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Fermented total mixed ration (FTMR) is an effective method of preserving high-
moisture byproducts with higher aerobic stability after fermentation. FTMR has 
the potential to fulfill the daily nutritional requirements of cattle and enhance 
their production performance. The objective of this research was to examine the 
influence of FTMR on lactation performance, total tract apparent digestibility, 
fecal microbiota communities, and fermentation profiles in lactating dairy cows. 
A total of 12 cows were randomly assigned into two groups: the TMR group and 
the FTMR group. The TMR group was fed a total mixed ration (TMR) diet, and the 
FTMR group was fed an FTMR diet. The FTMR did not impact milk yield in dairy 
cows despite a decrease in dry matter intake, which increased the efficiency of 
the feed. In contrast to that in the TMR group, the milk fat content in the FTMR 
group was greater. The FTMR group showed greater digestibility of neutral 
detergent fiber (NDF), organic matter (OM), dry matter (DM), crude protein 
(CP), and acid detergent fiber (ADF) in the total digestive tract than did the TMR 
group. The FTMR increased the concentration of butyrate in the fecal matter 
and reduced the pH of the feces. The Chao1, ACE, and Shannon indices of the 
archaeal community in dairy cow feces were significantly higher in cow fed the 
FTMR compared to those fed the TMR. LefSe analysis revealed higher levels 
of Oscillospira, Lactobacillus, Prevotella, and Dehalobacterium in the feces of 
dairy cows fed the FTMR than in those fed the TMR. However, the abundances 
of Roseburia, rc4-4, Bulleidia and Sharpea exhibited the opposite trend. The 
abundances of Halobacteria, Halobacteriales, and Halobacteriaceae, which are 
biomarkers for distinguishing fecal archaea in the TMR from the FTMR, were 
substantially greater in the feces of dairy cows that consumed the TMR than 
in those that consumed the FTMR. Therefore, FTMR can improve the milk fat 
content, total tract apparent feed digestibility efficiency, and diversity of archaea 
in the feces. Additionally, this work provides a theoretical basis for the feasibility 
of FTMR feeding for dairy cows.
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1 Introduction

One of the primary challenges confronting the cattle industry is 
the deficiency of high-quality protein and roughage resources in 
China (1). Despite the presence of abundant unconventional feed 
resources and crop residues in China, their digestion and utilization 
rates as feed resources remain low (2). Fermented total mixed ration 
(FTMR) technology represents a novel feeding approach developed 
from TMR modulation and processing technology (3). It effectively 
utilizes unconventional feed resources and crop residues as feed 
sources, minimizing waste, which helps mitigate feed resource 
shortages and reduce breeding costs (4). A high-quality diet with 
comprehensive, balanced nutrition and long-term storage is achieved 
by thoroughly mixing and fermenting various feed materials, 
including forage, concentrate, and essential minerals, with 
fermentation bacteria (5). After fermentation, the feed demonstrates 
high levels of crude protein, excellent palatability, and significant 
nutritive value (6, 7). FTMR can effectively utilize unconventional 
feed resources and crop residues as feed sources to reduce waste, 
thereby alleviating feed resource shortages and lowering 
breeding costs.

Due to the intricate conditions of anaerobic fermentation in 
FTMR, their microbial composition is highly diverse. Therefore, the 
microbial makeup of feed plays a critical role not only in 
fermentation quality but also in the aerobic stability of the feed (8). 
With advancements in microbial technology applied in the feed 
industry, the use of enzymes and bacteria has become a common 
strategy to enhance silage feed quality (9). Optimal combinations 
of enzymes and bacteria can effectively boost the fermentation of 
feed materials, improving both the quality and feeding efficiency 
(10–12). Cellulase breaks down cellulose, hemicellulose, and lignin 
in feed into accessible sugars that lactic acid bacteria can utilize, 
increasing their fermentation substrate, accelerating pH reduction, 
and enhancing silage fermentation quality (13, 14). Lactobacillus 
buchneri, a heterotypic fermentation bacterium, not only enhances 
aerobic stability and prolongs shelf life but also improves animal 
gut health and immunity, and increases milk production in 
cows (15).

In ruminants, the gastrointestinal microbes of dairy cows are 
pivotal for acquiring nutrients and energy (16, 17). Research has shown 
that diet largely determines the composition of bacteria in feces and the 
structure of the archaeal community in dairy cows, with the fecal 
microbiome serving as an indicator of hindgut microbial changes (18–
20). Diets high in concentrates significantly decrease the populations 
of cellulolytic bacteria such as Ruminococcus, Fibrobacter, and 
Ruminiclostridium, as well as methanogens like Methanosarcina, 
Methanobrevibacter, and Methanosphaera (21). Al-Azzawi et  al. 
demonstrated that adding powdered activated carbon to the diet 
reduces the abundance of Proteobacteria and Methanobrevibacter in 
feces (21). Additionally, hindgut archaea are responsible for methane 
production, which contributes significantly to global warming (22–24). 
However, limited information exists on the effects of co-fermentation 
TMR with Lactobacillus brucei and cellulase on fecal fermentation 
parameters and microbial diversity. This study aimed to evaluate and 
compare the impacts of total mixed rations (TMRs) and fermented 
total mixed rations (FTMR) on lactation performance, fecal 
fermentation parameters, and fecal microbiota in dairy cattle, providing 
valuable insights into the use of FTMR for dairy cow management.

