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Equine influenza (EI) is a severe infectious disease that causes huge 
economic losses to the horse industry. Spatial epidemiology technology 
can explore the spatiotemporal distribution characteristics and occurrence 
risks of infectious diseases, it has played an important role in the prevention 
and control of major infectious diseases in humans and animals. For the 
first time, this study conducted a systematic analysis of the spatiotemporal 
distribution of EI using SaTScan software and investigated the important 
environmental variables and suitable areas for EI occurrence using the 
Maxent model. A total of 517 occurrences of EI from 2005 to 2022 were 
evaluated, and 14 significant spatiotemporal clusters were identified. 
Furthermore, a Maxent model was successfully established with high 
prediction accuracy (AUC = 0.920 ± 0.008). The results indicated that 
annual average ultraviolet radiation, horse density, and precipitation of the 
coldest quarter were the three most important environmental variables 
affecting EI occurrence. The suitable areas for EI occurrence are widely 
distributed across all continents, especially in Asia (India, Mongolia, 
and China) and the Americas (Brazil, Uruguay, USA, and Mexico). In the 
future, these suitable areas will expand and move eastward. The largest 
expansion is predicted under SSP126 scenarios, while the opposite trend 
will be observed under SSP585 scenarios. This study presents the spatial 
epidemiological characteristics of EI for the first time. The results could 
provide valuable scientific insights that can effectively inform prevention 
and control strategies in regions at risk of EI worldwide.
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1 Introduction

Equine influenza (EI) is a highly contagious respiratory disease 
caused by the equine influenza virus (EIV) (1). This disease can cause 
significant economic losses to the global equine industry (2). Clinical 
symptoms of EI include fever, dry cough, and runny nose (3). EI is 
primarily transmitted through aerosols from infected horses and can 
spread quickly within a group of horses and to other susceptible 
animals nearby (4). EIV is classified into two subtypes, H7N7 and 
H3N8 (5). The H3N8 subtype is currently the predominant epidemic 
type worldwide, including both European and American lineages (6). 
The American lineages are further categorized into South American, 
Kentucky, and Florida lineages, with the Florida lineages having two 
additional branches. Florida Clade 1 is primarily found in the 
Americas and Europe, whereas Florida Clade 2 is primarily found in 
Europe, Asia, and Africa. Vaccination is currently considered the 
primary means of preventing EI, but it actually has not achieved the 
desired expectation (7).

Space epidemiology is an effective tool to study the risk and 
influencing factors of infectious disease transmission (8). The use of 
spatiotemporal analysis and niche models (ENMs) has focused on 
establishing prevention strategies for infectious diseases. Spatiotemporal 
analysis is a technique used to study the spatiotemporal distribution 
characteristics of infectious diseases, which can accurately predict the 
spatiotemporal distribution (clusters) of human and animal infectious 
diseases (9). Wong et al. conducted a study using spatiotemporal cluster 
analysis to investigate the geographical variation of syphilis 
epidemiology and predict possible outbreaks in south China (10). Their 
results suggest that spatiotemporal cluster analysis could be used to 
focus provincial syphilis control programs. Gao et  al. successfully 
utilized spatiotemporal cluster analysis to identify the spatial 
distribution and risk areas of foot and mouth disease (FMD) in 
mainland China, providing valuable insights for decision-makers to 
tailor a risk-based surveillance of FMD in China (11). It is worth noting 
that, to date, no literature has explored the spatiotemporal distribution 
characteristics of EI using spatiotemporal cluster analysis.

ENMs link environmental variables to disease occurrence, 
elucidate the environmental conditions required for the survival and 
spread of infectious disease pathogens, identify environmental 
similarities between the study area and known areas of pathogen 
distribution, and understand the ecological characteristics and 
geographic distribution of pathogens (12). The Maxent model is a 
widely used ENMs that accurately predicts suitable areas with limited 
generation data, demonstrating excellent performance (13). Ren et al. 
used Maxent models to successfully identify potential risk areas for 
coronavirus disease 2019 in its early stages (14). Their findings were 
instrumental in implementing targeted prevention and control 
strategies. Similarly, Choi et al. utilized the Maxent model to accurately 
predict suitable areas for African swine fever (ASF) outbreaks in wild 
boars in South Korea (15). Their findings established preemptive 
measures to prevent ASF in pig farming sectors at risk of ASF spillover 
from wild boars. To date, no literature has analyzed the environmental 
variables and suitable areas for EI occurrence via Maxent model.

EI has become widespread worldwide in recent years, and existing 
studies have proven that environmental variables such as temperature 
and humidity have an important impact on the occurrence and spread 
of EI (16). Bioclimatic variables can faithfully reflect monthly 
temperature and precipitation values, and have been widely used in 

the prediction of various infectious diseases (17). In this study, the 
current and future bioclimatic variables were selected and combined 
with EI occurrence data, and the Maxent model was constructed to 
analyze the relationship between EI occurrence and climate change.

