), GnRH immunization also disrupted 
spermatogenesis, as denoted by smaller seminiferous tubules that are 
depleted of mature sperm (519, 520). Moreover, GnRH immunization 
was able to reduce aggression and mounting behavior in both ram (521) 
and bucks (522). However, no commercial vaccine is available for these 
species. Although most of the trials in ruminants have been performed 
in peripubertal or mature males, some studies indicate that GnRH 
vaccines could be used to delay puberty: e.g., bull calves immunized at 
3–6 weeks of age had a 3-week delay in reaching a 28-cm scrotal 
circumference (518) and GnRH-immunized prepubertal lambs showed 
a 4-month delay in the onset of mounting behavior (519).

Regarding companion animals, GnRH immunization leads to 
variable outcomes. Despite overall success at disrupting testicular 
function, considerable variation in the antibody titer response was 
reported in GnRH-immunized toms (523–525). Although achieving a 
relatively high percentage of infertility is enough to reduce the size of a 
population of free-roaming cats (474), the need for repeated dosing to 
maintain infertility limits its application for population management 
purposes. In male dogs, the results have been even less promising. 
Although immunization decreased testis size, with spermatogenesis 
arrest and even lowered testosterone levels, the effects were inconsistent 
due to high individual variability (526–529). Further difficulty with 
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TABLE 5 Effects of GnRH-immunization in domestic animals in terms of reproduction, behavior, and production performance.1,2

Effect Age3 Vaccine4 (Doses/Interval) Main Results5

Bull (Bos taurus & Bos indicus)

Reproduction Prepubertal

<6 months

Bopriva®

(2 doses/3 weeks)

Decreased serum T up to 22 weeks old, and scrotum size up to 44 weeks old.

Peripubertal

6–14 months

GnRH-OA conjugate

(3 Doses/4–5 months)

Decreased scrotum size for more than a year.

Bopriva®

(2 Doses/6 weeks)

Decreased serum T and testis weight up to 15 weeks after booster.

Improvac®

(3 doses/3–15 weeks)

Decreased scrotum and testis size. Arrested spermatogenesis up to 20 weeks after booster.

Adult

>22 months at booster

GnRH-OA & GnRH-Trx conjugates

(3 doses/20 weeks)

Decreased testosterone and testis weight up to 8 months after first booster.

Bopriva®

(2–3 doses/1–3 months)

Decreased scrotum size, sperm motility, and testosterone up to 4 months after first booster.

Behavior Prepubertal

<6 months

GnRH-KLH conjugate

(2 doses/1–6 months)

Reduced aggressive behavior (frequency of butts and sparring) compared to intact bull.

Postpubertal

8–22 months

GnRH-KLH conjugate

(2 doses/8 months)

Reduced aggressive behavior (frequency of butts and sparring) compared to intact bull.

Performance Postpubertal

8–22 months

Bopriva®

(2 doses/4–6 weeks)

Compared to bulls: Lower ADG, HCW, and dressing percentage. Higher fat thickness and marbling.

Compared to steers: Higher ADG. Similar HCW, dressing percentage, fat thickness and meat quality.

Adult

>22 months

GnRH-OA conjugate

(3 doses/2 weeks)

Compared to bulls: Similar carcass weight, and dressing percentage. Higher fat depth and marbling.

Compared to steers: Similar carcass weight, and dressing percentage. Higher marbling.

Bopriva®

(2 doses/3 months)

Compared to steers: Higher ADG and HCW. Lower dressing percentage. Similar meat quality.

Boar

Reproduction Early-treated

~10 weeks

GnRH-OA conjugate

(2 doses/8 weeks)

Decreased testis size, serum LH, FSH, and T. Absence of mature sperm in seminiferous tubules up to 8 weeks after booster.

GnRH-MBP conjugate

(2 doses/8 weeks)

Decreased scrotum size and plasma T. Absence of mature sperm up to 7 weeks after booster.

Improvest®/

Improvac®

(2 doses/5–10 weeks)

Decreased testis weight and serum T. Absence of mature sperm in seminiferous tubules up to 10 weeks after booster.

Late-treated

15–18 weeks

Improvac®

(2 doses/4 weeks)

Decreased testes weight, bulbo-urethral gland weight, and serum LH, T, and androsterone up to 10 weeks after booster.