2 Materials and methods

2.1 Animals and diets

All animal experimental procedures were approved by the Animal 
Care and Use Committee of Henan Agricultural University (Approval 
number: HENAU-2021-025).

Experimental dairy cows were obtained from Ruiya Dairy Farm 
located in Zhengzhou, Henan, China. A total of twelve parity 2 
Holstein cows (average body weight = 616 ± 13.4 kg, average lactation 
period = 106 ± 7.55 days) were randomly assigned to either the total 
mixed ration (TMR, n = 6) or fermented total mixed ration (FTMR, 
n = 6) groups based on their daily milk yield and lactation period. Each 
group included 6 replicates (pens) with one cow per pen. The study 
was conducted over a period of 14 weeks, with the initial two weeks 
designated as an adaptation period.

Both the TMR and FTMR diets consisted of 50% forage and 
50% concentrate on a dry matter basis, formulated to meet 
nutritional requirements using the Cornell-Penn-Miner Dairy 
model version 3.08.01. The compositions of TMR and FTMR were 
identical (on a dry matter basis): alfalfa hay (11.80%), wet corn 
gluten feed (6.86%), corn stover (3.43%), corn silage (27.80%), 
ground corn (24.60%), soybean meal (9.80%), cottonseed meal 
(4.91%), DDGS (7.35%), expanded soybean (0.95%), and premix 
(2.50%). The moisture content was adjusted to 48.0%. Lactic acid 
bacteria (LAB) and cellulase were added to the FTMR. LAB 
included a blend of Lactobacillus plantarum (CGMCC 1.12934, 
obtained from the China General Microbiological Culture 
Collection Center) and Lactobacillus brucei (BNCC189797, 
obtained from Beina Bio, Beijing, China) in a 1:1 ratio, applied at 
1 × 1011 cfu/g of fresh material. Cellulase (10,000 U/g, XS 
Biotechnology Co., Ltd., Beijing, China) was added at 10 g/kg of 
fresh material. Additives were dissolved in water and uniformly 
sprayed onto the mixture using a sprayer. The fermented mixture 
was packed using polyethylene stretch film with a compaction of 
800 cm3 and fermented outdoors for 60 days at 16–30°C using a 
silage packer (Takakita MW1010H, Japan). Table 1 presents the 
nutrient compositions of both feeds. Cows were fed ad libitum twice 
daily at 12 h intervals (6:30 and 18:30) with free access to water in 
individual stall barns. Dairy cows were milked twice daily at 6:00 
and 18:00.

2.2 Analysis of milk production and its 
components

At weeks 7 and 13 of the experiment, milk yield was recorded, 
and milk samples were collected over 6 consecutive days. Each day, 
at the Henan Dairy Herd Improvement Testing Center in Zhengzhou, 
China, a 50 mL aliquot of milk, proportional to the actual daily yield 
(morning and afternoon), was mixed using an automated near-
infrared milk analyzer (MilkoScan, Foss Electric, Hillerød, 
Denmark). Potassium dichromate was added to preserve the milk 
samples, which were then stored at 4°C until analysis. Lactose, 
protein, fat, milk urea nitrogen (MUN), total solids (TS), and somatic 
cell count (SCC) were determined using infrared analysis methods 
described by Laporte and Paquin (25).
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2.3 Fecal sample collection

During weeks 7 and 13 of the experiment, about 500 g of spot fecal 
samples were gathered from the cows’ rectums using sterile gloves. 
These samples were composited for each cow at both 6:00 and 18:00 
over three consecutive days. To measure the pH, 5 g of fecal material 
was mixed with 250 mL of distilled water, and the pH was promptly 
measured using a portable pH meter (PHB-5, ShanghaiLeici, 
Shanghai, China).

One set of samples was used for total-tract apparent digestibility. 
Fecal samples were dried at 60°C in a forced-air oven and then ground 
using a 1 mm screen in a microplant grinding machine (FZ102, Taisite 
Instrument Co., Ltd., Tianjin, China). Subsequently, they were 
analyzed for dry matter (DM), crude protein (CP), ash, starch, neutral 
detergent fiber (NDF), acid detergent fiber (ADF), and indigestible 
NDF (iNDF). The other set of samples was used for fecal 
microorganism analysis. The samples were immediately frozen using 
liquid nitrogen. Equal amounts of frozen samples from each cow and 
time point were combined to ensure uniformity, using a sterile tap 
homogenizer (Shanghai Hannuo Ltd., Shanghai, China). These mixed 
samples were then stored at −80°C to minimize microbial activity, 
preparing them for subsequent DNA extraction.

2.4 Fecal sample analysis

Feed samples were analyzed for ash, dry matter (DM), crude 
protein (CP), and starch following procedures 942.05, 934.01, 976.05, 

and 982.30, respectively, as outlined by the Association of Official 
Analytical Chemists (AOAC, 1990). Neutral detergent fiber (NDF) 
and acid detergent fiber (ADF) concentrations were determined 
consecutively using an Ankom A200 fiber analyzer (Ankom 
Technology, Macedon, NY). Indigestible NDF (iNDF) served as an 
indirect marker, and total tract apparent nutrient digestibility was 
calculated accordingly. The iNDF marker was identified through in 
vitro analysis described by Goeser and Combs (26). For fecal samples, 
raw material was diluted 1:4 with distilled water to measure fecal pH 
using an Accumet AB150 pH meter (Fisher, Canada).

