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The objective of this study was to evaluate the effects of exogenous non-starch 
polysaccharidases (a mixture of cellulase, xylanase, β-glucanase and mannanase) 
on the growth performance and nutrient digestibility, rumen fermentation, and 
rumen microflora of sheep. The animal trial was conducted using 36 5-month-
old female fattening hybrid sheep (Duolang♂  ×  Hu♀) who were randomly 
assigned into four groups comprising nine sheep per treatment: CON, T1, T2, 
and T3, with 0, 0.1, 0.3, and 0.5% NSPases/kg DM of TMR, respectively. This 
complex enzyme product was screened for optimal ratios based on previous 
in vitro tests and responded positively to the in vitro fermentation of the TMR. 
When treated with NSPases, there was a non-linear effect of average daily gain 
and feed conversion rate, with the greatest improvement observed in the T2 
group. There were no significant differences (p  >  0.05) in nutrient intake or 
apparent digestibility among the NSPase-supplemented groups. In addition, T2 
group had a significantly higher acetate to propionate ratio and pH (p  <  0.05) 
than the other groups, and NH3-N and microbial protein concentrations showed 
a quadratic curve. The results revealed that both immunoglobulins and serum 
hormones increased linearly with addition (p  <  0.05). As the T2 group showed 
the best growth performance, the CON and T2 groups were subjected to rumen 
metagenomic analysis. The results showed higher abundance of bacteria and 
lower abundance of Viruses in the rumen microbiota of the T2 group compared 
to the CON group. In addition, Uroviricota and Proteobacteria abundance was 
significantly lower in the T2 group than in the CON group at the phylum level 
(p  <  0.05). These results suggest that the supplementation of high-concentrate 
rations with NSPases enhance immunity, reduces virus abundance in the rumen, 
improves rumen health, and promotes rumen fermentation. Our findings provide 
novel insights for improving growth performance and alleviating inflammatory 
responses arising from high concentrate feeding patterns in ruminants. However, 
the biological mechanisms cannot be elucidated by exploring the composition 
of rumen microbe alone, and further studies are required.
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1 Introduction

In recent years, the application of enzymes in ruminants to 
improve feed utilization and optimize growth performance has been 
identified as a valuable measure. Non-starch polysaccharidases 
(NSPases) have been increasingly investigated as green and harmless 
additives for the degradation of non-starch polysaccharides (1–3). 
Previous studies have shown that the main effects of enzyme 
supplementation in ruminant diets are: breaking chemical bonds in 
the diet; improving the availability of nutrients in the digestive system; 
and increasing total enzyme activity in the rumen (4, 5). A meta-
analysis showed inconsistent effects of added enzyme preparations 
(cellulase, xylanase, glucanase, ferulose esterase and combinations of 
each of their single enzymes) (6), and the reasons for their inconsistent 
results may be due to the source of enzymes, the amount of enzymes 
added, the experimental animals and the different diets on which 
enzymes acted in each study. Such as: Valdes reported that the 
supplementation of the diet of Suffolk lambs with enzyme products 
containing cellulases, xylanases, proteases and α-amylases improved 
average daily gain and feed conversion rate (7). Sakita fed an fibrolytic 
enzyme product to growing lambs which increased their dietary 
digestible energy and ADF digestibility (8). Similar results were 
reported by Shi et al. (9). Moreover, numerous studies have shown that 
supplementing dairy cow diets with enzymes can improve lactation 
performance (10–12). In contrast, Peters fed a combination of 
xylanase and dextranase to lactating cows and found no improvement 
in milk production (13). And Vinyard exported exogenous enzymes 
did not improve in vitro ruminal fermentation in the diet of high-
producing dairy cows (14). Although there are many reports on 
combination enzymes, there are no specific standards or bases for the 
application of combination enzymes and the amount to be added.

Non-starch polysaccharides refer to the cellulose, xylan, β-glucan, 
xyloglucan, galactomannan and pectin present in plant cell walls 
which are difficult to degrade. The main basal polysaccharides in the 
plant cell wall other than cellulose are arabinoxylan and (1,3)
(1,4)-β-D-glucan (15). (1,3)(1,4)-β-D-glucan binds cellulose and other 
polysaccharides tightly and forms the main part of the endosperm 
wall (16). The rumen of ruminants acts as a natural reactor for the 
degradation of plant cell walls, which includes most fiber-degrading 
bacteria such as Ruminococcus, Clostridium, and Prevotella (17). 
These microbes degrade non-starch polysaccharides and then generate 
volatile fatty acids (VFAs). NSPases include cellulases, xylanases, 
β-glucanases, and mannanases, which can synergize with rumen 
microbes, break the cell wall and promote the degradation of the 
rations. Cellulases and xylanases are the most widely used exogenous 
enzymes in animals and play important roles in nutrient utilization. 
In addition, enzyme supplementation has a potential effect on the 
composition and metabolic capacity of rumen microbes (18, 19), 
which can alter the composition of microbial communities (20, 21) 
and improve rumen fermentation and health (22). In the actual 
production process, most farmers use a sloppy meat farming model 
to obtain higher economic benefits. Particularly in the late fattening 
stage, fast short-term fattening of sheep meat is achieved by increasing 
the proportion of concentrate in the diet. However, feeding a high 
proportion of concentrate accelerates rumen fermentation and 
produces large amounts of volatile fatty acids, which cause acidosis, 
inflammatory reactions and nutritional metabolism (23). Currently, 
various additives, including enzymes, are used to attenuate the 

negative effects of high concentrations in ruminants fed high-
concentrate diets. Studies on the supplementation of high concentrate 
diets with complex NSPases in sheep have not yet been conducted.