(Continued)
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Effect Age3 Vaccine4 (Doses/Interval) Main Results5

Behavior Early-treated

~10 weeks

GnRH-MBP conjugate

(2 doses/8 weeks)

Delayed onset of mounting behavior (4 months later than intact boars).

Improvac®

(2 doses/10 weeks)

Decreased activity (time standing), sexual (mounting), and aggressive behavior (biting and fighting), and skin lesions compared to 

intact boars.

Late-treated

15–16 weeks

Improvest®/ Improvac®

(2 doses/4–6 weeks)

Decreased aggressive and mounting behaviors, and skin lesions compared to intact boars.

Heavy pork

37–41 weeks

Improvac®

(2–4 doses/4–10 weeks)

Decreased social, aggressive, and mounting behavior compared to intact boars up to 22 weeks after booster.

Performance Early-treated

~10 weeks

Improvac®

(2 doses/9–10 weeks)

Compared to barrows: Similar-higher ADG. Lower FCR. Similar-higher lean meat percentage.

Compared to intact boars: Similar-higher ADG, and FCR. Lower lean meat percentage.

Late-treated

15–18 weeks

Improvest®/

Improvac®

(2 doses/4–6 weeks)

Compared to barrows: Higher ADG and feed intake. Lower FCR. Lower dressing percentage, marbling and bacon slicing yield. Higher 

lean meat percentage.

Compared to intact boars: Higher ADG, feed intake, and FCR. Lower dressing percentage and lean meat percentage. Similar bacon 

characteristics.

Heavy pork

31–41 weeks

Improvac®

(2–4 doses/4–10 weeks)

Compared to barrows: Higher ADG and HCW. Lower FCR, dressing percentage, and backfat thickness.

Boar Taint Early-treated

~10 weeks

Improvac®

(2 doses/9 weeks)

Compared to barrows: Similar androstenone and skatole concentration in fat.

Compared to intact boars: Lower androstenone and skatole concentration in fat.

Late-treated

15–18 weeks

Improvac®

(2 doses/4–6 weeks)

Compared to barrows: Similar androstenone and skatole concentration in fat.

Compared to intact boars: Lower androstenone and skatole concentration in fat.

Heavy pork

37–41 weeks

Improvac®

(2 doses/4–6 weeks)

Compared to intact boars: Lower androstenone and skatole in fat up to 22 weeks after booster.

Small Ruminants (Ram & Buck)

Reproduction Prepubertal Lamb

< 4 months

GnRH-OA & GnRH-Trx conjugates

(3 doses/4–8 weeks)

Decreased scrotum size and absence of mature sperm in seminiferous tubules up to 23 weeks after first booster.

Peripubertal Lamb

4–8 months

GnRH-OA conjugate

(2 doses/4 weeks)

Decreased serum LH, FSH, and T. Decreased scrotum and accessory glands size. Absence of mature sperm in seminiferous tubules up 

to 22 weeks after booster

Improvac®

(2 doses/2–4 weeks)

Decreased scrotum size up to 4 weeks after booster.

Bopriva®

(2 doses/4 weeks)

Decreased plasma T, and sperm concentration in ejaculates (azoospermia in 70–80% of males) up to 1 month after booster.

Adult Buck

>1 year

Vaxstrate®

(2 doses/2–4 weeks)

Decreased plasma LH, FSH, and T, sperm concentration in ejaculates, and scrotum size for more than a year in 90% of animals.

(Continued)

TABLE 5 (Continued)
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Effect Age3 Vaccine4 (Doses/Interval) Main Results5

Behavior Prepubertal Lamb

< 4 months

GnRH-KHL conjugate

(Regime not specified)

Decreased sexual behavior (frequency of mounts and ejaculations).

GnRH-OA & GnRH-Trx conjugates

(3 doses/4–8 weeks)

Delayed onset of mounting activity (5 weeks later compared to intact ram).

Adult Buck

>1 year

Vaxstrate®

(2 doses/2–4 weeks)

Decreased agonistic behavior and male odor associated with reproductive season.

Performance Prepubertal Lamb

< 4 months

GnRH-KHL conjugate

(Regime not specified)

Compared to physically castrate: Similar ADG, FCR and dressing percentage. Lower marbling and back fat thickness.

Compared to intact ram: Lower ADG. Higher FCR, and dressing percentage. Similar marbling and backfat.

Peripubertal Lamb

4–8 months

GnRH-OA & GnRH-Trx conjugates

(2 doses/8 weeks)

Compared to physically castrate: Similar ADG, HCW, dressing percentage and other carcass measurements.