Fecal volatile fatty acid (VFA) content was determined using high-
performance liquid chromatography (HPLC, Waters 600, Milford, 
Massachusetts, United  States). Each sample preparation involved 
diluting 1 g of fecal material with 1 mL of water. Following this, 300 μL 
of an internal standard (4-methylvaleric acid, Sigma-Aldrich, St. 
Louis, MO) and 200 μL of 25% phosphoric acid were added, 
thoroughly mixed, and then centrifuged at 12,000 × g for 15 min at 
4°C. The resulting supernatant was transferred to a new tube for 
analysis using HPLC, following the method detailed by Wang 
et al. (27).

2.5 Body condition score

During weeks 7 and 13 of the experiment, veterinarians assessed 
the body condition score (BCS) of the experimental cows shortly after 
the morning milking session. The assessment used a 5-point scale (1–5 
points, with increments of 0.25) as outlined by Vasseur et al. (28).

2.6 Amplification of 16S rRNA and Illumina 
MiSeq sequencing

Genomic DNA extraction from fecal samples utilized the 
TIANamp Bacteria DNA Kit (TIANGEN, Peking, China) following 
the manufacturer’s protocol. Verification of DNA concentration and 
integrity was conducted using both agarose gel electrophoresis and a 
NanoDrop  2000 spectrophotometer (Thermo Fisher Scientific, 
Massachusetts, United States). The DNA was subsequently amplified 
in triplicate employing the Q5 High-Fidelity DNA Polymerase System 
(New England Biolabs (Beijing) LTD, Beijing, China). The V3–V4 
region of the 16S rRNA gene for bacterial analysis was amplified using 
primers 338F (5′-ACTCCTRCGGGAGGCAGCAG-3′) and 806R 
(5′-GGACTACCVGGGTATCTAAT-3′) (23), while the 16S rRNA 
gene region V3–V4 for archaeal analysis was amplified using primers 
524F (5′-TGYCAGCCGCCGCGGTAA-3′) and 958R (5′-YCCGGC 
GTTGAVTCCAATT-3′). PCR amplification consisted of an initial 
denaturation at 95°C for 3 min, followed by 25 cycles of denaturation 
at 95°C, annealing at 60°C for bacteria/55°C for archaea, and 
elongation at 72°C, concluding with a final extension step at 72°C for 
10 min. PCR products were analyzed by 2% agarose gel electrophoresis. 
Purification utilized the AxyPrep DNA Gel Extraction Kit (Axygen 
Bioscience, Union City, CA, United States), followed by quantification 
using the Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher 
Scientific, Massachusetts, United States). Sequencing libraries were 
validated using an Agilent Bioanalyzer (Agilent Technologies, Palo 

TABLE 1 Feed compositions and nutrient levels of two treatment diets.

Item TMRa FTMR

Nutrient levelsb

Dry Matter (DM), % of DM 48.0 46.2

Crude protein (CP), % of 

DM
17.5 19.1

Neutral detergent fiber 

(NDF), % of DM
38.3 35.7

Acid detergent fiber (ADF), 

% of DM
21.5 20.5

Non-fiber carbohydrate 

(NFC)c, % of DM
35.3 34.8

starch, % of DM 21.7 22.4

NEL
d, Mcal/kg of DM 1.61 1.64

Fermentation profile

pH 6.01 4.69

Lactic acid, % of DM 0.63 8.48

Acetic acid, % of DM 0.64 2.23

NH3-N, % of Total N 2.65 5.28

aTMR, total mixed ration; FTMR, fermented total mixed ration.
bPremix contained (DM basis) 14.27% Ca, 5.42% P, 4.96% Mg, 0.05% K, 10.67% Na, 2.98% 
Cl, 0.37% S, 11 mg/kg Co, 577 mg/kg Cu, 4,858 mg/kg Fe, 51 mg/kg I, 1,806 mg/kg Mn, 
13 mg/kg Se, 1,694 mg/kg Zn, 115,240 IU/kg vitamin A, 46,100 IU/kg vitamin D, and 576 IU/
kg vitamin E.
cNFC = 100 − NDF − CP − ether extract − ash.
dCalculated based on the Ministry of Agriculture of China (MOA, 2004).
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Alto, CA, United States), and their quantification was confirmed by an 
Agilent Bioanalyzer (Agilent Technologies, Palo Alto, CA, 
United States) and Promega QuantiFluor™-ST (Promega, Madison, 
WI, United  States). Sequencing was performed by Frasergen 
Bioinformatics Technology Co., Ltd. (Wuhan, China) on an Illumina 
MiSeq platform (Illumina, Inc., San Diego, CA, United States), and the 
original RNA-seq data have been deposited into the NCBI Sequence 
Read Archive (SRA), accession number: PRJNA1119071.

