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The hypothalamus is an essential neuroendocrine area in animals that regulates 
sexual development. Long non-coding RNAs (lncRNAs) are hypothesized to 
regulate physiological processes related to animal reproduction. However, the 
regulatory mechanism by which lncRNAs participate in sexual maturity in goats is 
poorly known, particularly from birth to sexual maturation. In this study, RNAseq 
analysis was conducted on the hypothalamus of four developmental stages 
(1day (D1, n = 5), 2 months (M2, n = 5), 4months (M4, n = 5), and 6 months (M6, 
n = 5)) of Jining grey goats. The results showed that a total of 237 differentially 
expressed lncRNAs (DELs) were identified in the hypothalamus. Among these, 
221 DELs exhibited cis-regulatory effects on 693 target genes, while 24 DELs 
demonstrated trans-regulatory effects on 63 target genes. The target genes 
of these DELs are mainly involved in biological processes related to energy 
metabolism, signal transduction and hormone secretion, such as sphingolipid 
signaling pathway, adipocytokine signaling pathway, neurotrophic signaling 
pathway, glutamatergic synapse, P53 signaling pathway and GnRH signaling 
pathway. In addition, XR_001918477.1, TCONS_00077463, XR_001918760.1, 
and TCONS_00029048 and their potential target genes may play a crucial role 
in the process of goat sexual maturation. This study advances our understanding 
of lncRNA in hypothalamic tissue during sexual maturation in goats and will give 
a theoretical foundation for improving goat reproductive features.
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1 Introduction

The sexual maturity of animals strongly influences their reproductive capacity. Animals 
go through puberty after birth to reach sexual maturity, a process involving complex 
physiological changes (1). Early-maturing ruminants experience a younger age of first birth, 
leading to enhanced reproductive longevity and fecundity (2). The hypothalamus, the gonadal 
axis’ most upstream tissue and organ, secretes GnRH to stimulate the synthesis of pituitary 
gonadotropins and gonadal steroid hormones, which are vital for an animal’s sexual 
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development (3–5). The hypothalamus receives signals from the 
periphery and others that act directly or indirectly on GnRH and its 
associated reproductive neurons, which in turn affect the synthesis, 
secretion, and morphology of GnRH, ultimately leading to the 
occurrence of puberty and sexual maturation (6–8).

Long non-coding RNAs (lncRNAs) are a prevalent class of 
non-coding RNAs found in mammals, typically exceeding 200 nt in 
length and devoid of protein-coding capabilities (9, 10). It has been 
demonstrated to play a significant role in diverse biological processes 
through transcriptional, post-transcriptional, or epigenetic regulation 
(11). Currently, lncRNAs have been widely reported to be involved in 
embryonic development (12), muscle development (13), metabolism 
(14), and reproductive regulation (15). Recent research has 
demonstrated that lncRNA Meg3 can regulate the expression of 
GnRH and Kiss-1 in hypothalamic cells, and knockdown of lncRNA 
Meg3 can delay puberty in female rats (16). Additionally, the lncRNA 
MSTRG.33887.2 has the potential to influence goat reproduction by 
regulating target genes involved in hypothalamic folate metabolism 
and energy metabolism homeostasis (17). Mouse hypothalamic 
lncRNA AK044061 plays a crucial role in energy balance by mediating 
NF-kβ. Neurons with high expression of lncRNAs AK044061 in ARC 
cells lead to energy imbalance and obesity in mice (18).

However, there is a scarcity of research investigating the dynamic 
expression patterns of lncRNAs throughout the sexual maturation 
process in female goats, specifically from birth to the completion of 
sexual maturation. The Jining grey goat, a well-known high-breeding 
goat breed in China, exhibits non-seasonal estrus, strong fecundity, 
and precocious puberty. Sexual maturity in these goats is reached at 3 
to 4 months of age, with puberty commencing as early as 2 months of 
age (19). This trait makes it an ideal animal model for investigating 
goat fecundity. Hence, it is highly significant to investigate the 
regulatory mechanism of hypothalamic lncRNAs in the sexual 
maturation process of female goats.