The effect of sex has been shown to be a major determinant of 
differences in growth and deposition rates across body tissues and 
carcasses (24). Regarding feed efficiency, it is well known that males have 
a better ability to convert feed into weight gain and carcass component 
tissues than females (25). Males showed a more pronounced rate of 
carcass gain, deposited more carcasses and gained more weight per kg of 
DM consumed than females (p < 0.05), with castrated animals in an 
intermediate position. This is consistent with the effects of sex on growth, 
body composition and carcass of animals reported by Washaya (26) and 
Paulino et al. (26). Purwin et al. also showed that sex has a significant 
effect on the rate of change in body weight and relative growth rate (27). 
Most of the current studies have focused on males, while only few studies 
have been conducted on female meat ruminants; therefore there is a 
need to study females to improve production performance. 
We hypothesized that supplementation with exogenous NSPases could 
improve rumen fermentation and production performance in ewes.

We hypothesized that a specific combination of NSPases (i.e., 
cellulose, xylanase and mannanases) applied to a high-concentrate 
diet would break the cell wall and, improve rumen fermentation and 
the growth performance of sheep. This study evaluated the effects of 
NSPases on the intake and total apparent digestibility of nutrients, 
rumen fermentation, and rumen microbial composition in sheep.

2 Materials and methods

2.1 Preparation of the enzyme product

NSPase products were purchased from Shandong Longkot Enzyme 
Preparation Co., Ltd. (Linxi, Shandong, China). Four commercial 
enzyme preparations were utilized: cellulase originating from 
Trichoderma longibrachiatum, xylanase originating from Aspergillus 
oryzae, β-glucanase originating from Trichoderma longibrachiatum, 
and mannanase originating from Bacillus lentus. In this assay, enzyme 
activity was defined as the amount of enzyme that release 1 μmoL of 
the reducing sugar from 1 mg/mL solution per minute at 39°C, pH 6.5, 
which was defined as 1 enzyme activity unit (U).

According to the results of previous studies, the enzyme activities 
of cellulase, xylanase, β-glucanase and mannanase were 18,000, 
76,000, 100,000, 61,000 and 30,000 U/mL, respectively at 39°C, pH 6.5 
(consistent with rumen). According to the sample diets and in vitro 
studies, the optimal ratio of cellulase: xylanase: β-glucanase: 
mannanase is = 1,000: 250: 500: 50 (U/g, dry matter basis). Considering 
the differences between the in vivo and in vitro conditions, this feeding 
trial was conducted by rationalizing the complex NSPases screened in 
vitro and adding them according to the daily intake of the test sheep.

2.2 Animals, diets and experimental design

A total of 36 female Duolang (♂) × Hu (♀) sheep aged 5 months 
with an initial live body weight of 35.3 ± 2.4 kg were divided into four 
treatment groups. All test sheep were housed individually in pens with 
feed and water provided ad libitum. The experimental time lasted 
6 weeks, with the first weeks for adaptation. Based on the amount of 
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complex enzyme added, the samples were divided into the control 
group CON (0%), test group T1 (0.1%), medium dose additive 
treatment group T2 (0.3%), and high dose additive treatment group T3 
(0.5%). Before the morning feed, the NSPases were diluted in deionized 
water and sprayed on the TMR using a handheld sprayer. As a control, 
a similar amount of deionized water without NSPases was sprayed. All 
sheep were provided water ad libitum and a total mixed ration (Table 1) 
twice daily at 08:00 and 18: 00 h. The diet was designed according to 
the feeding standards for meat-producing sheep (NY/T 816-2021, 
Ministry of Agriculture, China). The detailed ingredients and 
nutritional compositions of the mixed rations are listed in Table 1.

2.3 Growth performance

On day 0 of the pre-feeding period and day 35 of the formal period, 
the body weight of each sheep was measured before the morning 
feeding to obtain the initial and final weights and calculate the average 
daily weight gain. Feed intake and refusal were recorded daily for each 
replicate group to calculate DM intake and feed conversion rate.

2.4 Apparent digestibility of nutrients

Feed and fecal samples were collected on days 30 and 35 of the 
experiment. Six sheep were randomly selected in each group, with a total 

of six sheep in each group and fecal samples was collected using the 
rectal end collection method. Samples from each sheep were mixed for 
5 d. All feed and fecal samples were dried for 48 h in a 65°C oven before 
being moistened for 24 h. They were crushed through a 1 mm screen, 
sealed in a 150 × 220 mm sealed bag and stored at 4°C for nutritional 
component analysis. Based on the acid insoluble ash (AIA) method 
described previously (28), the digestibility of ADF, NDF, and CP in the 
feed and fecal samples was evaluated. To assess the DM concentration, 
samples were dried to a consistent weight at 65°C. An automatic fiber 
analyzer, a Kay nitrogen analyzer, and a Soxhlet extraction system were 
used to determine ADF, NDF, and CP, respectively. The AIA approach 
was employed using the following formula:

 Apparent digestibility M M M M2n 1m 1n 2m% /( ) = − ×( ) ×( ) 100

where M1m is the AIA content in the diet (%), M2m is the AIA 
content in the fece, M1n is the nutrient content in the diet (%), and M2n 
is the nutrient content in the fece.