This study aims to apply spatiotemporal cluster analysis and the 
Maxent model to not only map the distribution of EI but also identify 
key environmental drivers and predict future outbreaks. The results 
could provide valuable scientific insights that can inform prevention 
and control strategies in regions at risk of EI worldwide.

2 Materials and methods

2.1 Data collection and processing

A comprehensive dataset of 696 global occurrence of the H3N8 
subtype of EI between January 1, 2005, and December 31, 2022, was 
carefully collected from the Global Animal Disease Information 
System of the Food and Agriculture Organization of the United 
Nations (FAO, https://empres-i.apps.fao.org). The dataset includes the 
precise latitude and longitude coordinates of the occurrence, the 
occurrence time, and the number of affected animals. To ensure the 
accuracy of the Maxent model, the occurrence data were purified with 
ENMTools to remove the influence of spatial autocorrelation (18). 
Finally, the Maxent model was trained using 517 global occurrence 
data points of EI, as shown in Figure 1.

Twenty-one environmental variables were considered to build the 
Maxent model for EI, including 19 bioclimatic variables (bio_1–19), 
as well as 2 related variables, including annual average ultraviolet 
radiation (uvb1) and horse density (hd). The 19 bioclimatic variables, 
representing global climate conditions from 1970 to 2000, were 
obtained from the widely-used Worldclim 2.0 database1 (19). The 
uvb1 data were downloaded from the website of the Helmholtz Center 
for Environmental Research.2 Data for hd were obtained from the 
Global Livestock Distribution Database on the FAO website.3 The 
Maxent model used the twenty-one environmental variables listed in 
Table 1.

The data for future climate scenarios was obtained from the 
Worldclim 2.0 database using the sixth coupled model 
(BCC-CSM2-MR) of the Coupled Model Intercomparison Project 
(CMIP6), compared with the CMIP5 model, the CMIP6 model 
improves the simulation ability of the current regional temperature and 
precipitation in China, and the precipitation index is significantly 
improved (20). This model simulates the response of global climate to 
increased greenhouse gas. The Shared Socio-economic Pathways (SSP) 
consider a range of factors that affect future greenhouse gas emissions, 
including economic factors, population, economic growth, 
urbanization, and other socio-economic factors (21). This pathway 
provides a comprehensive view of future climate change from a 
long-term perspective within a predetermined scenario. For years 2050 
(2041–2060 average) and years 2070 (2061–2080 average), three widely-
used socioeconomic pathways were selected: SSP126 (represents the 
lowest emissions scenario, which is a sustainability-focused pathway), 

1 http://www.worldclim.org

2 http://www.ufz.de/gluv/

3 http://www.fao.org/livestock-systems/global-distributions/zh/
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SSP245 (represents a medium emissions scenario and is a pathway 
where the trend largely follows its historical pattern), and SSP585 
(represents the highest emissions scenario, which is a pathway 
dominated by traditional fossil fuels). We resolved the current and 
future environmental variables at a 2.5 arcminute resolution, 
corresponding to 21.6 square kilometers per grid.

2.2 Spatiotemporal cluster analysis

Spatiotemporal cluster analysis was conducted using SaTScan 
version 10.1 to explore the distribution characteristics of EI 
occurrence. In SaTScan, the spatiotemporal rearrangement scanning 
statistics model was selected to identify potential spatiotemporal 
clusters by forming a dynamic scanning window of occurrence data, 
which includes the number and location of onset cases, the 
spatiotemporal scanning statistical model can better detect the 
spatiotemporal aggregation patterns of infectious diseases (9). The 
clustering of scanning windows was evaluated using the generalized 
likelihood ratio (GLR). The study set a maximum spatial cluster size 
of 1,000 km and a maximum temporal cluster size of 20%. The p value 
was calculated using Monte Carlo random sampling to generate the 
simulation dataset (22). Any spatiotemporal cluster with a p value 
<0.05 was considered statistically significant. SaTScan analyzed the 
dataset of significant spatiotemporal clusters, which were then 
visualized using ArcGIS software version 10.2.

2.3 Maxent modeling

To predict the global suitable areas for EI occurrence, a Maxent 
model was built, using Maxent software version 3.4.1. To ensure the 

model’s accuracy, ENMTools was employed to test the correlation of 
bioclimatic variables (23). The visualization matrix of correlation 
coefficients for the twenty-one environmental variables was shown in 
Figure 2. The figure displays stronger correlations with darker red and 
darker blue. A correlation was considered strong when the correlation 
coefficient between each pair of variables |r| > 0.7 (24). Strong 
correlations between variables can lead to overfitting, which can affect 
modeling results. Therefore, the contribution rate of each variable was 
determined using Maxent software, and eliminate the variable with a 
smaller contribution rate among the relevant variables. The final 
model includes eight variables: bio_2, bio_3, bio_5, bio_13, bio_15, 
bio_19, hd, and uvb1. Eight environmental variables and the data of 
517 occurrence were imported into the Maxent model. In the Maxent 
software, set Random Test Percentage to 25, which means that 25% of 
the data will be randomly selected as a test set to test the model. Set 
Replicates to 10, which means the model was run 10 times and the 
average was used as the final result. Regularization Multiplier was set 
to 1, and Replicate Run Type was subsampled (the formula was 
substituted into the model for operation, and the mode with the best 
final result was selected). The maximum number of background 
points was set to 10,000, and other settings were left as default.