2.7 Statistical and bioinformatics analyses

Processing of sequences from the MiSeq platform was 
performed using QIIME (version 1.8.0) (29). Reads meeting 
criteria of average quality score ≥ 25 and length between 
220–250 nt were retained. Overlapping sequences (>10 bp overlap) 
were assembled using FLASH v1.2.7. To get high-quality clean 
tags, raw reads underwent specific filtering conditions via QIIME 
(v1.8.0) quality control: sequences ≤160 bp or with ≥8 bp 
homopolymers were excluded. Operational taxonomic units 
(OTUs) were clustered at 97% identity using UCLUST (30), and 
chimeric sequences were removed with USEARCH (v5.2.236, 
http://www.drive5.com/usearch/). The most prevalent sequence 
within each OTU (bacteria and archaea) was defined as the 
“representative sequence” and aligned against the SILVA bacterial 
database (version 119) (31), NCBI-nt protozoa database (32), 
Unite fungi ITS database (version 7.0) (33), and SILVA archaea 
database (31) using PyNAST (29) with standard parameters. 
Alpha diversity indices (ACE, Chao1, Shannon, Simpson) were 
computed by rarefied samples in QIIME to assess diversity and 
abundance of bacterial and archaeal communities. Principal 
component analysis (PCA) was utilized for beta diversity 
evaluation. Linear discriminant analysis effect size (LefSe) analysis 
on the Galaxy online platform (34) identified discriminative 
functional biomarkers, employing a size-effect threshold of 2.0 on 
the logarithmic LDA score to determine major abundant modules 
in the TMR and FTMR groups.

Independent-sample t-tests (for normally distributed data) or 
Mann–Whitney U tests (for nonnormally distributed data) were used 
to determine substantial differences in the relative abundance of the 
top 10 phyla and genera and in the alpha diversity indices between the 
two groups. p < 0.05 and p < 0.01 indicated statistically significant and 
extremely significant differences, respectively.

3 Results

3.1 Effect of TMR and FTMR on the 
lactation performance of dairy cows

Table  2 presents milk production and component findings in 
addition to feed intake. Dairy cows consuming the FTMR diet showed 
reduced DMI, increased milk fat concentration, higher ECM, and 
improved feed efficiency compared to those on the TMR diet. 
Significant differences in feed efficiency were observed between the 
TMR and FTMR groups.

3.2 Effect of TMR and FTMR on the 
apparent total tract digestibility of dairy 
cow feces

Table 3 shows the apparent total tract nutrient digestibility of the 
two treatment diets, which was greater for the FTMR diet than for the 
TMR diet for DM, OM, CP, NDF and ADF.

3.3 Effect of TMR and FTMR on the fecal 
VFA pattern and pH of dairy cows

The fecal pH, acetate, and propionate were lower (p < 0.05) in the 
FTMR-treated samples than in the TMR-treated samples (Table 4). 
The content of butyrate in the feces of cows fed the FTMR was greater 

TABLE 2 Effects of feeding two treatment diets based on TMR and FTMR 
diets on lactation performance in dairy cows.

Itemb Treatmenta SEM p-value

TMR FTMR

The 7th week

DMI, kg/d 20.7 17.3 0.73 0.01

Milk Yield, 

kg/d
28.1 29.5 0.94

0.35

ECMc Yield, 

kg/d
30.2 31.7 0.30

0.01

Fat% 3.72 3.98 0.06 0.01

Protein% 3.30 3.33 0.06 0.67

Lactose% 4.77 4.82 0.05 0.82

Total solids% 12.5 11.8 0.27 0.20

Feed efficiencyd 1.37 1.71 0.08 0.01

SCC, ×10 cells/

mL
47.5 81.3 26.4

0.59

Body scores 2.96 3.00 0.06 0.88

The 13th week

DMI, kg/d 18.9 17.1 0.46 0.03

Milk Yield, 

kg/d
29.0 29.4 0.82

0.80

ECM Yield, 

kg/d
30.4 31.7 0.26

0.01

Fat% 3.81 3.96 0.03 0.01

Protein% 3.35 3.34 0.06 0.77

Lactose% 4.87 4.80 0.05 0.57

Total solids% 12.9 12.3 0.37 0.48

Feed efficiencyd 1.55 1.72 0.04 0.03

SCC, ×103 

cells/mL
70.1 51.1 20.3

0.99

Body scores 2.92 3.04 0.07 0.41

aTMR, total mixed ration; FTMR, fermented total mixed ration; DMI, dry matter intake; 
SCC, somatic cell count; ECM, energy corrected milk.
bECM (Kg) = 0.3246 × milk yield (kg) + 13.86 × fat yield (kg) + 7.04 × protein yield (kg).
cFeed efficiency = ECM/DMI.
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than that in the feces of cows fed the TMR. No significant effects were 
observed for fecal total VFA concentration, isobutyrate, valerate, 
isovalerate, and acetate/propionate ratio.

3.4 Analysis of 16S rRNA sequencing of 
bacteria and archaea in the feces of dairy 
cows fed the TMR and FTMR

Figure 1A displays bacterial species (OTUs) found in TMR and 
FTMR, and Figure 1C illustrates archaeal species (OTUs). Cows fed 
FTMR exhibited significantly more observed species than those fed 
TMR (p < 0.05).