The calculation formula of feed conversion ratio (FCR) is 
as follows:

 FCR kg kg Total feed intake weight gain/ /( ) =

2.5 Blood collection and analyses

Approximately 10 mL of blood was collected from the jugular vein 
of each sheep using a sterile transfusion needle and negative-pressure 
blood aspiration tube. Serum was obtained via centrifugation at 
3,500 r/min for 10 min and stored at −20°C. Serum hormone (growth 
hormone, insulin-like growth factor-1, and leptin) and immune (IgA, 
IgG, and IgM) concentrations were determined according to the 
manufacturer’s instructions using enzyme-linked immunosorbent 
assay kits (Nanjing Jiancheng Biotechnology Co., Nanjing, China).

2.6 Rumen fermentation parameters

Ruminal fluid samples were collected from all sheep after 2 h of 
morning feed by an oral stomach tube (1.2 m, 6.0 mm) with negative 
pressure. The first liquid sample was discarded to reduce saliva 
pollution. Then, the filtered rumen fluid samples were divided into 
two parts, one in 50 mL centrifuge tubes and stored at −20°C for 
NH3-N, MCP, and VFA determination and the other in 5 mL cryo-
storage tubes and stored at −80°C for rumen microbial analysis. 
According to the colorimetric method described by, NH3-N 
concentrations were determined using a spectrophotometer (721G, 
Shanghai, China). MCP concentration was measured using the 
bicinchoninic acid method. The VFA concentrations were determined 
using chromatography (Agilent GC7890B, United States).

2.7 DNA extraction and metagenomic 
analysis

As supplementation with medium-dose NSPases showed better 
results, six sheep (the same six sheep from which feces were collected) 

TABLE 1 Feed ingredients and chemical composition of basal total mixed 
ration on a dry matter (DM) basis.

Items Content

Ingredient, % of DM

  Corn 49.40

  Soybean meal 17.70

  Wheat bran 11.60

  Cottonseed meal 6.30

  Alfalfa meal 5.00

  Corn straw 5.00

  Corn silage 2.00

  CaHCO3 1.00

  Premix1 1.00

  NaCl 0.50

  Limestone 0.50

Chemical composition of diet2

  DM (% as fed) 85.25

  DE (MJ/kg) 12.40

  CP (% DM) 18.94

  NDF (% DM) 19.21

  ADF (% DM) 10.26

  Ca (% DM) 0.66

  P (% DM) 0.44

1Premix was provided per kg of diet: I 0.85 mg, Fe 53 mg, Cu 12 mg, Mo 0.7 mg, Co 0.4 mg, 
Mn 43 mg, Zn 35 mg, Se 0.3 mg, VA 940 IU, VD 132 IU, VE 12.8 IU.
2Ca, P, and DE was calculated value, the rest were measured values.
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were selected in the CON and T2 groups, for DNA extraction and 
metagenomic analysis. Total DNA was extracted from the rumen 
samples, and the DNA concentration and purity were determined 
using 1% agarose gel electrophoresis. The sample genes were broken 
into 400 bp fragments using an ultrasonic fragmentation instrument 
(Covaris M220, United States), and library preparation was completed 
by end repair, addition of sequencing junctions, gene purification, and 
PCR amplification. Sequencing was performed by Majorbio Inc. 
(Shanghai, China) on an Illumina HiSeq 4,000 platform (Illumina 
Inc., San Diego, California, United States). The raw data were quality-
controlled using the fastp software1 to obtain high-quality clean reads 
by removing low-quality splice sequences, reads, and bases. ORF 
prediction of contig sequences was performed using Prodigal software 
(29). IAMOND2 and MEGAHIT assembly software were used for the 
species annotation and sequencing data assembly.

2.8 Statistical analysis

All data were subjected to simple polynomial regression using 
SAS Proc Mixed SAS version 9.4, Statistical Analysis for Windows, 
Institute Inc., Cary, NC, United States. All data are expressed as mean 
and SEM. Correlation analysis was performed between rumen 
microbes, rumen fermentation and serum indicators, and correlation 
coefficients were calculated based on Spearman correlation distances. 
Heatmaps were constructed using the Origin Pro 2021 software. The 
Wilcoxon rank-sum test (two-tailed test) was performed separately to 
compare the functional characteristics and differentiation of the 
CAZys between the CON and T2 groups.

3 Result

3.1 Effect of increasing NSPase 
supplementation on growth performance 
and apparent digestibility in fattening 
sheep

Average daily gain and feed conversion rate in the different 
treatments showed a quadratic curve correlation, and the T2 group 
had a higher average daily gain than the T3 group (p < 0.05; Table 2). 
NSPases treatment had no effect on final body weight or DMI 
(p > 0.05; Table 2). The addition of NSPases had no significant effect 
on the nutrient intake or digestibility of fattening sheep (p > 0.05; 
Table 3).