Compared to intact ram: Similar ADG, HCW, and dressing percentage. Higher subcutaneous fat.

Improvac®

(2 doses/2–4 weeks)

Compared to intact ram: Similar ADG, HCW, and dressing percentage.

Dog

Reproduction & Behavior Prepubertal

<6 months

GnRH-CDV Th cell epitope p35 

conjugate

(2 doses/4 weeks)

Decreased testes size and absence of mature sperm in seminiferous tubules up to 14 weeks after booster (3/8 dogs).

Adult

>1 year

GnRH-TT conjugate

(3 doses/2–6 weeks)

Decreased serum T and scrotum size up to 28 weeks after booster (5/12 dogs), and absence of mature sperm in seminiferous tubules.

Canine GnRH Immuno-

therapeutic®

(2 doses/4 weeks)

Decreased serum LH, serum T, and testicular volume up to 8 weeks after booster (4/4 dogs).

GnRXG/Q antigen recombinant protein

(2 doses/4 weeks)

Decreased serum T and sperm concentration in ejaculates up to 8 months after booster (5/7 dogs). Decreased sexual, agonistic, and 

marking behavior.

Cat

Reproduction Prepubertal

<4 months

GnRH-LKTA conjugate

(2 doses/4 weeks +2-year dose)

Decreased serum T and absence of mature sperm in seminiferous tubules (3/4 cats).

Peripubertal

4–9 months

GnRH-MBP conjugate

(2 doses/6 weeks)

Decreased serum T, testis size and absence of mature sperm in seminiferous tubules up to 6 weeks after booster.

GnRH-STF2 conjugate

(2 doses/4 weeks)

Decreased serum T, testis size and number of mature sperm in seminiferous tubules up to 5 months after booster (6/14 cats).

Adult

>9 months

GnRH-KHL conjugate

(2 doses/not specified)

Decreased serum T and scrotal size. Absence of sperm in ejaculates at least up to 6 months after booster (6/9 cats).

Improvac®

(2 doses/4 weeks)

Decreased serum T, scrotal size, and sperm concentration in ejaculates up to 20 weeks after booster.

(Continued)

TABLE 5 (Continued)
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assessing the utility of immunocastration in dogs is that studies thus far 
have used very small sample sizes and lack breeding trials. Notably, no 
side effects were reported, apart from mild inflammation at the injection 
site (528, 530). Moreover, these vaccines can potentially be conjugated 
with viral antigens for animals to be immunized at the same time against 
common diseases, such as rabies or distemper (527). Although the 
reversibility of the effects would limit their use to that of a contraceptive 
[e.g., testicular size and serum testosterone concentrations recovered 
16 weeks after GnRH immunization booster in male dogs (529)], this 
method still holds great promise.

GnRH vaccines have also been examined as a method for 
managing wildlife populations, including deer, horses, squirrels, prairie 
dogs, elk, elephants, brushtail possums, and wild boars, as reviewed by 
others (174, 476, 531). GonaCon™, in particular, shows long-term 
effectiveness at reducing fertility in white-tailed deer and wild horses 
by targeting females (473). However, the use of GnRH vaccines in 
males has been discouraged in some wildlife species due to the 
disruptive effect of androgen dysfunction on their social hierarchy 
(476). For instance, immunocastration impaired the ability of wild 
stallions to hold breeding bands (476) and the antler development in 
male white-tailed deer (174). However, there are some examples of 
successful application in males. In the capybara, GnRH immunization 
induced infertility without affecting their social structure (498). In 
male elephants, a GnRH vaccine prevented aggressive behavior which 
was occurred during rutting season (i.e., musth) (532) and thus could 
be a helpful tool for preventing severe conflict in human communities 
living close to wild elephants. In the common eland antelope, 
immunization with Improvac® reduced aggressive behavior of juvenile 
males without negatively affecting their social behavior (533). Finally, 
in fallow deer farming conditions, Improvac® vaccination was 
combined with amino acid supplementation and the treatment led to 
atrophied seminiferous tubules and decreased sperm viability. 
However, only a mild effect on antler development (lighter antlers and 
lower mineralization) was observed, presumably due to a lack of total 
suppression of testosterone, although testosterone was not measured 
(534, 535). However, repeated dosing was required.