In this study, the lncRNA of hypothalamic tissue of 1-day-old, 
2-month-old, 4-month-old, and 6-month-old (D1, M2, M4, and M6; 
n = 5) female Jining grey goats were sequenced. This study aimed to 
uncover the expression profile characteristics of lncRNAs during goat 
sexual maturation, identify lncRNAs associated with hypothalamic 
development and sexual maturation, and elucidate their molecular 
regulatory mechanisms. Our research will provide a theoretical basis 
for the genetic improvement of goat reproductive traits.

2 Materials and methods

2.1 Animals and sample collection

The experimental goats were all from the Jining Grey Goats 
Breeding Farm (Jiaxiang, Shandong, China). Under the same feeding 
management conditions, 20 healthy and disease-free female Jining 
grey goats were selected. The selected goats were divided into four 
groups according to age: 1 day old (D1, n = 5; body weight (BW): 
2.08 ± 0.11 kg), 2 months old (M2, n = 5; BW: 4.42 ± 0.24 kg), 4 months 
old (M4, n = 5; BW: 7.62 ± 0.50 kg), and 6 months of age (M6, n = 5; 
BW: 8.82 ± 0.53 kg). The body condition of Jining grey goats was 
similar in each group. The experimental goats were slaughtered on the 
same day, and after the electric shock, the hypothalamic tissue was 
quickly slaughtered and collected, and stored at −80°C.

2.2 RNA extraction and library construction

Total RNA was extracted from 20 hypothalamic tissues using 
TRIzol® reagent (Thermo Fisher Scientific, Waltham, MA, 
United States). Screening of qualified RNA samples for RNA strand-
specific library construction. The rRNA was removed from total RNA 
samples using the Ribo-Zero rRNA Removal Kit (Illumina, Inc., San 
Diego, United States), and then a sequencing library was generated 
using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina 
(NEB E7420) for Illumina to generate sequencing libraries. The 
enriched RNA was fragmented using a fragmentation buffer to yield 
small fragments. Then, the fragmented RNA served as a template for 
reverse transcription with the addition of 6 bp random primers (random 
hexamers) to synthesize the first cDNA strand. This was followed by the 
addition of buffer, dNTPs (with dTTP replaced by dUTP), DNA 
polymerase I, and RNase H to synthesize the second cDNA strand. The 
synthesized double-stranded cDNA was purified and enriched via 
PCR. The PCR product was then purified to obtain the final strand-
specific library. After reverse transcription and PCR amplification, 
150 bp paired-end reads were sequenced using the Illumina 
Novaseq6000 platform (Illumina, Inc., San Diego, United States).

2.3 Reads mapping and transcriptome 
assembly

To obtain high-quality sequencing data, we utilized Fastp (v0.23.1) 
to eliminate sequences containing poly-N, low-quality reads, and 
adapters from the obtained sequencing data. The high-quality reads 
obtained are used for downstream data analysis. We generated an 
index of the reference genome by employing HISAT2 (v2.0.5.) 
Subsequently, we  aligned the clean reads with the goat reference 
genome (GCF_001704415.2_ARS1.2) using HISAT2 (20). Transcript 
assembly is performed using Stringtie (v1.3.3b), and gene expression 
levels are calculated (21). Gene expression levels were normalized 
using fragments per kilobase of exon model per million mapped 
reads (FPKM).

2.4 lncRNA identification

The novel lncRNAs were identified in hypothalamic tissue 
following the steps shown in Figure 1: (1) removing transcripts with 
an exon number of 1, (2) removing transcripts less than 200 nt in 
length, and (3) screening out transcripts that overlapped the exon 
region annotated in the database by gffcompare software (v0.10.6) 
(22); (4) CPC2 (v3.2.0) (23), Pfam (v1.6) (24), and CNCI (v2.0) (25) 
were used to predict the encoding potential of lncRNAs, and the 
transcripts that were predicted in the three software without coding 
potential were intersected, and (5) the low-expression lncRNAs 
(FPKM <0.5) were filtered out.