3.2 Effect of NSPase supplementation on 
ruminal fermentation characteristics in 
fattening sheep

The ruminal pH was significantly lower in the T3 group than in 
the other groups (p < 0.05; Table  4). The NH3-N and acetate to 

1 https://github.com/OpenGene/fastp

2 https://github.com/bbuchfink/diamond

propionate ratios in the T2 group were significantly higher than those 
in the other groups (p < 0.05; Table 4).

3.3 Effect of NSPase supplementation on 
serum hormones in fattening sheep

As shown in Table 5, increasing enzyme concentration linearly 
and quadratically increased the serum concentrations of GH, IGH-1, 
leptin, IgA, IgG and IgM (p < 0.01).

3.4 Effect of NSPase supplementation on 
rumen microbial diversity and community 
in fattening sheep

Bacteria dominated the rumen microbial communities (>80%), 
followed by Viruses (8–13%), whereas Eukatyota (<1%) and Archaea 
(1–5.5%) showed lower abundance (Supplementary Table S1). The 
Chao1 index did not differ significantly between the CON and T2 
groups. The Simpson index of group T2 was significantly higher than 
that of CON, while the Shannon index of group T2 was significantly 
lower than that of CON (Figure 1). PCoA plots showed over-lapping 
clusters in the CON and T2 groups. Among all microbes, Firmicutes 
dominated at the phylum level, followed by Bacteroidota, 
Actinobacteria, Uroviricota, Proteobacteria, and Euryarchaeota 
(Figure 1). Firmicutes, Bacteroidota, and Actinobacteria were higher in 
the T2 group than in the CON group, Uroviricota and Proteobacteria 
were significantly lower than in the CON group (p < 0.05; 
Supplementary Table S2). At the genus level, unclassified_f_
Lachnospiraceae was the most abundant, followed by Prevotella, 
unclassified_c_Clostridia, Ruminococcus, Clostridium, but none of 
them were significantly different (Supplementary Table S3). 
Unclassified_f_Lachnospiraceae, Prevotella, unclassified_c_Clostridia, 
and Ruminococcus were more abundant in the T2 group than in the 
CON group.

3.5 Correlation analysis of apparent 
digestibility and rumen fermentation with 
rumen microbial community composition

According to Spearman correlation analysis, ruminal acetate 
concentrations were negatively correlated with four genera-
Lactimicrobium, unclassified_d_Viruses, unclassified_f_podoviridae, 
and unclassified_f_Siphoviridae, and positively correlated with 
Prevotella (p < 0.05; Figure  2). Propionate concentrations were 
negatively correlated with two genera, Lachnoclostridium and 
Aeriscardovia, and positively correlated with Succinivibrio and 
unclassified_f_Lachnospiraceae (p < 0.05; Figure  2). NH3-N 
concentrations were negatively and strongly correlated with 
unclassified_f_Microviridae and unclassified_o_Bacteroidales (p < 0.05). 
The MCP concentration was negatively correlated with 
Methanobrcvibacter and Ruminococus (p < 0.05). NDF and ADF 
digestibility were negatively and strongly correlated with Absicoccus, 
whereas CP digestibility was negatively correlated with unclassified_f_
Eggerthellaceae and Hymenobacter (p < 0.05).
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3.6 Correlation analysis of serum hormones 
and serum immunity with rumen microbial 
community composition

IgA and IgG concentrations were negatively correlated with three 
genera-unclassified_f_Siphoviridae、nclassified_f_Podoviridae and 
Klebsiella (p < 0.05). IgA concentration was negatively correlated with 
unclassified_d_Viruses and unclassified_f_Acidaminococcaceae 
(p < 0.05). IgG concentration was negatively correlated with 
Anaerolactibacter (p < 0.05). IgA, IgG, IgM, GH, and IGF-1 
concentrations were negatively correlated with unclassified_f_
Podoviridae (p < 0.05). LEP concentration was positively correlated 
with unclassified_f_Succinivibrionaccae and unclassified_p_
Protebacteria (p < 0.05).

3.7 Effect of NSPase supplementation on 
rumen function features in fattening sheep

A Wilcoxon rank sum test of KEGG Level3 levels in the CON and 
T2 groups showed that microbes in the T2 group were mainly 
enriched in starch and sucrose metabolism pathways, whereas 

microbes in the CON group were mainly enriched in pathways related 
to nucleotide metabolism, pyrimidine metabolism, drug metabolism-
other enzymes, longevity-regulating pathway-worm, ribosome 
biogenesis in eukaryotes, spinocerebellar ataxia, and functional 
properties of Yesinia infection (Figure 3). Based on KEGG annotation, 
the differences in KO and Enzymes involved in starch and sucrose 
metabolism pathways were analyzed between the two groups, and no 
significant species differences were found in KO and enzymes of both 
CON and T2 groups. In addition, the abundance of CAZy was 
analyzed differently in the CON and T2 groups. The results showed 
that the T2 group showed high abundance of PL9_1 (pectate lyase), 
GT63 (DNA β-glucosyltransferase), PL12_3 (heparin lyase), PL4_1 
(rhamnogalacturonan lyase), but PL6_1 (alginate lyase) and GH43_32 
(β-D-galactofuranosidase) were lower than the CON group (Figure 4).