The Maxent model’s performance was evaluated by calculating the 
area under the curve (AUC) of the ROC curve (25). A higher AUC 
value indicates better predictive performance, with the prediction 
considered failed (0.5–0.6), poor (0.6–0.7), fair (0.7–0.8), good (0.8–
0.9), or excellent (0.9–1). The corresponding response curve was used 
to determine the impact of these variables on the suitable areas of EI 
occurrence (26). Moreover, the importance of the eight environmental 
variables in the Maxent model was evaluated, respectively, using the 
jackknife test (27). The probability of occurrence in suitable areas 
ranges from 0 to 1, with a higher value indicating a greater probability. 
Based on the obtained results, the suitable areas can be further divided 

FIGURE 1

The 517 global occurrence sites of equine influenza (EI) from 2005 to 2022.
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into four levels using maximum test sensitivity plus specificity 
(MTSPS): unsuitable (0–MTSPS), lowly suitable (MTSPS–0.5), 
mediumly suitable (0.5–0.6), and highly suitable (0.6–1) (28). The 
sizes and locations of suitable areas for the current and future 
scenarios were compared using ArcGIS version 10.2. Centroid 
position shifts of the suitable areas were also calculated.

3 Results

3.1 Spatiotemporal cluster analysis

Fourteen significant (p < 0.05) spatiotemporal clusters of EI 
occurrence were identified, along with their location coordinates, 
country names, radii, times, GLRs, and p values, as shown in Table 2. 
The central countries of the fourteen spatiotemporal clusters were 
located in Senegal, Mongolia, India, China, Colombia, Japan, Nigeria, 
Australia, Chile, Tunisia, Egypt, Israel, Croatia, and Malaysia, 
respectively. The global locations of the fourteen spatiotemporal 
clusters of EI occurrence were shown in Figure 3.

3.2 Maxent modeling

The Maxent model achieved an AUC value of 0.920 ± 0.008 for EI 
occurrence (Figure 4A). The environmental variables with the highest 
contribution rates to EI occurrence were uvb1 (32%), hd (28.2%), and 

bio_19 (14.5%). These three variables had a cumulative contribution 
rate of 74.7%. According to the response curves, the probability of EI 
occurrence was highest at approximately 2000 J/m2/day of uvb1 
(Figure 4B). Moreover, as the range of hd increased from 0–800 bolt/
km2, the probability of EI occurrence also increased until it reached 
800 bolt/km2, beyond which it remained stable (Figure  4C). 
Additionally, the highest probability of EI occurrence was observed 
when bio_19 reached 150 mm (Figure 4D).

The importance analysis of eight environmental variables for EI 
occurrence in the Maxent model by the Jackknife test was shown in 
Figure 5. The model’s performance is represented by the red stripe 
when all variables are used, the dark blue stripe when only one 
variable is used, and the light blue stripe when only one variable is 
removed. The results showed that the use of solely environmental 
variables led to the highest gain for uvb1, followed by hd and bio_19. 
When only one variable was removed, uvb1 had the greatest impact, 
followed by hd and precipitation seasonality (bio_15), as shown in 
Figure 5.

The model yields the MTSPS value of 0.4, the division of the 
suitable areas of EI occurrence: unsuitable (0–0.4), lowly suitable 
(0.4–0.5), mediumly suitable (0.5–0.6), and highly suitable (0.6–1). 
The global suitable areas of EI occurrence under the current and 
future climate scenarios of SSP126, SSP245, and SSP585 pathways for 
years 2050 and 2070 are shown in Figures 6, 7, respectively. Figure 6 
shows that the suitable areas were globally distributed, with significant 
concentrations in Asia (India, Mongolia, and China), Europe (Czech 
Republic), Africa (Sudan), South America (Brazil and Uruguay), and 
North America (USA and Mexico) under the current climate scenario. 
In Figure 7, the suitable areas will show an overall expansion trend, 
particularly in Asia and the Americas, under the future climate 
scenarios. Additionally, changes in global suitable areas of EI 
occurrence under three future climate scenarios for the years 2050 and 
2070 were shown in Figure  8 and Table  3. Notably, by 2050, the 
suitable areas will obviously expand, with the area of the SSP126 
scenario increasing by nearly 145.42 × 105 km2. By 2070, the expansion 
of suitable areas will no longer be obvious, with SSP585 scenario’s area 
even shrinking by 59.67 × 105 km2.