3.5.5 Anti-Kisspeptin antibodies
The relatively recent discovery of Kisspeptin’s critical role in the HPG 

axis has turned the focus of immunocastration toward the development 
of an anti-KISS1 vaccine. Thus far, this approach has been tested only in 
small ruminants, but the promising results in terms of efficacy and safety 
will likely encourage trials in other species, especially in those for which 
the Kisspeptin pathway is better defined.

The first KISS1 vaccine developed, pKS-asd, was a recombinant 
plasmid constructed with the Human KISS1 fused with the hepatitis B 
surface antigen S (HBsAg-S) gene and was first tested in rams (536). This 
vaccine inhibited testicular function and resulted in a decrease in 
circulating testosterone, testis size, and spermatogenesis (536). In a 
follow-up study, the safety of the pKS-asd vaccine was assessed, and the 
KS fusion fragment of the vaccine was not detected in the host genome 
after vaccination (537). Although the vaccine showed promise for 
inhibiting male fertility in the ram, the effect was not permanent, as 
testosterone production and spermatogenesis recovered by weeks 22 to 
30 post-immunization (537). Another study in rams immunized with 
pKS-asd reported a significant alteration in the expressions of genes 
associated with cellular immunity specific to the testis (469). Specific 
effects were noted on the cytotoxic pathway of Leydig cells mediated by E
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natural killer cells, and it was suggested that these could lead to 
permanent infertility.

A second KISS1 vaccine, PVAX-B2L-Kisspeptin-54-asd (PBK-asd), 
was developed using an antigen of the Parapoxvirus (B2L), which caused 
a highly contagious disease in small ruminants; therefore, it acts as an 
immunomodulator maximizing the inhibitory effect on gonadal 
function (538). This vaccine achieved greater testicular atrophy in male 
rats than the pKS-asd and resulted in complete disruption of 
spermatogenesis (i.e., seminiferous tubules devoid of spermatids and 
mature sperm) (538). The PBK-asd vaccine was later successfully tested 
in both rams and bucks, causing a decrease in serum Kisspeptin, LH, and 
testosterone (538, 539). Consequently, gonads of treated bucks showed 
inhibited Leydig cell proliferation (540). Both pKS-asd and PBK-asd 
vaccines decreased the expression of not only KISS1 but also of AR, 
GPR54, and GnRH in the hypothalamus (538, 540, 541). Furthermore, 
there was a downregulation of LH, FSH, and GnRH receptors in the 
pituitary and of LH and FSH receptors in the testis (538, 540, 541). 
Altogether, these data indicate a complete disruption of the HPG axis 
and pathways needed for maintaining adequate testosterone synthesis 
and spermatogenesis.

Other outcomes in small ruminants indicate that KISS1-mediated 
immunocastration would be an interesting alternative for castration of 
farm animals. First, both PBK-asd and pKS-asd immunization decreased 
aggression and sexual behaviors in rams (i.e., frequency of mounting, 
sniffing, and butting) (469, 536). Second, bucks immunized with 
PBK-asd showed similar growth and carcass and meat characteristics 

compared with intact bucks, whereas surgical castration reduced daily 
gain and carcass weight (539). Third, an oral form of the pKS-asd vaccine 
has also been successfully tested in rams (471), which would represent 
an advantage over intramuscular administration in terms of 
management. In this study, prepubertal lambs treated with three doses 
of oral pKS-asd at 4 weeks of interval presented disrupted 
spermatogenesis, lower serum testosterone levels, and lower frequency 
of sexual behaviors, including butting, sniffing, and mounting (471). The 
one drawback, as described above for GnRH, is that anti-KISS1 vaccines 
produce only temporary infertility, and repeated vaccinations would 
be  needed to extend reproductive inhibition until slaughter age. 
However, further study of the inflammatory response and a focus on the 
Leydig cell specifically could bring this method closer to that 
of castration.