3.8 Correlation analysis between NSPase 
supplementation and rumen fermentation 
characteristics

Different additions of exogenous complex NSPases were subjected 
to Spearman’s correlation analysis with rumen fermentation 

TABLE 2 Effect of the supplementation of dietary exogenous non-starch polysaccharidases on growth performance and feed efficiency of fattening sheep.

Items Treatment1 SEM p-value2

CON T1 T2 T3 Treat Linear Quadratic

Initial BW, kg 35.30 34.82 35.34 36.10 0.66 0.938 0.661 0.819

Final BW, kg 42.89 43.01 43.92 42.87 0.71 0.951 0.893 0.916

Average daily gain, g/d 180.69ab 194.97a 204.23a 158.46b 6.27 0.048 0.313 0.029

DM intake, kg/d 0.83 0.90 0.94 0.84 0.035 0.717 0.836 0.517

Feed conversion rate 4.62b 4.61b 4.52b 5.46a 0.14 0.021 0.043 0.014

1Different supplementary levels (CON, control group; T1, 0.1% NSPases/kg DMI; T2, 0.3% NSPases/kg DMI; T3, 0.5% NSPases/kg DMI).  
2Treat, Linear and Quadratic represent treat, linear, and quadratic effects, respectively of NSPase addition.  
a,bValues within a row with different superscripts differ significantly at p < 0.05.

TABLE 3 Effect of the supplementation of dietary exogenous non-starch polysaccharidases on apparent digestibility of fattening sheep.

Items1 Treatment2 SEM p-value3

CON T1 T2 T3 Treat Linear Quadratic

Intake, (g/d)

DM 831.83 897.83 939.83 842.94 35.06 0.734 0.823 0.540

OM 792.14 858.84 897.01 801.58 18.89 0.160 0.700 0.090

CP 11.98 12.99 13.57 12.13 0.510 0.717 0.836 0.517

NDF 27.47 29.79 31.11 27.80 1.063 0.610 0.814 0.423

ADF 6.65 7.23 7.55 6.75 0.206 0.401 0.768 0.250

Digestibility, %

DM 70.30 70.31 70.23 70.34 0.002 0.236 0.810 0.406

OM 77.34 77.19 77.69 77.34 0.090 0.248 0.548. 0.728

CP 64.81 63.97 66.17 65.88 0.624 0.608 0.345 0.631

NDF 66.12 65.58 67.48 66.25 0.389 0.381 0.521 0.744

ADF 44.6 43.6 45.57 47.15 0.979 0.647 0.428 0.460

1DM, dry matter; OM, organic matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber.
2Different supplement levels (CON, control group; T1, 0.1% NSPases/kg DMI; T2, 0.3% NSPases/kg DMI; T3, 0.5% NSPases/kg DMI).
3Treat, Linear and Quadratic represent treat, linear and quadratic effects, respectively, of NSPases supplementation.
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characteristics, as shown in Figure 5; pH and NH3-N were significantly 
negatively correlated with enzyme addition (p < 0.05), A/P was negatively 
correlated with enzyme addition, and MCP, acetate, propionate, butyrate 
and TVFA were positively correlated with enzyme addition.

4 Discussion

Animal growth requires an optimal amount of feed, while 
simultaneously, improving the digestibility of feed is essential to 
maximize the quality of growth. Growing animals may exhibit different 
metabolic and digestive disorders that affect their performance and 
health. In this study, we aimed to improve the growth performance and 
health of fattening sheep by adding an exogenous complex of NSPases. 
It has been hypothesized that this complex enzyme primarily improves 
fiber digestion and maintains increased microbial activity by 
interacting with endogenous rumen enzymes. Positive effects on 
animal health and metabolism have been reported.

Supplementation with NSPases in this study had no significant 
effect on the digestibility of DM, OM, CP, ADF, and NDF in any of the 
groups, however the T2 group showed some improvement in intake 
and significantly increased ADG. In other words, the fact that the total 
apparent digestibility of nutrients did not improve does not necessarily 
mean that there was no effect on growth performance. Evaluation of 

nutrient digestibility depends not only on the total apparent 
digestibility, but also on the fermentation and retention times of the 
digesta in the rumen, absorption in the small intestine, and 
fermentation in the large intestine (30). In the present study, we found 
an increase in DMI in the T2 group, and it was assumed that 
supplementation with NSPases had a positive effect on the fiber 
degradation properties. As shown in a previous study (31), 
supplementation of dairy cattle rations with enzymes reduced 
retention time in the rumen and increased the rate of food transfer, 
thus increasing feed intake but not total intestinal digestibility. This 
was also studied by Martins et al. (11).

Supplementation with NSPases may increase the availability of 
the nutrients required for rumen fermentation (11, 32). In the 
current study, supplementation with NSPases significantly 
increased the ratio of acetate to propionate, mainly because of the 
reduced propionate concentration. Ribeiro found that the use of 
fibrolytic enzymes in sheep diet was consistent with the findings of 
this study regarding a low propionate concentration and a high 
acetate to propionate ratio (33). Consistent results were obtained 
by Miorin et al. (34) in Nellore bulls fed a diet supplemented with 
xylanase. With the addition of an appropriate amount of NSPases, 
the enzymes may function synergistically with rumen microbes, 
preferentially acting on structural carbohydrates and promoting 
the degradation of non-starch polysaccharides in the rumen (35). 