The centroid position of EI occurrence shifts from left to right 
under the SSP126/SSP245/SSP558 climate scenarios from current to 
the years 2050 and 2070, as shown in Figure 9. The current centroid 
position is located in Chad at geographic coordinates of (17°80′E, 
20°24′N). Under the SSP126 climate scenario, the centroid will shift 
417 km eastward to the position (22°17′E, 19°93′N) in 2050, and shift 
104 km northeast to the position (22°65′E, 20°40′N) in 2070. 
Specifically, under the SSP245 climate scenario, the centroid will shift 
626 km eastward to position (22°19′E, 20°40′N) in 2050, and shift 
nearly 313 km eastward to position (23°11′E, 20°41′N) in 2070. Under 
the SSP585 climate scenario, the centroid will continuously shift 
eastward from 2050 (24°48′E, 19°83′N) to 2070 (26°50′E, 19°80′N). 
Overall, the centroid position will shift eastward to varying degrees 
under three climate scenarios.

4 Discussion

EI is an important infectious disease in the global horse industry 
(29). Understanding the epidemiological characteristics of EI is crucial 
for its effective prevention and control. Previous literature has 

TABLE 1 The twenty-one environmental variables used in the Maxent 
model.

Variables Description Unit

bio_1 Annual mean temperature °C

bio_2 Mean diurnal range °C

bio_3 Isothermality /

bio_4 Temperature seasonality °C

bio_5 Max temperature of warmest month °C

bio_6 Min temperature of coldest month °C

bio_7 Temperature annual range °C

bio_8 Mean temperature of wettest quarter °C

bio_9 Mean temperature of driest quarter °C

bio_10 Mean temperature of warmest quarter °C

bio_11 Mean temperature of coldest quarter °C

bio_12 Annual precipitation mm

bio_13 Precipitation of wettest month mm

bio_14 Precipitation of driest month mm

bio_15 Precipitation seasonality /

bio_16 Precipitation of wettest quarter mm

bio_17 Precipitation of driest quarter mm

bio_18 Precipitation of warmest quarter mm

bio_19 Precipitation of coldest quarter mm

uvb1 Annual mean ultraviolet radiation J/m2/day

hd Horse density Bolt/km2

https://doi.org/10.3389/fvets.2024.1395327
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demonstrated that environmental variables such as temperature, 
humidity, and the number of susceptible animals play a crucial role in 
the transmission of the influenza virus (30, 31). Although scientists 

have made efforts, the environmental variables associated with EI 
occurrence and their roles are still unclear. This study is the first to 
utilize spatial epidemiological technologies to analyze the 

FIGURE 2

The visualization matrix of correlation coefficients for the twenty-one environmental variables.

TABLE 2 Fourteen global spatiotemporal clusters of EI occurrence from the year 2005 to 2022.

Cluster Center coordinates Country Radius (km) Time GLR p_value

1 (14.75 N, 16.11 W) Senegal 965.91 2019 27816.06 <0.001

2 (47.61 N, 105.54E) Mongolia 937.93 2011 26687.18 <0.001

3 (26.26 N, 74.38E) India 977.75 2008 23945.40 <0.001

4 (47.87 N, 88.06E) China 432.23 2007 23430.14 <0.001

5 (2.41 N, 76.90 W) Colombia 975.01 2018 10073.61 <0.001

6 (35.95 N, 140.32E) Japan 976.05 2007 2421.48 <0.001

7 (12.77 N, 5.03E) Nigeria 821.41 2018 1714.02 <0.001

8 (33.13S, 148.17E) Australia 810.09 2007 1505.60 <0.001

9 (34.27S, 71.22 W) Chile 955.92 2012 1242.46 <0.001

10 (36.79 N, 10.10E) Tunisia 628.36 2020 1003.37 <0.001

11 (27.21 N, 31.11E) Egypt 469.10 2008 755.85 <0.001

12 (32.74 N, 35.27E) Israel 171.11 2017 516.30 <0.001

13 (45.74 N, 16.61E) Croatia 32.75 2015 91.74 <0.001

14 (3.05 N, 101.71E) Malaysia 184.09 2015 33.36 <0.001
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FIGURE 3

Global locations of the fourteen spatiotemporal clusters of EI occurrence.

FIGURE 4

The AUC of the Maxent model for EI occurrence and response curves of three important environmental variables affecting EI occurrence. (A) The AUC 
value of the Maxent model of EI occurrence; (B) Response curve of annual average ultraviolet radiation (uvb1) affecting EI occurrence; (C) Response 
curve of horse density (hd) affecting EI occurrence; (D) Response curve of precipitation of coldest quarter (bio_19) affecting EI occurrence.
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epidemiological characteristics of EI, including spatiotemporal cluster 
distribution, important environmental variables, and suitable areas for 
occurrence. The aim is to effectively improve the EI’s prevention and 
control effect.

This study identified fourteen spatiotemporal clusters of EI 
occurrence. EI was found to occur in almost all years between 2005 
and 2022, and was widely distributed across all continents. The 
majority of spatiotemporal clusters were found in Asia (6/14), with 
early onset and long duration. Four spatiotemporal clusters were 
subsequently found in Africa, with almost all of them concentrated 
between 2017 and 2022. Previous studies have also reported a high 
incidence of EI in these four spatiotemporal clusters (32). These results 
suggest that EI is currently prevalent in Africa, and related countries 
should actively work on prevention and control measures. The 
remaining spatiotemporal clusters were located in the Americas, 
Europe, and Oceania. The results indicated that EI spatiotemporal 

clusters were widely distributed. The import and export of horses, as 
well as transnational horse competitions, pose a challenge to EI 
prevention and control (33). Further exploration of the risk of EI 
being affected in these situations is warranted.