The sparsity curves of the OTUs identified in this study indicated 
that as sequencing depth increased, more species were detected. With 
higher numbers of sequences analyzed, the edges of the sparsity 
curves flattened, suggesting thorough coverage of the sequencing data 
(Figures 1B,D). Good’s coverage, which assesses how well samples are 
represented by sequencing, approached nearly 99%, indicating 
comprehensive detection of bacterial types in the samples.

3.5 Differences in bacterial and archaeal 
diversity between the feces of dairy cows 
fed the TMR and FTMR

The alpha diversity indices commonly employed included 
abundance indices (Chao1 and ACE) and diversity indices (Simpson 
and Shannon). Analysis of fecal bacteria between the two groups 
indicated no statistically significant differences in the Chao1, ACE, 
Shannon, or Simpson indices, as indicated in Table  5 (p > 0.05). 
Moreover, FTMR significantly increased the fecal archaeal abundance 
indices (Chao and ACE indices) and diversity indices (Shannon 
index) (p < 0.05).

Beta diversity evaluations were used to analyze the similarities in 
community structure between the two groups. The NMDS analysis 
highlighted significant differences in fecal bacterial communities, 
clearly distinguishing between the TMR and FTMR groups at the 
OTU level. Similarly, the NMDS results showed substantial variability 
in fecal archaeal communities, with a considerable separation 
observed between the two groups, indicating distinct compositions of 
archaeal communities in the TMR and FTMR groups (See Figure 2).

3.6 Relative abundance and core 
microbiota of bacteria and archaea in the 
feces of dairy cows fed the TMR and FTMR

Figure 3 displays the distributions of the top 10 and 20 phyla and 
genera of fecal bacteria in the TMR and FTMR groups. Bacterial phyla 
with a relative abundance exceeding 1% were considered predominant. 
At the phylum level (Figure  3A), Firmicutes, Bacteroidetes, and 
Actinobacteria were prevalent in both groups. Among genera with a 
relative abundance exceeding 1% (Figure  3B), dominant bacteria 
included Unclassified_Ruminococcaceae, Unclassified_Bacteroidales, 
Unclassified_Clostridiales, Oscillospira, Unclassified_
Peptostreptococcaceae, Unclassified_Lachnospiraceae, Bifidobacterium, 
Unclassified_Rikenellaceae, Unclassified_S24-7, Dorea, Unclassified_
RF16, CF231, Clostridium, and Unclassified_Clostridiaceae. Oscillospira 
exhibited a notable difference between the TMR and FTMR groups 
(p = 0.01) (Figure 3E).

Figure 3 presents the relative abundances of fecal archaea in the 
TMR and FTMR groups at both the phylum and genus levels. Archaeal 
phyla with a relative abundance exceeding 1% were classified as 
dominant. At the phylum level (Figure 3C), Euryarchaeota were the 
most prevalent archaea in both groups. Among archaeal genera with 

TABLE 3 Effects of feeding two treatment diets based on TMR and FTMR 
diets on total-tract apparent digestibility in dairy cows.

Item Treatmenta SEM p-value

TMR FTMR

The 7th week, %

DM 68.9 75.3 0.89 0.00

OM 70.1 75.7 0.94 0.01

CP 76.4 80.2 0.99 0.03

NDF 41.2 51.7 1.19 0.00

ADF 36.1 49.3 1.72 0.00

The 13th week, %

DM 71.5 75.2 0.95 0.01

OM 71.7 75.2 1.09 0.04

CP 78.4 82.2 1.25 0.04

NDF 45.2 49.6 0.91 0.01

ADF 42.8 46.6 0.95 0.05

aTMR, total mixed ration; FTMR, fermented total mixed ration; OM, organic matter; DM, 
dry matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber.

TABLE 4 Fecal VFA pattern and pH of cows fed two different diets of TMR 
and FTMR.

Items Treatmenta SEM p-value

TMR FTMR

Fecal pH 6.7 6.36 0.07 0.03

Total VFA 

(μmol/g)
26.04 26.29 0.87 0.12

Acetate 

(μmol/g)
19.33 18.17 0.31 0.03

Propionate 

(μmol/g)
4.00 3.45 0.15 0.03

Butyrate 

(μmol/g)
2.18 3.88 0.21 0.001

Isobutyrate 

(μmol/g)
0.180 0.177 0.01 0.35

Valerate 

(μmol/g)
0.190 0.187 0.02 0.42

Isovalerate 

(μmol/g)
0.156 0.177 0.05 0.36

Acetate/

Propionate
4.833 5.262 0.14 0.06

aTMR, total mixed ration; FTMR, fermented total mixed ration.
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TABLE 5 Changes in fecal microbial richness and diversity between TMR 
and FTMR groups.

Item Treatmenta SEM p-value

TMR FTMR

Bacteria

Chao 1 2316.88 2447.39 121.98 0.47

ACE 2335.68 2531.16 151.06 0.38

Shannon 9.59 9.49 0.20 0.74

Simpson 0.993 0.991 0.001 0.33

Archaea

Chao 1 607.51 676.74 17.74 0.02

ACE 609.37 680.44 18.67 0.02

Shannon 5.47 5.96 0.05 0.01

Simpson 0.902 0.928 0.007 0.25

aTMR, total mixed ration; FTMR, fermented total mixed ration.

relative abundances exceeding 1% (Figure 3D), dominant archaea 
included Methanobrevibacter, Unclassified_Methanocorpusculaceae, 
Methanosphaera, and Unclassified_Methanobacteriaceae. Taxa shared 
between the TMR and FTMR groups were considered part of the core 
microbial community. The number of shared OTUs for bacteria 
(Figure 4A) was 3,762, and for archaea (Figure 4B), it was 947.