TABLE 5 Effect of the supplementation of dietary exogenous non-starch polysaccharidases on serum hormones of fattening sheep.

Items Treatment1 SEM p-value2

CON T1 T2 T3 Treat Linear Quadratic

GH 7.88c 10.19b 11.66ab 12.21a 0.383 <0.01 <0.01 <0.01

IGH-1 823.94d 1066.78c 1261.15b 1543.32a 53.936 <0.01 <0.01 <0.01

Leptin 7.48c 8.99bc 9.81b 11.97a 0.379 <0.01 <0.01 <0.01

IgA 179.92c 232.16b 264.90a 284.97a 8.385 <0.01 <0.01 <0.01

IgG 47.92c 56.28b 61.97ab 65.91a 1.597 <0.01 <0.01 <0.01

IgM 1526.02b 2210.20a 2273.15a 2406.33a 69.580 <0.01 <0.01 <0.01

GH, growth hormone; IGF-1, insulin-like growth factor-1.  
1Different supplementary levels (CON, control group; T1, 0.1% NSPases/kg DMI; T2, 0.3% NSPases/kg DMI; T3, 0.5% NSPases/kg DMI).
2Treat, Linear and Quadratic represent treat, linear, and quadratic effects, respectively, of NSPase supplementation.  
a–cValues within a row with different superscripts differ significantly at p < 0.05.

TABLE 4 Effect of the supplementation of dietary exogenous non-starch polysaccharidases on the ruminal fermentation characteristics of fattening sheep.

Items Treatment1 SEM p-value2

CON T1 T2 T3 Treat Linear Quadratic

Ruminal pH 6.56a 6.55a 6.59a 6.38b 0.007 0.04 0.025 0.007

NH3-N, mg/mL 6.96b 7.79b 10.50a 3.87c 0.540 <0.01 0.177 <0.01

MCP, mg/mL 153.54ab 124.55b 150.05ab 174.74a 7.75 0.148 0.205 0.093

Total VFA, mmol/L 97.05 100.43 96.04 98.40 1.70 0.843 1.000 0.981

Acetate mmol/L 48.07 49.65 50.10 47.67 0.92 0.777 0.906 0.580

Propionate mmol/L 41.13 42.29 37.42 42.88 1.10 0.344 0.919 0.696

Butyrate mmol/L 7.84 7.99 8.52 7.85 0.22 0.717 0.814 0.679

Acetate: Propionate ratio 1.17b 1.16b 1.37a 1.11b 0.04 0.067 0.985 0.315

VFA, volatile fatty acid.  
1Different supplementary levels (CON, control group; T1, 0.1% NSPases/kg DMI; T2, 0.3% NSPases/kg DMI; T3, 0.5% NSPases/kg DMI).
2Treat, Linear and Quadratic represent treat, linear and quadratic effects, respectively, of NSPase supplementation.  
a–cValues within a row with different superscripts differ significantly at p < 0.05.
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It did not cause the accumulation of production or negative 
feedback effects as in the high dose group. In addition, Nellore bulls 
fed a high carbohydrate ration supplemented with fibrinolytic 
enzymes exhibited higher rumen pH, indicating that fibrinolytic 
enzymes can act during high carbohydrate loading (34). This may 
be due to changes in microbial populations or metabolic pathways 
(33). Prevotella and Ruminococcus are important fiber-degrading 
genera in the rumen (36). Prevotella is a protein-degrading 
bacterium (37). In our study, the abundances of Prevotella and 

Ruminococcus were higher in the T2 group than in the CON group, 
and the NH3-N concentration was significantly higher in the T2 
group than in the CON group, presumably indirectly promoting 
the degradation of dietary proteins and non-starch polysaccharides 
by changing the abundance of related microbes. Consistent results 
were also obtained by Guo et al. (38). Thus, in the present study, 
supplementation with a medium-dose of NSP improved productive 
performance probably by altering the composition of the sheep 
rumen microbial community.

FIGURE 1

Microbia analysis of the rumen of sheep. (A–C) Analysis of alpha diversity of the rumen microbial communities in CON and T2 groups, (D,E) Principal 
coordinates analysis and Venn of the rumen microbial communities in the CON and T2 groups, (F) Relative abundance of phylum level in the sheep 
rumen, (G) Relative abundance of genus level in the sheep rumen.

https://doi.org/10.3389/fvets.2024.1396993
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Xue et al. 10.3389/fvets.2024.1396993

Frontiers in Veterinary Science 08 frontiersin.org

Supplementation of fattening sheep diets with high doses of 
NSPases significantly reduced ADG and ruminal pH, significantly 
increased feed conversion rate, and exhibited a quadratic curve effect 
of the enzyme. Similar results have been reported in other studies (3), 
where excess enzymes attached to the feed competed with the rumen 
microbial binding sites for feed pellets, thus affecting feed utilization 
(39, 40). It has also been reported that a negative feedback mechanism 
occurs when the enzyme-substrate interaction reaches a critical 
concentration that inhibits enzyme action (41, 42). In this study, a 
high percentage of concentrate resulted in rapid degradation in the 
rumen (43). After supplementation with high doses of NSPases, 

rumen fermentation was further accelerated, which tended to cause 
accumulation of VFAs, thus inhibiting further fermentation. 
Therefore, in the present study, the second view was preferred owing 
to the quadratic curve effect of the enzyme.

