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This review aims to analyse the fluctuations of fecal thyroid hormone metabolites 
(FTMs) related to environmental and individual variables in different species of 
wild ungulates and provide a collection of assay methods. The great advantage 
of fecal sampling is being completely non-invasive. A systemic search was 
conducted from 2019 to 2024, using data sources PubMed, Scopus, Web of 
Science, and the World Wide Web, and ten studies were found on this topic. 
Three studies used the radioimmunoassay method for FTMs analysis, while the 
others used a less expensive enzyme-linked immunosorbent assay. Most of 
these papers validated the method for the species-specific matrix. Related to 
the studied variables, some authors analysed FTM fluctuations only concerning 
individual variables, and others in response to both. Temperature and fecal 
cortisol metabolites (FCMs) were the most studied environmental and individual 
variables, respectively. Since FTMs are an integrative measure of plasma thyroid 
hormones, the information obtained from a non-invasive-assay method 
regarding wild ungulate physiology is becoming of great interest to the scientific 
community.
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1 Introduction

Thyroid gland function and activity of thyroid hormones (THs) are considered crucial to 
animal physiological functions. THs act on many different target tissues, stimulating oxygen 
utilization and heat production in every cell of the body. The overall effects are to increase the 
basal metabolic rate, to make more glucose available to cells, to stimulate protein synthesis, to 
increase lipid metabolism and to stimulate cardiac and neural functions (1). THs are also the 
primary endocrine regulators of body temperature (2). They can be considered indicators of 
the metabolic and nutritional status of the animals since allow them to adapt their metabolic 
balance to different environmental conditions, variations in nutrient requirements and 
availability, and to homeorhetic changes during different physiological stages.

Considering the growing need of monitoring wild animal populations, the determination 
of the seasonal fluctuations of THs can provide valuable insights into their response to 
environmental changes and ability to adapt to harsh conditions. Wild animals are more 
exposed to unpredictable changes in their living environment, and they can implement various 
physiological mechanisms in response to such changes (3, 4), such as increasing energy 
demands or reducing energy turnover (5).
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For this reason, in the last few years, analytical methods to assess 
the concentration of hormones and metabolites in alternative 
biological matrices, such as feces (3, 6–9) and hairs (10, 11) have been 
intensively developed. A non-invasive approach is an animal-friendly 
technique that allows easy access to a great number of samples in a 
larger spatial–temporal window and provides a measure of hormone 
concentrations over a longer period (12). This is particularly useful in 
wild animals avoiding the need to capture and restrain them, thus 
reducing the stress suffered (13) and respecting animal welfare (6, 8, 
14, 15).

The excretion of THs mainly occurs through the bile, and this 
offers the possibility of assaying them and their metabolites in fecal 
samples (6, 7, 16–18). Given that fecal thyroid hormone metabolites 
(FTMs) concentrations reflect the plasmatic levels of the biologically 
active T3 hormone (15), in recent years, several analytical methods for 
FTMs assaying in wild ungulates have been developed (3, 7, 19, 20). 
FTMs are a great indicator of the metabolic and energetic responses 
of wild animals to environmental factors (3, 7). Moreover, they are 
successfully used to obtain information on physiological animal status 
as pregnancy, lactation, age, and sex (6, 17).

Starting from these premises, this review aims to collect literature 
data on fluctuations of FTMs in wild ungulates in relation to individual 
or environmental variables, in order to identify common trends 
among species. The environmental variables are external factors 
linked to the animal’s habitat (e.g., external temperature and resource 
availability), while the individual ones are intrinsic characteristics of 
each animal, such as sex, age, weight, and body condition. Moreover, 
this review provided an overview of analytical methods for the FTMs 
assay. A complete literature search was carried out in PubMed, Scopus, 
Web of Science and the World Wide Web, using fecal/faecal thyroid 
hormones or fecal/faecal T3 in wild animals as keywords, and focusing 
on the ungulates species in the last five years (2019–2024). The 
ungulate species were classified according to previous studies (21–24).