3.5.6 Other antibodies
Active immunization against testosterone synthesis was briefly 

tested. As reviewed by the authors (542), the results were inconsistent: 
either a low efficacy was achieved, probably due to the presence of other 
androgenic steroids that compensate testosterone’s role; or a paradoxical 
enlargement of the gonads was observed, as the lack of negative feedback 
on GnRH-LH release promoted testosterone synthesis. A more recent 
study targeted pregnenolone, the precursor of sex steroid hormones 
(543). Prepubertal rabbits actively immunized with pregnenolone-
hemisuccinate covalently linked to Bovine serum albumin presented 
decreased serum testosterone and disrupted spermatogenesis with a very 

FIGURE 4

Causes of boar taint, current solutions, and potential targets for the inhibition of androstenone and skatole production in the male pig. Boar taint is the 
pungent odor produced by cooked pork, especially present in the meat from boars with intact gonads. The odor is due to the buildup of skatole and 
androstenone in the meat. Skatole comes from bacteria in the gastrointestinal tract and androstenone is an androgen produced by Leydig cells of the 
testis. Skatole is normally metabolized in the liver by CYP2E1, but androstenone, the dominant androgen in pigs, inhibits this enzyme, thereby allowing 
for the buildup of skatole in the blood and tissues. The three components of the HPG axis are indirectly involved in the cause of boar taint, as the 
cascade of hormonal stimulation of the testis involves KISS1, GnRH, and LH. Thus, there are numerous targets for potential inhibition of boar taint 
production. 1. Simple removal of the source of androstenone and testosterone by castration has been used for thousands of years. 2. The 
hypothalamus has been targeted by developing vaccines against KISS1 and GnRH. Commercial availability is indicated by an asterisk (*). 3. The 
hypothalamus and pituitary organs can also be inhibited by treating newborn animals with a combination of estrogen and androgens, an experimental 
approach that is currently under development. 4. Gene knockout technology is also being tested experimentally to remove Kiss1 gene or its receptor, 
Kiss1R, as well as to eliminate the GnRH gene or its receptor, GnRHR, which would thereby inhibit the production of LH. 5. Direct inhibition of testicular 
Leydig cells could also be targeted by the development of specific vaccines to block steroidogenic enzymes in the testis, which would decrease the 
production of androgenic steroids that help to maintain skatole and the buildup boar taint molecules in the meat.
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low number of mature sperm (543). However, fertility was not tested. 
Development of specific vaccines to block steroidogenic enzymes in the 
testis could also provide direct inhibition of the Leydig cells, which 
would decrease the production of androgenic steroids.

Alternative methods for active immunization have been explored. 
As described above, passive immunization has been tested as a 
contraceptive method, for example, by injecting FSH antibodies (487) 
or Human Sperm Antigen (482). This approach can represent an 
advantage over the use of vaccines, considering the difficulty of 
achieving high antibody titers (544). However, the sophisticated tools 
currently available for vaccine development, including antigen 
recombination to potent immunogens, largely overcome this 
inconvenience. Finally, an unspecific immune response can 
be triggered directly within the testis using intratesticular injections 
of immunogens, ultimately damaging the testis tissue. The most 
notable example is the combination of rabies vaccine and a chemical 
sterilant (zinc gluconate) which received a US patent in 2014 after 
trials in community dogs (545).

In summary, immunocastration is regarded as a feasible 
alternative to castration of males and appears to address some animal 
welfare concerns associated with castration. What is interesting about 
this method is the wide variety of targets to which antibodies can 
be developed, which can result in specific inhibitions ranging from 
hypothalamus/pituitary, upstream inhibition of the entire 
reproductive system, to specific cell types within the testis and even 
sperm within the epididymal lumen. Some vaccines are already 
commercially available for use in livestock. Despite improvement in 
productive parameters such as feed efficiency, the number of 
immunizations required to induce an effective response has 
hampered its widespread acceptance in some markets, such as the 
USA. Regarding companion animals, so far, research has shown great 
individual variability in response. Moreover, in-depth research on the 
appropriate frequency and number of doses must be  conducted 
in pets.

3.6 Genetic sterilization

Genome-editing technology has the potential to revolutionize 
not only human health but also veterinary medicine and food animal 
production (546, 547). This method has been proposed as an 
alternative to surgical castration (548, 549), as it is now possible to 
inactivate any of the multiple genes responsible for regulating 
development and maintenance of the male reproductive system 
(Figure  1). Choosing the ideal gene to block testis function is 
important because pathways can have unexpected ways of 
compensating for the loss of a specific gene. Therefore, the first effort 
in genomic castration targeted the Kisspeptin/GnRH pathway, as 
these are situated upstream in the HPG axis. Inactivation of this 
pathway resulted in failure of the gonads to reach maturity, rendering 
the males sterile. The first experiment was the inactivation of KISS1R, 
Kisspeptin receptor, a protein on the GnRH neuron that is essential 
for the release of pituitary gonadotropins. This gene was edited in the 
White Composite male pig, which was then born sterile, as the adult 
testes of the homozygote GPR54 knockout (GPR54−/−) remained in a 
pre-pubertal state (550). Loss of pituitary stimulation resulted in low 
concentrations of serum androgens, which prevented the 
development of androgen-induced boar taint. From this original 