As discussed, rumen fermentation was enhanced by 
supplementation with exogenous NSPases, resulting in a lower 
pH. In the present study, the enzyme treatment tended to increase 
rumen NH3-N concentration, which is in contrary to the findings 
of Vittorazzi et  al. (10), because the present experiment was 
conducted after 2 h of morning feeding for rumen fluid collection, 
which may be related to the fermentation rate. Fiber-degrading 

FIGURE 2

(A) Top 50 species with significant correlations with NDF, ADF, CP digestibility and rumen fermentation parameters at rumen microbial genus level 
abundance; (B) Top 50 species with significant correlations with serum hormones and immunoglobulins at rumen microbial genus level abundance.

FIGURE 3

Differential analysis of KEGG Level3 between CON and T2 rumen samples in sheep. Wilcoxon rank-sum test for KEGG pathways. “*” represents 
p  <  0.05. CON, control group; T2  =  0.3% NSPases/kg DMI.
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bacteria in the rumen have a high preference for ammonia as the 
nitrogen source (44). In addition, the increased abundance of 
fiber- and protein-degrading bacteria in this experiment resulted 
in an increase in the overall utilization of NH3-N for MCP in 
the rumen.

When exogenous enzymes improve rumen fiber digestion, 
changes in rumen fermentation patterns may occur, resulting in an 
increase in the molar proportion of acetate and decrease in the molar 
proportion of propionate (45). Similarly, Ribeiro reported an increase 
in the total VFA concentration and proportion of acetic acid in vitro 
and a reduced proportion of propionic acid following enzyme 
treatment (46). In this experiment, acetate was elevated and propionate 
was decreased in the T2 group, but no significant changes in the VFA 
profile were observed, which is consistent with the lack of an effect on 

total digestive tract digestibility, suggesting that supplementation with 
exogenous NAPases has a minor effect on rumen fiber digestion.

As a significant increase in ADG was observed, we measured the 
serum hormones levels in each treatment group. GH, secreted by the 
anterior pituitary gland, is a main regulator of body growth and can 
be secretes IGF-1 through the liver (47). Animal growth is influenced by 
the growth hormone GH-IGF1 symbiont axis, in which GH is a major 
regulator of development, growth, and anabolic processes. IGF1 regulates 
the biological actions of GH by binding to its receptor (IGF1R) (48).

In the present study, the concentrations of GH and IGF-1 
significantly increased after supplementation with NSPases, suggesting 
that NSPase supplementation promotes an increase in ADG levels, 
probably by regulating the growth hormone-releasing hormone 
(HPGH) axis. However, the specific mechanisms and interrelationships 

FIGURE 4

Distinction analysis of CAZy in the rumen samples of sheep in the CON and T2 groups using Wilcoxon rank-sum test. “*” represents p  <  0.05, and “**” 
represents p  <  0.01. CON, control group; T2  =  0.3% NSPases/kg DMI.

FIGURE 5

Spearman’s correlation analysis between enzyme addition levels and rumen fermentation characteristics. (A-H) represent the correlation analysis of 
different enzyme additions with pH, NH3-N, MCP, Acetate, Propionate, Butyrate, Acetate: Propionate ratio, respectively. r-value: relative coefficient,  
r >0 indicates positive correlation, r >0 indicates negative correlation; p-value: significance, p <0.05 indicates significant correlation, p >0.05 indicates 
non-significant correlation.
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among these effects require further investigation. However, nutrient 
intake and end body weight did not significantly improve in this study. 
As discussed earlier, the addition of enzymes accelerated the rate of 
feed degradation in the rumen (49), produced more available energy, 
and contributed to an increase in associated hormones, but did not 
increase the extent of feed degradation. Therefore, there is a possibility 
that the increase in retention time of fiber in the rumen may have 
counteracted the improvement in digestibility and was not sufficient 
to cause any improvement in intake and end body weight.

However, the data showed that the T2 group (0.3% NSPases/kg 
DM) increased 108 g/d, 104.87 g/d, 1.59 g/d, 3.64 g/d, and 0.9 g/d in 
DM, OM, CP, NDF, and ADF intake, respectively, and all of the test 
groups were higher than the control group. Therefore, it was 
speculated that it might be due to the large within-group difference 
that caused insignificant differences between the results of the test 
group and the control group. Furthermore, a meta-analysis of studies 
suggested that long-term serial experiments are preferable for 
observing the response of exogenous cellulose-degrading enzymes to 
dietary treatment (6). In this experiment, only a 42 d test cycle was 
conducted, and the possible effects on growth performance were not 
demonstrated. Therefore, future subsequent related studies should 
increase the sample size, reduce within-group variations, and conduct 
consecutive long-term test cycles.