The Maxent model had an AUC value of 0.920 ± 0.008, indicating 
successful establishment (25). The results suggest that annual mean 
ultraviolet radiation (uvb1) is a significant variable affecting the 
occurrence of EI. Although no study has clarified how ultraviolet 
radiation affects the occurrence of EI, it has been reported that the 
similar influenza virus is sensitive to ultraviolet radiation (34). To 
improve prevention and control of EI, it may be beneficial to conduct 
more specific studies on how ultraviolet radiation affects its 
occurrence. In addition, horse density (hd) is a key variable, as higher 
densities result in the clustering of more susceptible animals, and 
combined with the high incidence of EI and its rapid rate of spread, 
an increase in horse density can greatly contribute to the spread of EI 

FIGURE 5

The importance analysis of eight environmental variables for EI occurrence in the Maxent model by the Jackknife test.

FIGURE 6

Global suitable areas of EI occurrence under the current climate scenario.

https://doi.org/10.3389/fvets.2024.1395327
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Ding et al. 10.3389/fvets.2024.1395327

Frontiers in Veterinary Science 08 frontiersin.org

(35). At present, spatial epidemiological studies of several infectious 
diseases also show that ultraviolet light and animal density play an 
important role in the occurrence and spread of infectious diseases (11, 
36), and more precise and detailed effects need to be supported by 
more data from direct experiments or other epidemiological studies. 
Another important variable for EI occurrence is bio_19, which 
measures the precipitation during the coldest quarter. Firestone et al. 
reported that the spread of EI could be affected by relative humidity 
and temperature (16). As horses are homeothermic animals, they take 
steps to avoid damage caused by low temperatures when the 
environmental temperature drops to the critical lower limit of the 
body temperature (37). These steps include hiding in human-built 
shelters or congregating, which may increase the risk of direct 
transmission (38).

The global suitable areas for EI occurrence were predicted under the 
current and future climate scenarios. Under the current climate 
scenario, the suitable areas were mainly concentrated in Asia and the 
Americas, consistent with reported epidemic locations (39). Three 
future climate scenarios (SSP126, SSP245, and SSP585) demonstrate the 
impact of human activities on climate under different socioeconomic 
development paths. Under the future climate scenarios, the suitable 
areas are projected to be  larger in 2050 than in 2070. The SSP126 

scenario showed the largest increase in suitable areas, while the SSP585 
scenario showed the largest reduction. This could be due to the fact that 
the SSP126 scenario had the least carbon emissions and the slowest rise 
in temperature, whereas the SSP585 scenario had the opposite (21). 
These results support the findings of the study that low temperature is 
a significant environmental factor affecting the occurrence of EI. It is 
recommended to intensively monitor the suitable areas based on the 
indications from future climate scenarios, particularly SSP126. The 
centroid position of suitable areas is expected to shift eastward in the 
future, indicating that there may be more suitable areas to the east of the 
centroid. It is reasonable to assume that these areas have favorable 
environmental conditions and a sufficient number of susceptible 
animals, creating conditions for the occurrence of EI. Once an EI occurs 
in these areas, the EIV can persist for an extended period, and the risk 
of an epidemic remains (40).

Indeed, this study has unavoidable limitations, including 
underreporting and time lags due to data collected from official 
reports. The Maxent model works in such a way that the model 
can achieve good modeling results even when some data is 
missing (41), so the limitations due to missing data are limited. 
Due to time and technical level, we did not apply extrapolation 
detection (ExDet) to evaluate model performance and identify 

FIGURE 7

Global suitable areas of EI occurrence under three future climate scenarios for the years 2050 and 2070. (A) 2050SSP126, (B) 2050SSP245, 
(C) 2050SSP585, (D) 2070SSP126, (E) 2070SSP245, (F) 2070SSP585.
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potential overfits (42), which we will work on in future studies. 
Trade and transportation are critical human factors that may 
influence the occurrence of EI (33), these factors also contribute 
to the epidemic outbreak of the disease, which are not considered 
in this study, because accurate and comprehensive data 
information cannot be obtained.

With the rise in international trade and commercial activities 
such as exhibitions and competitions, the risk of EI occurrence is 
expected to increase. Therefore, effective prevention and control 
measures for EI are necessary. In particular, focus on 
immunization in areas of high suitability identified in the study 
and pay particular attention to whether the vaccine matches the 
strain currently circulating in the area. Next, researchers could 

concentrate on developing online platforms for preventing and 
monitoring EI. These platforms could help analyze and visualize 
the global incidence of EI and provide early warnings to high-
risk areas.