2 Thyroid hormones (THs)

THs can be  considered indicators of animal metabolic and 
nutritional status (1) by regulating basal metabolism, blood pressure, 
and body temperature (17, 25), and stimulating proteins, fat, and 
carbohydrate metabolism (17, 26). The THs circulating level is 
correlated with energy expenditure, body weight, and appetite (2).

As shown in Figure 1, THs are released by the thyroid gland under 
the regulation of the hypothalamus-pituitary-thyroid system (27). 
Thyrotropin-releasing hormone (TRH), produced and released by the 
hypothalamus, stimulates the anterior pituitary gland to secrete 
thyroid-stimulating hormone (TSH, or thyrotropin) in the 
bloodstream. In the thyroid gland, TSH stimulates the production of 
tetraiodothyronine (T4) and triiodothyronine (T3). Most of the 
circulating T3 originates at peripheral levels from T4 conversion; T3 
is more biologically active and potent than T4 (28) but the latter has a 
longer blood half-life (29). It enters the cell through molecular 
transporters and binds thyroid receptors (TRs), which classically act 
as transcription factors (30).

Moreover, negative feedback is exerted by T4 and T3 that control 
the further secretion of TRH and TSH, through long and short 
feedback loops respectively, to maintain physiological levels of THs 
hormones (31).

THs also play an important role in adaptation to changes in 
environmental temperature (32). It was shown that exposure to cold 
temperatures increases serum T3, which has been identified as an 
outcome similar to that observed in hyperthyroidism (33, 34). The 
increased of T4 and T3 levels, after cold adaptation were confirmed by 
different authors (32, 35, 36). The cold temperature would act at the 
level of the hypothalamus or pituitary gland to increase TSH 
concentration and stimulate T3 and T4 production (32). The cold 
adaptation also causes deiodination of thyroxine (T4), acting on 
desiodase enzyme, and thus promotes an increase in blood T3 levels 
in humans and animals (32).

Moreover, as it is evident from the diagram in Figure 1, fasting 
also influences THs production. During the fasting period, TSH 
decreases with a consequent decrease of T3 and T4 (37). Furthermore, 
the prolonged fasting causes a decrease in muscle mass (2). Overall, 
the physiological response of animal at starvation is a decrease of THs 
production, operating on pituitary gland, to keep the basal metabolic 
rate. Therefore, as consequence of nutritional deficit, the metabolism 
tends to slow down, allowing the body to conserve its energy. Given 
the correlation between THs and body fat, the THs can be considered 
as an index of body condition (38), helping to discriminate between 
nutritional stress and other sources of stress (39).

3 FTMs fluctuation related to 
environmental or individual variables 
in wild ungulates

The excretion of THs through the bile created the favourable 
conditions for the determination of FTMs, that reflect the plasmatic 
levels of biologically active T3 (15), with the great advantage of a 
sample collection completely non-invasive. Additionally, since FTMs 

FIGURE 1

Hypothalamus-pituitary-thyroid system: production of thyroid 
hormones and the feedback effect.
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are an integrative measure of plasmatic THs, they represent an average 
value over the previous 24–48 h, as reported by Chizzola et al. for 
impala (Aepyceros melampus) (40).

A careful review of the literature over the past 5 years, showed ten 
manuscripts on FTMs fluctuations in wild ungulates about 
environmental and individual variables (Table  1). Seven studies 
analyzed FTMs levels in response to both variables, while the other 
three investigated this correlation only relating to individual variables.

The temperature was the most investigated among the 
environmental variables (n studies = 4), followed by anthropogenic 
disturbances (n = 3). Fecal cortisol metabolites (FCMs) (n = 4), sex 
(n = 3), nutritional status (n = 3), age (n = 2) intestinal microbiota 
(n = 2), and musth (n = 2) were the most studied among the 
individual variables.