Leptin is a hormone secreted by white adipose tissue that crosses 
the blood–brain barrier and affects host appetite and energy 
metabolism (50–53). It has been shown that short-chain fatty acids 
(SCFAs), derived from the gastrointestinal tract, enhance the release of 
leptin and inhibit host appetite (54). There are various pathways for the 
regulation of related hormones by gastrointestinal flora; for example, 
derived short-chain fatty acids not only regulate the release of appetite 
hormones related to the gastrointestinal tract and affect gastrointestinal 
nerve signaling, but also affect the function and integrity of the 
intestinal barrier (55–58). In the present study, leptin concentrations 
gradually increased significantly with increasing NSPases 
supplementation. As females have a more pronounced maturation rate 
than males, as well as a greater accumulation of body fat, the 
consumptive capacity of prehensile females decreases with increasing 
body weight, as fat directly affects the physical restriction of abdominal 
fat to the rumen, and indirectly affects food intake through the 
secretion of leptin by the adipocytes, which is precisely the hormone 
associated with reduced feeding (59). However, there were no effects 
until the end of the experimental period, probably because the females 
had not yet reached sufficient body fat content to trigger a reduction in 
feed intake. In this study, leptin concentration increased significantly 
(p < 0.05) with the amount of enzyme added, but feed intake was not 
affected, suggesting that enzyme supplementation during fattening did 
not negatively affect the experimental sheep, or that the negative effects 
were not manifested, possibly because sufficient body fat content had 
not yet been achieved to trigger a reduction in feed intake.

Because the medium-dose group showed better results, 
we  measured rumen microbe in the CON and T2 groups. In the 
present study, the bacterial abundance increased in the T2 group, in 
which Firmicutes and Bacteroidota were the dominant phylum in the 
rumen of sheep, consistent with the results of previous studies (60, 61). 
Among them, the Bacteroidota was mainly for the energy conversion 
and acquisition, and the Firmicutes mainly played an essential role in 
the degradation of non-structural carbohydrates (62, 63). Both the 
Bacteroidota and Firmicutes were more abundant in the T2 group than 

in the CON group. This indicates that supplementation with NSPases 
promotes non-structural carbohydrate degradation and energy uptake. 
Another study reported that feeding high concentration resulted in 
higher abundance of Firmicutes in the rumen than feeding on high-
fiber diets (64). In the present study, supplementation with NSPases 
resulted in a higher abundance of the Firmicutes in the T2 group than 
in the CON group, confirming that supplementation with NSPases 
increased the rate of degradation and energy conversion in the rumen 
and creating the illusion that the T2 group had a higher non-structural 
carbohydrate content than the CON group.

Interestingly, we  found significantly lower abundances of 
Uroviricota and Proteobacteria in the T2 group than in the CON group. 
When the number of Proteobacteria is low, it behaves benignly; when it 
is more abundant, it may become a microbe that triggers inflammation, 
and its long-term enrichment may represent microbial instability or 
disease state (65). Some Proteobacteria are easily degraded and produce 
metabolites after death capable of destroy the mucosal barrier in the 
gastrointestinal tract (65). In contrast, Bifidobacteria, a major genus of 
Actinobacteria can avoid excessive inflammation (66). It has also been 
reported that the maintenance of gastrointestinal homeostasis depends 
on (SCFAs) as microbial metabolic byproducts (e.g., acetate, propionate, 
and butyrate) and that these acids affect immune responses in the 
intestine and other organs and tissues (67, 68). The regulatory 
relationship between microbial-derived fatty acids and host defense 
peptides was elaborated. In the present study, it was found that 
supplementation with NSPases not only increased the abundance of the 
Bacteroidota, Firmicutes and Actinobacteria, but also resulted in a 
significant increase in immunoglobulins, accompanied by a decrease in 
the abundance of viruses in rumen microbes, suggesting that the 
addition of appropriate amounts of NSPases to high concentrate rations 
can lead to antiviral effects and help improve rumen health, which may 
be associated with altered rumen microbes.

Among them, acetate concentration had a significant positive 
correlation with Prevotella and propionate had a significant positive 
correlation with unclassified_f_Lachnospiraceae, and both Prevotella 
and unclassified_f_Lachnospiraceae abundance were higher in the T2 
group than in the CON group, indicating that the potential of acetate 
and propionate was higher in the T2 group than in the CON group, 
but in reality the propionate concentration was lower in the T2 group 
than in the CON group, presumably because the supplementation of 
NSPases improved in rumen health and helped rumen propionate 
fermentation, which led to faster uptake of propionic acid by the 
rumen epithelium, resulting in low measured concentrations. 
Moreover, propionate, as a precursor of gluconeogenesis, can 
be absorbed by the liver for use by the organism, ultimately leading to 
an increase in ADG in the T2 group. This also explains why total 
apparent digestibility was not improved by NSPase supplementation, 
while the ADG was improved. Therefore, NSPases supplementation 
improves rumen health, promotes rumen fermentation, and enhanced 
energy absorption and utilization. Previous studies have shown that 
enzyme preparations based on Aspergillus can increase bacterial 
populations (69, 70) an act synergistically with rumen microbes to 
break down plant cell walls and promote nutrient release (71).

Using the Wilcoxon rank-sum test of the abundance of CAZy in 
the CON and T2 groups, we found that with NSPases supplementation 
promoted the degradation of NSP, which also confirmed that NSPases 
supplementation helped improve rumen fermentation after feeding 
high concentrates.
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5 Conclusion

In conclusion, supplementation with non-starch polysaccharide 
degrading enzymes increased average daily weight gain, improved 
rumen health, and enhanced immunity. Feeding with NSPases 
improves rumen health and promotes energy absorption and 
utilization by increasing immunoglobulin concentrations and 
decreasing rumen viral abundance.
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