effort, Hendrix Genetics announced an alliance with Recombinetics/
Acceligen to further the development of this genetic approach to 
replace surgical castration (551). Using CRISPR/Cas9 technology, the 
alliance has also targeted KISS1 gene rather than the receptor and 
found a similar inhibition of puberty in the pig (552). However, this 
technology inevitably carries a problem, as homozygous sows and 
boars are sterile and unable to produce litters. A solution to this 
inborn problem is being sought, but finding an economically viable 
way to reproduce the GPR54−/− pigs will be challenging. It is expected 
that CRISPR/Cas9 technology will be employed in coming years to 
target many other genes that are essential for reproductive organ 
development or functions.

In summary, the newer technology of gene editing holds great 
promise for replacing castration in animals, but choosing the best 
target cell/gene and resolving all the looming problems will be a 
challenge, particularly the ethical concerns over gene manipulation 
in the reproductive system. Moreover, the likely high cost of this 
technology would greatly reduce the application in livestock, while it 
may be acceptable for use in unique dog and cat breeds.

3.7 Evolution of male sterilization

This review discusses the past and current efforts to target 
various aspects of the male reproductive system using a variety of 
methods, ranging from surgical sterilization to treatments involving 
chemical toxicants, hormonal manipulations, and finally gene 
disruption (Figure 2). One important variable is the age at which 
sterilization is induced. From the literature, both advantages and 
disadvantages can be found for castration at the young or pubertal 
ages. If the goal is not only to induce sterility but also to inhibit 
male sexual behavior, as is typical in non-human males, a reduction 
in serum testosterone levels will be  required, regardless of the 
method used or age at treatment. However, there are cases when it 
would be desirable to allow for normal androgen production while 
rendering the males sterile. Recent use of vaccines for 
‘immunocastration’ appears to be successful to a certain degree, 
especially when targeting GnRH in the hypothalamus. However, a 
drawback of this approach is that it often requires additional 
injections, and failing to adhere to the schedule for these boosters 
can result in an inability to achieve the desired effects. Finally, with 
simpler methods for the disruption of the genetic code becoming 
available, gene targeting will become a promising method for 
developing novel approaches for male sterility.

The various alternatives presented so far have been developed 
with distinct purposes and can broadly be categorized into three 
types. The first type is designed to reduce the population of animal 
pests such as rats, the second is to replace neutering surgeries in pets, 
and the third is for efficient and humane castration of livestock. 
Consequently, not all methods can be  uniformly applied to the 
sterilization of all mammalian species. It is crucial to understand the 
advantages and disadvantages of each method before selecting, 
refining, and optimizing a sterilization technique for a specific 
species. Factors to consider include animal welfare, animal safety, 
user safety, human food safety, environmental safety, side effects, 
permanency of treatment effect, and cost. Table 6 summarizes the 
feasibility of applying different sterilization methods to male livestock 
and pets.
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TABLE 6 Comparison of sterilization methods for their application in farm and companion animals.

Method Efficacy Animal welfare 
concerns

Feasibility Other concerns

Farm animals

Surgical testis removal Reproductive behavior

Androgen production

Fertility

Permanent

Pain and stress due to 

absence of anesthesia or 

analgesia

Feasible: heavily used in current 

practice

Risk to workers (injury with scalpels);

Adverse effects on production yield;

Increase in mortality

Vasectomy Sperm in ejaculate

Fertility

Permanent

No concerns if pain control is 

applied

Not feasible: time-consuming and 

relatively high cost;

Used at small-scale to produce teaser 

males for estrus detection

Need trained surgeons;

Retained androgen production and 

aggressive behavior

Systemic chemical 

sterilization

Unknown Non-reproductive organ 

effects (usually high dose)

Not feasible: human food safety 

concerns (toxic residues)

May have only temporal effects at safe 

doses;

May require repeated treatments

Chemical sterilization by 

injection into organ

Androgen production

Sperm in ejaculate

Fertility

Inflammation and pain Feasible, if the best chemical solution 

is selected

Inconsistencies in treatment 

outcomes;