5 Conclusion

The study identified fourteen spatiotemporal clusters of EI 
worldwide. The important environmental variables affecting EI 
occurrence were annual average ultraviolet radiation, horse 
density, and precipitation of the coldest quarter. Suitable areas for 
EI are currently widely distributed across continents, particularly 

FIGURE 8

Changes in global suitable areas of EI occurrence under three future climate scenarios for the years 2050 and 2070. (A) 2050SSP126, (B) 2050SSP245, 
(C) 2050SSP585, (D) 2070SSP126, (E) 2070SSP245, (F) 2070SSP585.

TABLE 3 Changed area in global suitable areas of EI occurrence under the SSP126/SSP245/SSP558 climate scenarios for the years 2050 and 2070.

Climate 
scenario

2050 (Area (× 105 km2)) 2070 (Area (× 105 km2))

Increased Unchanged Decreased Increased Unchanged Decreased

SSP126 145.42 244.62 0.61 16.03 369.11 20.93

SSP245 132.01 243.69 1.53 16.24 348.81 26.89

SSP585 113.74 238.38 6.84 7.66 292.45 59.67
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in Asia and the Americas. The study predicts that under future 
climate scenarios, the suitable areas will expand and shift 
eastward. These findings present the epidemiological 
characteristics of EI, which can serve as a valuable reference for 
its prevention and control.
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FIGURE 9

Centroid position of EI occurrence shifts under three climate scenarios from current to the years 2050 and 2070 (The blue, red and purple lines, 
respectively, represent the SSP126, SSP245, and SSP585 climate scenarios).

https://doi.org/10.3389/fvets.2024.1395327
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Ding et al. 10.3389/fvets.2024.1395327

Frontiers in Veterinary Science 11 frontiersin.org

References
 1. Chambers TM. Equine Influenza. Cold Spring Harb Perspect Med. (2022) 

12:a038331. doi: 10.1101/cshperspect.a038331

 2. Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, et al. 
Comprehensive review on equine influenza virus: etiology, epidemiology, pathobiology, 
advances in developing diagnostics, vaccines, and control strategies. Front Microbiol. 
(2018) 9:1941. doi: 10.3389/fmicb.2018.01941

 3. Chambers TM. A brief introduction to equine influenza and equine influenza 
viruses In: E Spackman, editor. Animal influenza virus. methods in molecular biology. 
New York, NY: Springer (2014). 365–70.

 4. Landolt GA. Equine influenza virus. Vet Clin North Am. (2014) 30:507–22. doi: 
10.1016/j.cveq.2014.08.003

 5. Daly JM, MacRae S, Newton JR, Wattrang E, Elton DM. Equine influenza: a review 
of an unpredictable virus. Vet J. (2011) 189:7–14. doi: 10.1016/j.tvjl.2010.06.026

 6. Olguin-Perglione C, Barrandeguy ME. An overview of equine influenza in South 
America. Viruses. (2021) 13:888. doi: 10.3390/v13050888

 7. Newton JR, Rendle DI, Mountford DR, Marr CM. Equine influenza vaccination 
catches an autumn cold! But must get over it as soon as it can. Equine Vet J. (2023) 
55:142–6. doi: 10.1111/evj.13885

 8. Ostfeld RS, Glass GE, Keesing F. Spatial epidemiology: an emerging (or re-
emerging) discipline. Trends Ecol Evol. (2005) 20:328–36. doi: 10.1016/j.tree.2005.03.009

 9. Kulldorff M, Heffernan R, Hartman J, Assunção R, Mostashari F. A space-time 
permutation scan statistic for disease outbreak detection. PLoS Med. (2005) 2:e59. doi: 
10.1371/journal.pmed.0020059

 10. Wong NS, Huang SJ, Chen L, Zhao PZ, Tucker JD, Yang LG, et al. Spatiotemporal 
clusters of primary and secondary syphilis cases in South China: an observational study. 
Lancet. (2016) 388:S90. doi: 10.1016/S0140-6736(16)32017-7

 11. Gao HY, Ma J. Spatial distribution and risk areas of foot and mouth disease in 
mainland China. Prev Vet Med. (2021) 189:105311. doi: 10.1016/j.prevetmed.2021.105311

 12. Deka MA, Vieira AR, Bower WA. Modelling the ecological niche of naturally 
occurring anthrax at global and circumpolar extents using an ensemble modelling 
framework. Transbound Emerg Dis. (2022) 69:e2563–77. doi: 10.1111/tbed.14602

 13. Warren DL, Seifert SN. Ecological niche modeling in Maxent: the importance of 
model complexity and the performance of model selection criteria. Ecol Appl. (2011) 
21:335–42. doi: 10.1890/10-1171.1

 14. Ren H, Zhao L, Zhang A, Song L, Liao Y, Lu W, et al. Early forecasting of the 
potential risk zones of COVID-19  in China's megacities. Sci Total Environ. (2020) 
729:138995. doi: 10.1016/j.scitotenv.2020.138995

 15. Choi JH, Namgung H, Lim SJ, Kim EK, Oh Y, Park YC. Predicting suitable areas 
for African swine fever outbreaks in wild boars in South Korea and their implications 
for managing high-risk pig farms. Animals. (2023) 13:2148. doi: 10.3390/ani13132148