3.7 LDA effect size analysis between the 
TMR and FTMR groups

The enrichment module rankings were determined using LEfSe 
analysis. The cladogram (Figure 5A) visually confirmed differences in 
16 bacterial taxa between the TMR and FTMR groups. Figure 5B, the 
LEfSe plot, displays the varying LDA scores of bacterial taxa between 
these groups. Significant biomarkers for bacteria included Roseburia, 
rc4-4, Bulleidia, and Sharpea at the genus level. Similarly, notable 
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FIGURE 1

Boxplot and rarefaction curves of operational taxonomic units (OTUs). Bacterial (A) and archaea (C) boxplots represent the number of observed OTUs. 
The x-axis shows the observed species (OTUs), and the y-axis shows the relationship between TMR and FTMR. The OTU similarity threshold of 97% 
was considered. Boxes represent the interquartile range (IQR) between the first and third quartiles (25th and 75th percentiles, respectively), and the 
horizontal line inside the box defines the median. Whiskers represent the lowest and highest values within 1.5 times the IQR from the first and third 
quartiles. *p  <  0.05 (Student’s t-test). Bacterial (B) and archaea (D) rarefaction curves of OTUs. The x-axis shows the number of valid sequences per 
sample, and the y-axis shows the observed species (OTUs). Each curve in the graph represents a different sample and is shown in a different color. As 
the sequencing depth increased, the number of OTUs also increased. Eventually, the curves began to plateau, indicating that as the number of 
extracted sequences increased, the number of OTUs detected decreased.
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biomarkers for archaea between the groups were Lactobacillus, 
Prevotella, Dehalobacterium, and Oscillospira.

Figure  5C displays variations among the three archaeal taxa 
between the TMR and FTMR groups in a cladogram. In Figure 5D, 
the LEfSe analysis plot illustrates significant differences in LDA scores 
of archaeal taxa between these groups. Significant biomarkers 
distinguishing between the groups were evident at the class and order 
levels, specifically Halobacteria and Halobacteriales, respectively. 
Additionally, at the family level, Halobacteriaceae showed significant 
differences between the TMR and FTMR groups.

4 Discussion

4.1 Lactation performance, total tract 
apparent digestibility, fecal pH, and VFA of 
dairy cows

DMI is a crucial factor influencing dairy cow production 
performance (35). In this study, a decrease in DMI was observed in 
the FTMR group, while milk yield remained unaffected. This indicates 
that the FTMR diet demonstrates superior feed efficiency. The 
concentration of acetic acid in relation to total acids was negatively 
associated with silage intake (36). Previous research has shown that 
acetic acid concentrations exceeding 1.7% DM significantly reduce 
ruminant intake (37). Additionally, ammonia-N concentration in 
grass silage has been inversely correlated with dry matter intake in 
lactating dairy cows (38). As a result, the FTMR-fed group exhibited 
higher levels of organic acids and ammonia nitrogen, along with 
reduced dry matter intake compared to the TMR-fed group. However, 
FTMR had no impact on DMI in Ujumqin sheep, likely due to species 
differences and diet fermentation quality (39). Despite decreased DMI 
in the FTMR diet, milk yield was unaffected due to improved feed 
efficiency and increased ECM compared to the TMR diet. Previous 
research indicates that exogenous fibrolytic enzymes enhance fiber 

digestibility, thereby increasing available energy intake and improving 
feed efficiency (40). Compared to the TMR diet, FTMR demonstrated 
higher nutrient digestibility and feed efficiency, notably increasing 
DM digestibility (41). Cao et al. observed increased DM digestibility 
with fermented TMR in sheep compared to regular TMR consumption 
(39). Additionally, CP and NDF digestibility were enhanced in the 
FTMR diet, consistent with recent studies demonstrating improved 
CP and NDF digestibility in sheep fed FTMR, attributed to increased 
digestible CP and NDF levels (42). Enzyme levels have been reported 
to significantly impact total tract DM and NDF digestibility in a cubic 
manner (43), thereby equivalently elevating OM digestibility in cows 
fed the FTMR diet. Acetate is recognized as a primary precursor for 
milk fat synthesis in the mammary gland during lactation (44). 
Previous studies have shown that sheep fed FTMR exhibited increased 
acetate concentrations compared to those fed fresh TMR (39), 
contributing to increased milk fat production due to enhanced fiber 
digestibility from added fibrolytic enzymes (43).