May require training for optimal 

injection

Hormonal sterilization Androgen production

Fertility

Transient

None or minor Feasible, but requires repeated 

administration that increase costs

Human food safety and environmental 

safety;

Inconsistencies in treatment outcomes

Pre-pubertal hormonal 

sterilization

Unknown None or minor Feasible: would require a single 

treatment

Human food safety and environmental 

safety;

Effective treatment windows have to 

be defined for each species

Immunological 

sterilization

Reproductive behavior

Androgen production

Sperm in ejaculate

Fertility

Transient

None or minor Feasible: popular alternative in hog 

production;

Requires booster doses that increase 

costs

Risk to workers (self-injection);

Handling of large animals as they age

Genetic sterilization Reproductive behavior

Androgen production

Sperm in ejaculate

Fertility

Permanent

None or minor Not feasible: high cost of 

development and implementation

Low consumer acceptance of 

genetically modified organisms

Companion animals

Surgical testis removal Reproductive behavior

Androgen production

Fertility

Permanent

Risk of complications

Stress before and after 

surgery

Feasible: heavily used in current 

practice;

Logistic and economical limitations 

for use in free-roaming dog/cat 

communities

Time-consuming;

Variable cost by region, breed, age, 

etc.;

Debate over effects on lifespan;

Selection of neutering age to minimize 

health impact;

Retained reproductive behavior when 

performed at older ages

Vasectomy Sperm in ejaculate

Fertility

Permanent

Risk of complications

Stress before and after 

surgery

Feasible: popular alternative to 

surgical castration;

Allows for positive effects of 

reproductive steroids on animal 

growth

Debate over effects of reproductive 

steroids on lifespan;

Retained reproductive behaviors

Systemic chemical 

sterilization

Androgen production

Sperm in ejaculate

Fertility

Transient

Non-reproductive organ 

effects (usually high dose)

Not feasible: animal welfare concerns Temporal effects at safe doses;

Requires repeated treatment;

(Continued)
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4 Concluding remarks

For thousands of years, sterilization by castration has been a 
reliable method for managing reproduction in domestic and feral 
animals. In companion animals, this method has been necessary for 
controlling animal behavior and addressing the significant issue of 
animal abandonment and overpopulation. In livestock, male 
castration is widely used for improving animal management and the 
quality of the meat. However, in modern society, the practice has also 
heightened global awareness and concern for animal welfare. The 
ideal method for inducing animal sterility should not cause animal 
suffering or welfare concerns, such as side effects, its application 
should be  cost- and time-efficient, and its effectiveness should 
be consistent regardless of the user. Additionally, neutering livestock 
must ensure safety for humans who may consume the meat. While 
some methods have shown potential to suppress reproduction in 
domesticated pets and food production animals over the long term, 
unfortunately, no alternative to surgical sterilization has yet fully met 
all these requirements. Nevertheless, research has led to successful 
chemical sterilization of rodent species. Hopefully, this discussion 
will inspire future breakthroughs in male sterilization, as we respond 
to the crisis of animal overpopulation and strive for better 
animal welfare.
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Method Efficacy Animal welfare 
concerns

Feasibility Other concerns

Chemical sterilization by 

injection into organ

Androgen production

Sperm in ejaculate

Fertility

Permanent

Inflammation and pain in the 

testis

Feasible, if the best chemical solution 

is selected

Inconsistencies in treatment 

outcomes;

May require training for optimal 

injection

Hormonal sterilization Reproductive behavior

Androgen production

Sperm in ejaculate

Fertility

Transient

Potential side effects on 

reproductive organs

Feasible: GnRH agonists are used in 

male dogs as contraceptives;

Requires repeated administration

Temporal effects;

Economical limitations

Pre-pubertal hormonal 

sterilization

Unknown Potential side effects on 

reproductive organs 

development and growth

Feasible: would require a single 

treatment

Effective treatment windows have to 

be defined for each species

Immunological 

sterilization

Reproductive behavior

Androgen production

Sperm in ejaculate

Fertility

Transient

None or minor Feasible, but would require booster 

doses;

Potential conjugation with antigens 

for common diseases

Inconsistent results with high 

individual variability;

Temporal effects

Genetic sterilization Reproductive behavior

Androgen production

Sperm in ejaculate

Fertility

Permanent

None or minor Feasible, but could be limited to 

unique breeds

Relatively high cost of development 

and implementation;

Concerns regarding genetically 

modified organisms
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