2.5 Differential expression analysis of 
lncRNAs

The DEseq2 (v1.20.0) package was utilized to examine the 
differential expression of lncRNAs (DELs) across various 
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developmental stages. The readcounts from the sequencing data were 
used as the input matrix, and the p-value was adjusted utilizing the 
Benjamini & Hochberg method. The DELs were screened according 
to the threshold |log2 (Fold change)| ≥1 and False Discovery Rate 
(FDR) <0.05. Cluster analysis of FPKM values of lncRNAs was 
performed using the ggplot2 package (v3.4.4). Data for lncRNAs were 
normalized [log2(X + 1)] and then standardization (z-score).

2.6 Prediction and functional analysis of 
potential target genes of lncRNA

lncRNAs can regulate the expression of potential target genes 
through cis-or trans-regulatory methods. Based on the location 
information of lncRNAs, mRNAs within 100 kb upstream and 
downstream of lncRNAs are defined as cis-target genes of lncRNAs 
(26). There will be a significant correlation with lncRNA expression 
(|R| > 0.95 and p < 0.05) is defined as a potential trans-target gene 
for lncRNA.

Subsequently, we used clusterProfiler software (v3.8.1) to perform 
Gene Ontology (GO) functional analysis of these differentially 
lncRNAs predicted target genes (27). The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis is performed by 
KOBAS (http://bioinfo.org/kobas; Accessed: 12.19, 2023) (28). p < 0.05 
was considered to be significantly enriched.

2.7 Quantitative real-time PCR

Six lncRNAs were randomly selected and the accuracy of the 
lncRNA sequencing results was verified by qRT-PCR. First, we used 

PrimeScript™II First strand cDNA synthesis kit (Takara Bio Inc., 
Dalian) to reverse transcrib total RNA from goat hypothalamus 
tissue into cDNA. Then qRT-PCR was performed in a Roche 
LightCycler 96 using the SYBR PrimeScript™ RT-PCR Kit (Takara 
Bio Inc., Dalian). GAPDH was used as an internal reference gene to 
correct gene expression levels and normalize the data. The primers 
designed using Primer 5.0 (Supplementary Table S1). The relative 
expression levels of lncRNAs were calculated by 2−ΔΔCT (29). 
One-way ANOVA was performed with SPSS 17.0, and the results 
were expressed as mean ± standard error. Three repetitions are 
performed for each set. p < 0.05 was considered 
statistically significant.

3 Result

3.1 Overview of RNA sequencing data

RNA was isolated from the hypothalamic tissues of female Jining 
grey goats at four developmental stages (D1, M2, M4, and M6), and 
20 lncRNA libraries were constructed. Sequencing of the libraries was 
conducted on the Noveseq  6000 platform, resulting in a total of 
1,803,310,692 raw reads. Following quality control procedures, 
we obtained 1,764,056,912 clean reads (Supplementary Table S2). The 
alignment of these clean reads to the goat reference genome was 
performed using HiSAT2, achieving alignment rates ranging from 
86.05 to 95.99%, with unique mapping reads alignment rates between 
75.1 and 91.98% (Supplementary Table S2). Subsequent analysis only 
considered the uniquely mapped reads.

3.2 Identification and characterization of 
lncRNAs

A total of 10,630 lncRNAs were identified according to the steps 
shown in Figure 1, of which 1,676 were annotated and 8,954 lncRNAs 
were newly identified. Cluster analysis showed that most of the 
lncRNAs were expressed at low levels at the D1 stage 
(Supplementary Figure S1). Further analysis of the identified lncRNA 
signatures showed that showed that about 62% of the lncRNAs had 2 
exons, and a few lncRNAs (3%) had more than 6 exons (Figure 2A). 
In addition, the length distribution of the identified lncRNAs ranged 
from 122 to 73,429 bp. More than 50% of the lncRNAs were less than 
1,000 bp in length, about 83% were in the 0–3 kb range, and a few 
(17%) were greater than 3 kb (Figure 2B). About 35.2% of the lncRNAs 
are located in the intergenic region. Only 12.4% of the lncRNAs are 
from the antisense region, and about 32.9% of the lncRNAs are from 
the intron region (Figure 2C).