Fermentation altered the carbohydrate composition in the 
FTMR, affecting hindgut fermentation patterns. Unlike the TMR 
group, the FTMR group showed a lower fecal pH. Adding starch 
(soluble carbohydrate) to dairy cow diets can significantly reduce 
fecal pH, potentially increasing nutrient bypassing in the rumen 
and accelerating passage rates (45). Hindgut microbes in dairy cows 
degrade 5 to 10% of carbohydrates, including starch, small particles 
escaping ruminal fermentation, and undigested rumen components 
(46, 47). After ensiling, the TMR exhibited reduced nonfibrous 
carbohydrate content, suggesting that FTMR increases 
concentrations of nonfibrous and soluble carbohydrates, speeds up 
feed passage rates, and boosts fermentable substances in the 
hindgut. Studies have reported that diets high in grains (rich in 
non-fiber carbohydrates) significantly increase fecal butyric acid 
levels and lower pH in cows (48), which is consistent with the 
current study’s findings. The FTMR group showed markedly higher 
fecal butyrate concentrations, corresponding with an increased 
relative abundance of key butyrate-producing bacteria like 

FIGURE 2

NMDS of fecal microbial communities. Weighted NMDS by fecal bacteria (A) and archaea (B). TMR, total mixed ration; FTMR, fermented total mixed 
ration.
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Ruminococcaceae, Oscillospira, and Bacteroidales. Acetate and 
propionate are crucial energy sources for ruminants. Research 
suggests that dietary fermentation promotes propionate 

fermentation and absorption in the rumen (49, 50), potentially 
influencing microbial populations producing these acids in both the 
rumen and hindgut.
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Relative fecal microbial abundances at phylum and genus levels. The abundances of phyla of bacteria (A) and archaea (C). The abundances of genera 
of bacteria (B) and archaea (D). Oscillospira genus (E) between both groups. Small box plots show the 25th, 50th and 75th percentiles, and whiskers 
show the extreme values of the data. TMR, total mixed ration; FTMR, fermented mixed ration.
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FIGURE 4

Venn diagram illustrating overlapping microbial OTUs at 3% dissimilarity level between both groups. Venn diagram of bacteria (A) and archaea 
(B) OTUs. TMR, total mixed ration; FTMR, fermented total mixed ration.

FIGURE 5

Effect size (LefSe) analysis for LDA. Cladogram diagram showing the microbial species with remarkable variation between TMR and FTMR groups. 
Cladogram diagram of bacteria (A) and archaea (C); species exhibiting remarkable differences with linear discriminant analysis (LDA)  >  2.0, histograms 
of bacteria (B) and archaea (D). The length of the histogram denotes the LDA score, which contrasts the degree of impact by species exhibiting 
noteworthy differences between groups. TMR, total mixed diet; FTMR, fermented total mixed diet.
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4.2 Fecal bacterial community composition 
of dairy cows

The relative abundance histogram of phyla indicated that Firmicutes, 
along with Bacteroidetes, were the predominant fecal bacteria, consistent 
with prior studies (51–53). Previous research has linked the Firmicutes 
to Bacteroidetes ratio with energy extraction in humans and mice (54, 
55). Our findings showed no change in the Firmicutes to Bacteroidetes 
ratio, suggesting that this ratio remains largely unaffected by ruminant 
diets (56). This could be attributed to the primary energy production 
occurring in the foregut rather than the hindgut (20).

In the feces, the dominant genera included Unclassified_
Bacteroidales, Unclassified_Ruminococcaceae, Unclassified_
Clostridiales, and Oscillospira. Previous studies have highlighted that 
Unclassified_Ruminococcaceae and Unclassified_Bacteroidales are 
integral parts of the rumen’s “core bacterial microbiome” (57). These 
genera play crucial roles in breaking down plant fibers within the 
gastrointestinal tract (57).

In this study, the abundance of Unclassified_Clostridiales, 
considered a core component of fecal bacteria, did not exhibit 
significant differences between the TMR and FTMR groups, which is 
consistent with prior research (58). This indicates that Unclassified_
Clostridiales may contribute significantly to the fecal microbial 
ecosystem regardless of dietary differences. Further investigation 
involving the isolation and identification of representative strains of 
Unclassified_Clostridiales could provide deeper insights into their role 
in hindgut function (59).

Our findings revealed a significantly higher abundance of 
Oscillospira in the FTMR group compared to other groups at the genus 
level. The content of Oscillospira in the rumen of cattle fed a high-
starch (soluble carbohydrates) diet increased (60). Zhao et  al. 
suggested that fermentation increases the crystalline structure of 
starch grains, promoting the production of resistant starch (61). 
Therefore, the elevated levels of Oscillospira in the FTMR group may 
be attributed to the higher content of resistant starch in the hindgut of 
cows fed FTMR. Mackie et al. noted that Oscillospira is prevalent in 
the rumen of dairy cows and influenced by dietary factors (62), 
indicating its responsiveness to diet in the gastrointestinal tract. 
Oscillospira is known as a potential butyrate producer, contributing to 
intestinal health (63), suggesting that FTMR diets may enhance 
gastrointestinal health through increased Oscillospira abundance. 
Although Oscillospira has not been cultured in pure form (9), its 
potential as a probiotic for regulating the gastrointestinal tract of dairy 
cows merits consideration.