 16. Firestone SM, Cogger N, Ward MP, Toribio JA, Moloney BJ, Dhand NK. The 
influence of meteorology on the spread of influenza: survival analysis of an equine 
influenza (a/H3N8) outbreak. PLoS One. (2012) 7:e35284. doi: 10.1371/journal.
pone.0035284

 17. Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, et al. 
Infectious disease in an era of global change. Nat Rev Microbiol. (2021) 9:193–205. doi: 
10.3390/vetsci9110606

 18. Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of 
environmental niche models. Ecography. (2010) 33:607–11. doi: 10.1111/j.1600-0587. 
2009.06142.x

 19. Poggio L, Simonetti E, Gimona A. Enhancing the WorldClim data set for national 
and regional applications. Sci Total Environ. (2018) 625:1628–43. doi: 10.1016/j.
scitotenv.2017.12.258

 20. Wu TW, Lu YX, Fang YJ, Xin XG, Li L, Li WP, et al. The Beijing climate center 
climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci 
Model Dev. (2019) 12:1573–600. doi: 10.5194/gmd-12-1573-2019

 21. Kong Y, Feng C, Guo L. Peaking global and G20 Countries’ CO2 emissions under 
the shared socio-economic pathways. Int J Environ Res Public Health. (2022) 19:11076. 
doi: 10.3390/ijerph191711076

 22. Liu K, Sun J, Liu X, Li R, Wang Y, Lu L, et al. Spatiotemporal patterns and 
determinants of dengue at county level in China from 2005–2017. Int J Infect Dis. (2018) 
77:96–104. doi: 10.1016/j.ijid.2018.09.003

 23. Guo W, Li Z, Liu T, Feng J. Effects of climate change on the distribution of 
threatened fishing bat Myotis pilosus in China. Animals. (2023) 13:1784. doi: 10.3390/
ani13111784

 24. Teng AY, Che TL, Zhang AR, Zhang YY, Xu Q, Wang T, et al. Mapping the viruses 
belonging to the order Bunyavirales in China. Infect Dis Poverty. (2022) 11:81. doi: 
10.1186/s40249-022-00993-x

 25. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species 
geographic distributions. Ecol Model. (2006) 190:231–59. doi: 10.1016/j.
ecolmodel.2005.03.026

 26. Liu B, Jiao Z, Ma J, Gao X, Xiao J, Hayat MA, et al. Modelling the potential 
distribution of arbovirus vector Aedes aegypti under current and future climate scenarios 
in Taiwan, China. Pest Manag Sci. (2019) 75:3076–83. doi: 10.1002/ps.5424

 27. Akpan GE, Adepoju KA, Oladosu OR, Adelabu SA. Dominant malaria vector 
species in Nigeria: modelling potential distribution of Anopheles gambiae sensu lato and 
its siblings with MaxEnt. PLoS One. (2018) 13:e0204233. doi: 10.1371/journal.
pone.0204233

 28. Aidoo OF, Souza PGC, da Silva RS, Santana PA, Picanço MC, Kyerematen R, et al. 
Climate-induced range shifts of invasive species (Diaphorina citri Kuwayama). Pest 
Manag Sci. (2022) 78:2534–49. doi: 10.1002/ps.6886

 29. Dominguez M, Münstermann S, de Guindos I, Timoney P. Equine disease events 
resulting from international horse movements: systematic review and lessons learned. 
Equine Vet J. (2016) 48:641–53. doi: 10.1111/evj.12523

 30. Katherine EEJ, Ghedin E. Quantifying between-host transmission in influenza 
virus infections. Cold Spring Harb Perspect Med. (2020) 10:a038422. doi: 10.1101/
cshperspect.a038422

 31. Lowen AC, Mubareka S, Steel J, Palese P. Influenza virus transmission is dependent 
on relative humidity and temperature. PLoS Pathog. (2007) 3:1470–6. doi: 10.1371/
journal.ppat.0030151

 32. Diallo AA, Souley MM, Issa Ibrahim A, Alassane A, Issa R, Gagara H, et al. 
Transboundary spread of equine influenza viruses (H3N8) in west and Central Africa: 
molecular characterization of identified viruses during outbreaks in Niger and Senegal, 
in 2019. Transbound Emerg Dis. (2021) 68:1253–62. doi: 10.1111/tbed.13779

 33. Sack A, Cullinane A, Daramragchaa U, Chuluunbaatar M, Gonchigoo B, Gray GC. 
Equine influenza virus—a neglected, Reemergent disease threat. Emerg Infect Dis. (2019) 
25:1185–91. doi: 10.3201/eid2506.161846

 34. Juzeniene A, Ma LW, Kwitniewski M, Polev GA, Lagunova Z, Dahlback A, 
et al. The seasonality of pandemic and non-pandemic influenzas: the roles of solar 
radiation and vitamin D. Int J Infect Dis. (2010) 14:e1099–105. doi: 10.1016/j.
ijid.2010.09.002