3.3 Differential expression analysis of 
lncRNAs

According to the screening criteria of |log2 (Fold change)| ≥1 and 
padj < 0.05, the lncRNAs of four different developmental stages (D1, 
M2, M4 and M6) in hypothalamic tissue were compared and analysed. 
This analysis resulted in the identification of 237 differentially 
expressed lncRNAs (Figure 3A).

FIGURE 1

Pipeline for identification of long non-coding RNAs (lncRNAs).
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A total of 135 DELs (31 up-regulated and 104 down-regulated) 
were identified in M2 vs. D1, 68 DELs (38 up-regulated and 30 down-
regulated) were identified in M4 vs. M2, and 16 DELs (11 up-regulated 
and 5 down-regulated) were identified in M6 vs. M4. A total of 53 
DELs (16 up-regulated and 37 down-regulated) were identified in M4 
vs. D1, 33 DELs (15 up-regulated and 18 down-regulated) were 
identified in M6 vs. D1, and 69 DELs (48 up-regulated and 21 down-
regulated) were identified in M6 vs. M2. Interestingly, Figure 3B shows 
different expression patterns for these DELs, and Figure 3C shows that 
the M2 vs. D1 group has the most unique DELs, with 72. The M6 vs. 
M4 group had the lowest number of DELs with 3. Remarkably, 9 DELs 
were the same in the three comparison groups of M2 vs. D1, M4 vs. 
D1, and M6 vs. D1. This suggests that TCONS_00076225, 
TCONS_00148767, TCONS_00191611, TCONS_00102342, 
TCONS_00192735, TCONS_00032355, TCONS_00032357, 
TCONS_00053700, and TCONS_00070238 may be significant in the 
postnatal sexual development of goats.

3.4 lncRNA target gene prediction and 
functional analysis

lncRNAs have been implicated in influencing gene expression 
through cis-or trans-interactions. To investigate the role of lncRNAs 

in the goat hypothalamus, we predicted the potential regulatory roles 
of the identified DELs on both cis and trans target genes. Specifically, 
based on a distance threshold of 100 kb between lncRNAs and their 
target genes, 221 DELs were predicted to regulate 693 target genes in 
a cis manner (Supplementary Table S3).

The Gene Ontology (GO) analysis results showed that the target 
genes were significantly enriched in 50 categories 
(Supplementary Table S4) These cis-target genes are involved in many 
biological processes, such as regulation of catalytic activity, regulation 
of molecular function, regulation of hydrolase activity, and 
dephosphorylation (Figure 4A). In addition, KEGG analysis showed 
that these target genes were significantly enriched in sphingolipid 
signaling pathway, protein processing in endoplasmic reticulum, 
progesterone-mediated oocyte maturation, adipocytokine signaling 
pathway, neurotrophin signaling pathway, oocyte meiosis, 
sphingolipid metabolism, glutamatergic synapse, cGMP-PKG 
signaling pathway, inositol phosphate metabolism, phospholipase D 
signaling pathway and other pathways (p < 0.05) (Figure  4B and 
Supplementary Table S5).

According to |R| > 0.95 and p < 0.05, 24 lncRNAs were found, 
which had 63 trans target genes (Supplementary Table S6 and 
Supplementary Figure S2). The number of trans-target genes 
identified in lncRNAs was significantly lower than that in cis, 
suggesting that lncRNAs may function mainly by cis-regulating 

FIGURE 2

Identification and characterization of goat hypothalamic lncRNAs. (A) Pie plot of lncRNA exon number distribution. (B) Pie plot of lncRNA length 
distribution. (C) Pie chart of lncRNA classification.
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gene expression. The GO analysis results showed that we found that 
these cis-target genes were involved in many biological processes, 
such as signal receptor binding, hormone activity, NADH 
dehydrogenase activity, transferase activity, transfer aminoacyl, etc. 
(Figure  4C and Supplementary Table S7). In addition, KEGG 
analysis showed that these target genes were significantly enriched 
in neuroactive ligand receptors, multiple apoptosis, adipocytokine 
signaling pathway, GnRH signaling pathway, JAK-STAT signaling 
pathway, and p53 signaling pathway (p < 0.05) (Figure  4D and 
Supplementary Table S8).