At the genus level, Roseburia, rc4-4, Bulleidia, and Sharpea were 
significantly more abundant in the TMR group compared to the 
FTMR group, consistent with findings by Kim et al. (58). This indicates 
that less common bacterial taxa are more responsive to dietary 
changes than those more commonly found. Roseburia species are 
known for their ability to break down dietary polysaccharides, 
producing butyrate (64), which correlates with our observation of 
higher butyric acid levels in the FTMR group than in the TMR group. 
The genus rc4-4 is associated with diets rich in fiber (65), suggesting 
that the TMR diet may have a higher fiber content in the hindgut 
compared to the FTMR diet. Sharpea plays a critical role in lactic acid 
production (66, 67), which increases during rumen acidosis in cows 
(68) and varies with diet composition in sheep (69). While lactic acid 
is not a primary product of normal rumen fermentation, diets high in 

carbohydrates and soluble sugars can lead to its accumulation (70). 
Hence, the higher abundance of Sharpea in the TMR group may 
be due to greater carbohydrate flow and soluble sugar levels from the 
rumen into the hindgut.

We identified four genera—Lactobacillus, Prevotella, 
Dehalobacterium, and Oscillospira—as distinguishing biomarkers 
between the FTMR and TMR groups. Lactobacillus is recognized for 
its probiotic role in ruminant gastrointestinal health and has been 
associated with reducing diarrhea rates in calves (71–73). Our findings 
showed that Lactobacillus constituted less than 1% of the fecal 
microbiota and was not considered a core community, consistent with 
Tang et al. (74). Its abundance varies with diet, transitioning from 
lactose dominance in younger animals to diets richer in complex 
carbohydrates as they mature (75–77). While Lactobacillus thrives in 
silage, its survival through the gastrointestinal tract, particularly in the 
rumen, is limited (50, 74). Nonetheless, our results indicated 
significantly higher levels of Lactobacillus in the feces of the FTMR 
group compared to the TMR group, suggesting silage could serve as a 
vehicle for probiotic delivery (50). Prevotella was abundant in both 
TMR and FTMR groups, consistent with its widespread presence in 
cow feces (56, 78, 79) and dominance in the rumen (57, 71, 80). Its 
prevalence in feces (81) varies with diet, such as higher levels in corn-
based diets compared to those with wet distillers grains (82), 
indicating its diet-related presence in cattle feces (58, 83, 84). Prevotella 
species are known for their enzymatic capabilities in degrading 
proteins, starch, and hemicellulose to produce succinate and acetate 
(85–87). Dehalobacterium showed a higher abundance in FTMR feces 
compared to TMR, suggesting diet influences its presence (88). It has 
been linked to glucose-rich diets, although further research is needed 
on its role in the hindgut of dairy cows (89).

4.3 Fecal archaeal community composition 
of dairy cows

Our results showed that the archaeal Chao1 index in the FTMR 
group was markedly greater than that in the TMR group, confirming 
that the archaeal diversity in the FTMR group was markedly greater 
than that in the other groups. The predominant archaeal phylum 
identified in the feces was Euryarchaeota. Prior investigations have 
indicated that Euryarchaeota is the most prevalent archaeal bacterial 
phylum in the rumen (22, 85, 90), underscoring its critical function in 
the gastrointestinal system. It was further confirmed that 
Methanobrevibacter is the most prevalent archaeal bacterial genus in 
feces, aligning with previous studies (22, 91), which established their 
capability to generate CH4 from hydrogen and formic acid (91, 92). 
Nevertheless, no significant differences in Methanobrevibacter 
abundance were observed between the FTMR and TMR groups, 
implying that FTMR may not diminish methane production in the 
hindgut. Zhang et  al. (93) noted that high-concentrate rations 
significantly decreased the abundances of Fibrobacter and 
Methanobrevibacter, demonstrating that an increase in these bacteria’s 
concentration in the diet could inhibit methane synthesis (94, 95). 
Conversely, this study did not alter the concentration-to-coarse ratio 
between TMR and FTMR. Moreover, a symbiotic interaction exists 
between bacteria and methanogens in the animal gut, and cellulolytic 
bacteria in the rumen of ruminants show a positive correlation with 
the number of methanogens (96). Notably, no significant alterations 
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in the relative abundances of Fibrobacteres and Fibrobacter were 
detected in this study between the TMR and FTMR groups. 
Halobacteria, Halobacteriales, and Halobacteriaceae served as 
biomarkers to differentiate TMRs from FTMR, with their relative 
abundances being considerably higher in the TMR group than in the 
FTMR group, potentially due to variations in hindgut cell chloride 
content between the two groups (97).

5 Conclusion

In conclusion, FTMR was shown to increase milk fat content, 
improve nutrient digestibility, elevate the proportion of butyrate in 
fecal matter, and decrease fecal pH. These findings indicate that 
FTMR can increase hindgut fermentation. Additionally, FTMR 
significantly enhanced the diversity of fecal archaeal communities 
and increased the relative abundance of the genus Oscillospira, 
suggesting improved hindgut health compared to TMR. While 
Methanobrevibacter was found to be the most common archaeal 
genus in fecal samples, no significant disparities were observed 
between the TMR and FTMR groups, suggesting that FTMR may 
not have a significant impact on methane production in the 
hindgut. This study provides a theoretical basis for investigating the 
impact of FTMR on bacterial and archaeal communities in the 
hindgut, indicating that FTMR feeding can beneficially affect 
hindgut health in dairy cows.
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