 35. Whitlock F, Grewar J, Newton R. An epidemiological overview of the equine 
influenza epidemic in Great Britain during 2019. Equine Vet J. (2023) 55:153–64. doi: 
10.1111/evj.13874

 36. Jun M, Hao C, Xiang G, Jianhua X, Hongbin W. African swine fever emerging in 
China: distribution characteristics and high-risk areas. Prev Vet Med. (2019) 
175:104863:104861. doi: 10.1016/j.prevetmed.2019.104861

 37. Mejdell CM, Bøe KE, Jørgensen GHM. Caring for the horse in a cold climate—
reviewing principles for thermoregulation and horse preferences. Appl Anim Behav Sci. 
(2020) 231:105071. doi: 10.1016/j.applanim.2020.105071

 38. Jørgensen GHM, Aanensen L, Mejdell CM, Bøe KE. Preference for shelter and 
additional heat in horses exposed to Nordic winter conditions. Equine Vet J. (2016) 
48:720–6. doi: 10.1111/evj.12522

 39. OIE. World Organisation for Animal Health. Available at: https://www.woah.org/ 
(Accessed February 16, 2023)

 40. Gonzalez-Obando J, Forero JE, Zuluaga-Cabrera AM, Ruiz-Saenz J. Equine 
influenza virus: an old known enemy in the Americas. Vaccine. (2022) 10:1718. doi: 
10.3390/vaccines10101718

 41. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation 
of MaxEnt for ecologists. Divers Distrib. (2011) 17:43–57. doi: 10.1111/j.1472-4642. 
2010.00725.x

 42. Wang H, Zhang Q, Liu R, Sun Y, Xiao J, Gao L, et al. Impacts of changing climate 
on the distribution of Solenopsis invicta Buren in mainland China: exposed urban 
population distribution and suitable habitat change. Ecol Indic. (2022) 139:108944. doi: 
10.1016/j.ecolind.2022.108944

https://doi.org/10.3389/fvets.2024.1395327
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://doi.org/10.1101/cshperspect.a038331
https://doi.org/10.3389/fmicb.2018.01941
https://doi.org/10.1016/j.cveq.2014.08.003
https://doi.org/10.1016/j.tvjl.2010.06.026
https://doi.org/10.3390/v13050888
https://doi.org/10.1111/evj.13885
https://doi.org/10.1016/j.tree.2005.03.009
https://doi.org/10.1371/journal.pmed.0020059
https://doi.org/10.1016/S0140-6736(16)32017-7
https://doi.org/10.1016/j.prevetmed.2021.105311
https://doi.org/10.1111/tbed.14602
https://doi.org/10.1890/10-1171.1
https://doi.org/10.1016/j.scitotenv.2020.138995
https://doi.org/10.3390/ani13132148
https://doi.org/10.1371/journal.pone.0035284
https://doi.org/10.1371/journal.pone.0035284
https://doi.org/10.3390/vetsci9110606
https://doi.org/10.1111/j.1600-0587.2009.06142.x
https://doi.org/10.1111/j.1600-0587.2009.06142.x
https://doi.org/10.1016/j.scitotenv.2017.12.258
https://doi.org/10.1016/j.scitotenv.2017.12.258
https://doi.org/10.5194/gmd-12-1573-2019
https://doi.org/10.3390/ijerph191711076
https://doi.org/10.1016/j.ijid.2018.09.003
https://doi.org/10.3390/ani13111784
https://doi.org/10.3390/ani13111784
https://doi.org/10.1186/s40249-022-00993-x
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1002/ps.5424
https://doi.org/10.1371/journal.pone.0204233
https://doi.org/10.1371/journal.pone.0204233
https://doi.org/10.1002/ps.6886
https://doi.org/10.1111/evj.12523
https://doi.org/10.1101/cshperspect.a038422
https://doi.org/10.1101/cshperspect.a038422
https://doi.org/10.1371/journal.ppat.0030151
https://doi.org/10.1371/journal.ppat.0030151
https://doi.org/10.1111/tbed.13779
https://doi.org/10.3201/eid2506.161846
https://doi.org/10.1016/j.ijid.2010.09.002
https://doi.org/10.1016/j.ijid.2010.09.002
https://doi.org/10.1111/evj.13874
https://doi.org/10.1016/j.prevetmed.2019.104861
https://doi.org/10.1016/j.applanim.2020.105071
https://doi.org/10.1111/evj.12522
https://www.woah.org/
https://doi.org/10.3390/vaccines10101718
https://doi.org/10.1111/j.1472-4642.2010.00725.x
https://doi.org/10.1111/j.1472-4642.2010.00725.x
https://doi.org/10.1016/j.ecolind.2022.108944

	Spatiotemporal pattern and suitable areas analysis of equine influenza in global scale (2005–2022)
	1 Introduction
	2 Materials and methods
	2.1 Data collection and processing
	2.2 Spatiotemporal cluster analysis
	2.3 Maxent modeling

	3 Results
	3.1 Spatiotemporal cluster analysis
	3.2 Maxent modeling

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