The results suggest that these lncRNAs may be  involved in 
hormone secretion, signal transduction processes, and thus regulation 
of sexual maturation in goats by modulating cis and trans target genes. 
Interestingly, LOC108634846, LOC108635405, LOC108637396, 
AGRP, and PIK3C2G were predicted in both cis and trans target 
genes. Among these, PIK3C2G is the trans-target gene and the 
cis-target gene of TCONS_00038560.

3.5 Interaction analysis

To better understand the role of goat hypothalamic DELs in the 
process of sexual maturation, we selected the target gene of DELs 
involved in reproduction. Construction of lncRNA-mRNA regulatory 

networks for DELs and their cis-and trans-target genes, respectively 
(Figure 5). A total of 31 lncRNAs regulated 34 target genes.

3.6 Verify lncRNA expression using 
qRT-PCR

To verify the accuracy of the sequencing results, we randomly 
selected 6 lncRNAs (XR_001297374.2, XR_001917241.1, 
TCONS_00176496, XR_001919854.1, TCONS_00032357, and 
TCONS_00074891) for qRT-PCR detection. The results showed that 
the expression patterns of these lncRNAs and those found in the 
transcriptome data were consistent with the sequencing results 
(Figure 6). This further illustrates the high reliability and accuracy of 
RNA-seq.

4 Discussion

The hypothalamus is an important neuroendocrine center in 
mammals and plays an important role in the sexual development of 
animals. lncRNAs are non-coding RNAs that are more than 200 nt in 
length and do not have protein-coding functions. Many studies have 
shown that lncRNAs play an important role in reproductive regulation 

FIGURE 3

Differentially expresses lncRNA (DELs) characteristics in different comparison groups. (A) Cluster analysis of differential lncRNAs. Each column 
represents a grouping and each row represents a differential lncRNA. (B) Histogram of DELs. (C) The upset plot shows the distribution of DELs in the 
different comparison groups.
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through transcriptional regulation or epigenetic modification (30, 31). 
Investigating the role of hypothalamic lncRNAs during sexual 
maturation in female goats is critical to understanding reproductive 
mechanisms in this species.

This study conducted lncRNA sequencing on hypothalamic tissue 
samples obtained from four postnatal developmental stages (D1, M2, 
M4, and M6) of female Jining grey goats. A total of 10,254 lncRNAs were 
identified according to rigorous screening criteria, including 1,676 
known lncRNAs and 8,954 novel identified lncRNAs. Characterization 
of lncRNAs revealed that the majority of them consisted of 2–3 exons 
(84%), and approximately 54% were under 1 kb in length, consistent 
with previously reported profiles of lncRNAs in goats (32). A total of 236 
DELs were identified by differential analysis of lncRNAs. The number of 
DELs is highest between M2 and D1, totaling 135, while the DELs are 
least frequent between M6 and M4, with only 16 instances. These results 

indicated that the number of DELs decreased with the gradual maturity 
of goats, and the development of Jining grey goats from birth to 2 months 
of age was an important developmental stage.

Recent studies have shown that lncRNAs are involved in the 
regulation of gene expression through both cis-and trans-regulatory 
mechanisms and play an important role in a wide range of biological 
processes (33, 34). The results showed that 220 DELs regulated 693 
target genes through cis. These target genes are involved in the 
sphingomyelin signaling pathway, progesterone-mediated oocyte 
maturation, neurotrophin signaling pathway, oocyte meiosis, 
sphingomyelin metabolism, glutamatergic synapses, cGMP-PKG 
signaling pathway, phosphoinositide metabolism, and phospholipase 
D signaling pathway. These pathways are involved in hypothalamic 
neuronal development, energy metabolism, and reproductive processes 
(35–38), suggesting that lncRNAs may play an important role in the 