For FTMs monitoring, only three authors used RIA methods, 
while the others preferred immune-enzymatic methods. For FTMs 
extraction, the most commonly used solvent was ethanol. 
Furthermore, almost all methods were analytically and biologically 
validated for the species-specific fecal matrix, as summarized in 
Table 1.

The FTMs concentration ranged from a minimum of 16 to a 
maximum of 1,358 ng/g feces. This great gap could be related not only 
to the different used analytical procedures but also to various species 
and to studied physiological and environmental conditions.

In general, in examined manuscripts, FTM levels were inversely 
related to temperature, with higher values in colder periods (3, 7, 39), 
as physiologically expected. Moreover, FTMs increased in younger 
subjects and decreased with age for all reviewed cases (42, 47). The 
relationships between FTMs and FCMs (3, 39, 41, 46), and the 
characteristics of the intestinal microbiota (43, 44) showed 
contradictory results. Concerning parasites (46), a negative correlation 
was found. No correlation between FTM levels with sex (3, 7, 42), food 
quality (3), animal behaviour (41), anthropogenic disturbance (3, 41) 
and body condition (47) was found.

4 Discussion

Despite the pivotal role played by THs in animal physiology and 
their ability to cope with changes in environmental conditions, the 
literature on FTMs fluctuations in wild ungulates is limited. It is worth 
noting that in the last five years, among wild ungulates, THs blood 
levels were only analysed in African elephants (Loxodonta africana) 
and Asian elephants (Elephas maximus) of North American zoos, to 
correlate their fluctuations with intestinal microbiome composition 
(48). In previous years, other authors assayed THs hormones in serum 
or plasma of wild ungulates [for example mule deer (Odocoileus 
hemionus) (38) and on red deer (Cervus elaphus) (49)], but the 
majority of the studies on THs rely indeed on the use of an alternative 
matrix, as feces, that not involve the capture of animals and without 
affecting their welfare. In the last five years, ten articles were found in 
literature about this topic in wild ungulates. The investigated species 
were limited to some phylogenetic branches, as order Proboscidea 
family Elephantidae, and order Artiodactyls suborder Ruminants 
family Cervidae, Camelidae and Bovidae, and suborder Suina family 
Suidae. In the previous quinquennial (2014–2018) only three articles 
were published, two on forest musk deer in 2016 (19) and 2018 (20) 
and one on Alces in 2017 (50). Although the number of studies on this 

topic has increased in the last five years, the results strongly highlight 
the need to broaden this area of research to include a larger number 
of species.

In the reported studies, FTM fluctuations were investigated both 
in relation to individual and environmental variables. Among the first, 
age, sex, and nutrition were investigated (3, 7, 39, 42, 46, 47). 
Regarding the effect of age on FTM concentrations, the results agreed 
in finding higher levels in juveniles compared to adults (42, 47). 
Age-related differences in THs concentrations are well described in 
domestic ungulates, with the highest values found in neonates and the 
lowest in elderly animals (1, 6). These data are explained by the THs 
action in controlling metabolism that, during the growing period, and 
especially immediately after birth, must be higher to promote the 
individual’s growth (6, 20).

On the other hand, no variation between sexes (3, 7, 42) was 
found in wild ungulates. In general, the relation between FTMs and 
sex is controversial, because some authors reported FTMs 
concentration higher in male than female gender, and others vice 
versa (6, 8, 9, 20). These contradictory outcomes regarding sex could 
be probably explained with other variables, including environmental 
or age variables, but not with a gender-specific significance (50).

Only one study correlated the FTMs to body condition and three 
to nutritional status. No correlation was found for body condition 
(47), while contradictory results were found for nutritional status: one 
manuscript reported no correlation (3), one a negative correlation (46) 
and another one a positive correlation (39). Severe conditions such as 
increased/decreased precipitation or extreme temperature could 
be responsible for this variability (39). Certainly, the topic is of great 
interest and deserves further studies, considering that T3 might 
be interpreted as a measure of energy balance across a multitude of 
taxonomic groups (38).

The correlation between FTMs and FCMs has been investigated 
in four different studies (3, 39, 41, 46) with contradictory results. 
Based on previous findings, cortisol and THs concentrations are 
expected to be negatively correlated (27, 51, 52). However, Pritchard 
et al. (41) found no relationship between FCMs and FTMs in the 
vicuña, while Hunninck et al. (3) (in impala), Gort-Esteve et al. (39) 
(in Iberian red deer) and Liu et al. (46) (in wild boar) reported that 
FTMs did not decrease when fecal cortisol levels increased, showing 
instead a positive correlation.

It is important to highlight that two (40, 42) of these four studies 
did not validate the method for FTMs in the analyzed animal species, 
and this might not reflect exactly the real FTMs concentration, as 
declared by the same authors (41).

The possibility to discriminate between nutritional stress and 
other types of stress by comparing the levels of FTMs and FCMs is 
very interesting. This correlation should be in-depth investigated in 
the future for wild species, not only for ungulates, giving attention to 
the validation of the assay method, synonymous of data reliability 
and reproducibility.

Regarding environmental variables, the most investigated was the 
environmental temperature (3, 7, 39, 42). The results agreed with 
finding an increase in FTMs at lower temperatures and a decrease at 
higher temperatures. In general, the results found in reviewed 
ungulates for temperature were similarly observed in other animal 
species (20), confirming a common trend in FTMs fluctuations (2, 
11, 12). Only one exception was reported by Gort-Esteve (39) who 
found a positive correlation between FTMs and cold temperature, 
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TABLE 1 Monitoring of FTMs in wild ungulates.

Species Geographic 
region

Analytical procedures Investigated variables FTMs 
concentration 
range (ng/g)

Year Ref.

Solvent 
extraction

Method Commercial 
kit

Validation 
method

Environmental 
variables

Individual 
variables

Vicuña (Vicugna vicugna)

Free-ranging

Colombia (south 

America)

70% ethanol RIA (125I-total-

triiodothyronine, MP 

Biomedicals, 

Orangeburg, NY)

Not reported Behavioral response

Anthropogenic disturbances

FCMs 16–246 2020 (41)

Impala (Aepyceros melampus)

Free-ranging

Tanzania (Eastern and 

Southern Africa)

80% methanol RIA (125I-total-

triiodothyronine MP 

Biomedicals, Costa 

Mesa, CA)

Analytical

Biological

Temperature

Food quality

Anthropogenic disturbances

Sex

Nutritional status

FCMs

414–1,358 2020 (3)

African elephant (Loxodonta 

africana)

Free-ranging

Pretoria state (South 

Africa)

80% ethanol ELISA EIA-Kit for fecal 

(Ann Arbor, 

United States)

Analytical

Biological

NDVI (Normalized 

Difference Vegetation Index)

Temperature

Age

Sex

590–600 2020 (42)

Musk deer (Moschus berezovskii)

Free-ranging

Sichuan (China) 90% ethanol ELISA Bovine kit (Reagent 

Genie Ltd., Ireland).

Not reported Birth weaning Intestinal 

microbiota

45–85 2021 (43)

Tibetan antelope (Pantholops 

hodgsonii)

Free-ranging

Qinghai-Tibet (China) 70% ethanol ELISA Detect X® T3 

Immunoassay-kit 

(Arbor Assays)

Analytical

Biological

None Intestinal 

microbiota

Not reported 2021 (44)

European mouflon (Ovis aries 

musimon)

Captivity

Sardinia (Italy) 70% ethanol ELISA Human Kit 

(DiaMetra Srl, 

Boldon, UK).