FIGURE 4

The functional enrichment analysis of DELs target genes (A) DELS cis-target gene GO analysis. (B) DELS cis-target gene KEGG analysis. (C) DELS trans-
target gene GO analysis. (D) DELS trans-target gene KEGG analysis.
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sexual maturation of goats. Based on this result, we constructed a 
lncRNA-mRNA regulatory network. Among them, XR_001918477.1, 
TCONS_00077463, XR_001918760.1, and TCONS_00029048 target 
GRIN3A, MAP2K1, NOTCH1, and LEP, respectively, and these genes 
are involved in sexual maturation and reproductive hormone secretion 
(39–42). GRIN3A is a member of the glutamate-regulated ion channel 

superfamily, and the expression level of GRIN3A is significantly 
increased before estrus in mice, which may be related to enhanced 
glutamate receptor signaling in preovulatory GnRH neurons (43). In 
mammals, LEP acts on neural circuits in the hypothalamus to regulate 
feeding and energy metabolism (44), and in addition, leptin can 
be involved in the regulation of puberty through mTOR (9).

FIGURE 5

Network diagram of interaction between DELs and target genes. (A) Network diagram of interaction between DELs and cis-target genes. (B) Network 
diagram of interaction between DELs and trans target genes. Sky blue represents DELs, light green represents target genes, and pink represents 
pathway.

FIGURE 6

qRT-PCR verification of lncRNA expression levels in hypothalamus at four developmental stages of Jining grey goat.
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The trans target genes of lncRNAs are predicted by calculating the 
correlation of mRNA to lncRNAs. This approach enables lncRNAs to 
regulate mRNA away from their transcription sites (9). In this study, 
a total of 23 lncRNAs were negatively correlated with 63 protein-
coding genes. These target genes are mainly enriched in neuroactive 
ligand and receptor interactions, JAK-STAT signaling pathway, p53 
signaling pathway, and GnRH signaling pathway. Based on this, 
we speculate that these lncRNAs may be involved in various biological 
processes, such as hormone secretion and signal transduction, during 
goat sexual maturation by regulating the expression of these target 
genes (45–47). Furthermore, we constructed a regulatory network 
related to reproduction, including 6 lncRNAs and 6 target genes 
involved in the interaction between neuroactive ligands and receptors 
and the GnRH signaling pathway. Among them, TCONS_00123911 
acts on neuropeptide Y (NPY) through trans regulation. Studies have 
shown that NPY plays an important role in energy homeostasis and 
reproductive hormone secretion (48). In addition, NPY has been 
shown to play an important role in sexual maturation by regulating 
GnRH secretion patterns and luteinizing hormone secretion (49, 50). 
In addition, we  have identified XR_001917998.1 that can trans-
modulate GnRHR. GnRHR plays an important role in the regulation 
of mammalian reproduction (51). Studies have shown that after 
hypothalamic GnRH stimulation, GnRHR regulates the activity of the 
HPG axis through signal transduction, thereby participating in the 
synthesis and release of LH and FSH, and regulating gonadal function 
(52, 53).

The identified DELs potentially play a role in the sexual maturation 
process of goats by modulating target genes through cis-trans 
regulation. However, experimental validation is required to confirm 
the functions of lncRNAs. Subsequent research will focus on unraveling 
the molecular mechanisms through which lncRNAs regulate sexual 
maturation in goats at both the molecular and cellular levels.

5 Conclusion

In summary, we described the characteristics of the expression 
profile of lncRNA in the hypothalamus at four developmental stages 
in goats and analyzed the regulatory mechanism of lncRNAs in the 
process of sexual maturation in goats. In this study, a total of 237 DELs 
were identified and their cis-trans target genes were predicted, and 
functional analysis showed that the cis-trans target genes of these 
DELs were mainly involved in sphingomyelin signaling pathway, 
glutamatergic synapse, neuroactive ligand and receptor interaction, 
p53 signaling pathway, GnRH signaling pathway, hypothalamic 
development and hormone secretion. This work enriches the goat 
lncRNA database, lays a theoretical foundation for elucidating the 
molecular mechanism of goat sexual maturation in the future, and will 
provide a theoretical basis for the improvement of goat genetic traits.
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