Analytical

Biological

Temperature Sex 17.05–46.45 2022 (7)

Asian elephant (Elephas 

maximus)

Captivity

Free-ranging

Zoo facilities (United 

States)

Wasgamuwa National 

Park (Sri Lanka)

100% methanol ELISA EIA-kit (Ann Arbor, 

MI)

Analytical

Biological

None Musth 35.64–35.01 2022 (45)

Wild boar (Sus scrofa)

Free-ranging

Changbaishan 

Mountains (China)

70% ethanol 

(17)

RIA MP Biomedicals 

(Orangeburg, NY) 

(17)

Not reported None Parasites

Nutritional status

FCMs

Not reported 2022 (46)

Asian elephant (Elephas 

maximus)

Captivity

Zoo facilities (United 

States)

100% methanol ELISA EIA-kit (Ann Arbor, 

MI)

Analytical

Biological

Social environment within 

zoos

Musth

Age

Body condition

35.64–35.01 2023 (47)

Iberian red deer (Cervus elaphus 

hispanicus)

Free ranging

National reserve of 

boumort (France)

55% methanol ELISA EIA Kit (IBL 

International, 

Hamburg, Germany).

Analytical Seasonality: Temperature

Solar irradiance

Precipitation

Anthropogenic disturbances

FCMs

Nutritional status

20–120 2024 (39)

FCMs, Fecal Cortisol Metabolites; FTMs, Fecal T3 Metabolites; ELISA, Enzyme-linked-Immunosorbent Assay; RIA, Radioimmunoassay.
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explained by the same authors with a high nutritional stress in the 
winter period. Another studied environmental variable was 
anthropogenic disturbance (3, 39, 41), for which there was no 
correlation with FTMs, except for the impala (3). Hunninck et al. 
reported that human disturbance affected FTM levels when 
temperature was accounted for Hunninck et al. (3). As shown in 
Table 1, other environmental variables were investigated in single 
studies, such as behavioral responses (vigilance and foraging) (41), 
social environment within zoos (47), Normalized Difference 
Vegetation Index (NDVI) (42), birth weaning (43), solar irradiance 
and precipitations (39). Further studies are needed to allow more 
in-depth comparisons.

Regarding assay methods, only three papers (3, 41, 46) used a RIA 
method, while the others (7, 39, 42–45, 47) were all enzyme 
immunoassays. This trend can be explained considering that, although 
RIA test offers many advantages in terms of specificity and sensitivity, 
it is more expensive, requires specialized staff and its use could 
be dangerous to human health.

Generally, the sample pretreatment involves a preliminary freeze-
drying, followed by a liquid extraction with solvents such as methanol 
and ethanol, in variable percentages between 55 to 100% Several 
authors reported that decreasing the percentage of ethanol to 70% 
increased the extraction efficiency (7), as also reported for different 
avian and mammalian species (17).

Most of these papers performed an analytical validation of the 
method, species-specific for the investigated matrix. This is of great 
importance to confirm the reliability of the reported data. Three 
research groups among the reviewed ones did not perform an 
analytical validation; between them, one used a kit already validated 
for a phylogenetically related species (43), another one used a kit for 
mammalian (41), while the third used a kit previously validated for 
feces of different species (46).

However, it must be  emphasized that data obtained by a 
non-specifically validated method, mainly if the data themselves are 
controversial with that reported in the literature, could not reflect the 
true concentrations of FTMs (41).

The main problem of this non-invasive assay method is the long 
sample preparation (lyophilization and extraction), but the benefits 
far outweigh its disadvantages. The preservation of animal welfare, by 
reducing the stress associated with sample collection, represents one 
of the principal advantages of FTMs monitoring. It permits obtaining 
important information on wild ungulates physiology and health, and 
the degree of adaptation to environmental conditions. This 

information is becoming significant and of great interest to 
conservationists and the scientific community.

In conclusion, the non-invasive FTMs assay can represent a 
promising tool to study the response of animals, not only wild species, 
to environmental changes and their adaptation capability, representing 
an interesting physiological indicator for the future.
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