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There is a gradual transition from water to dryland rearing of geese. In this 
study, we performed 16S rRNA sequencing (16S rRNA-seq) and transcriptome 
sequencing (RNA-seq) to reveal the effects of cage rearing (CR) and floor rearing 
(FR) systems on the microbial composition and transcriptome of the goose 
ileum. Through 16S rRNA-seq, Linear Discriminant Analysis Effect Size (LEfSe) 
analysis identified 2 (hgcI_clade and Faecalibacterium) and 14 (Bacteroides, 
Proteiniphilum, Proteiniclasticum, etc.) differential microbiota in CR and FR, 
respectively. The rearing system influenced 4 pathways including biosynthesis 
of amino acids in ileal microbiota. Moreover, we  identified 1,198 differentially 
expressed genes (DEGs) in the ileum mucosa, with 957 genes up-regulated 
in CR and 241 genes up-regulated in FR. In CR, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis revealed the significant enrichment 
(p <  0.05) of 28 KEGG pathways, most of which were associated with amino acid 
metabolism. In FR, up-regulated DEGs were mainly enriched in KEGG pathways 
associated with cellular processes, including apoptosis, necroptosis, and 
cellular senescence. Spearman correlation analysis of differential microbiota 
and amino acid metabolism-related DEGs in CR showed a significant positive 
correlation. Additionally, differential microbiota of FR, Phascolarctobacterium 
and Sutterella, were positively correlated with FGF10 (p  <  0.05) and PIK3R1 
(p <  0.01), respectively. In conclusion, there might be differences in ileal amino 
acid metabolism levels between CR and FR geese, and the observed increase in 
harmful bacterial species in FR might impact the activity of ileal cells.
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1 Introduction

Rearing systems constitute pivotal non-genetic factors that significantly impact 
productivity and individual health in goose farming (1). Cage rearing (CR) and floor rearing 
(FR) systems, as prevalent dryland rearing systems, can reduce the incidence of intestinal 
disease outbreaks caused by waterborne pathogens (2). However, knowledge on the effects of 
different dryland rearing systems on the intestines of geese is limited.
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Most intestinal microbiota studies have focused on the cecum 
(3, 4) or the more accessible excreta (5, 6). However, the small 
intestine microbiota also plays an important role in host metabolic 
homeostasis (7, 8). The ileum, as a part of the small intestine, 
undertakes the final process of food digestion and absorption (9), 
and its microbial community is important for normal avian 
growth, including Lactobacillus and bacteria with butyrate-
producing activity, like Clostridium, Streptococcus and Enterococcus 
(10). Moreover, compared to other intestinal segments, there is an 
abundance of immune cells in the ileum (11). Thus, the ileal 
microbiota may acts in the maintenance of intestinal health by 
constituting a well-developed immune system. Numerous studies 
have demonstrated that rearing systems exert significant influence 
on ileal development and microbial composition. In chickens, the 
rearing system was shown to alter the relative weight, microbial 
composition, and expression levels of immune factors (IL-1β, 
TNF-α, and IFN-γ) in the ileum (12). Ground litter broilers 
exhibited higher ileal microbiota α diversity (13), meanwhile, 
ground rearing increased the abundance of litter breeding bacteria 
(Facklamia, Globicatella, and Jeotgalicoccus) and potentially 
pathogenic bacteria (Streptococcus and Staphylococcus) in the 
ileum (14). In ducks, diverse floor rearing environments altered the 
dominant bacterial phyla in the ileum of Shaoxing ducks, with 
ducks reared on plastic mesh floor showing significantly higher 
ileal villus height and villus height/crypt depth ratio compared to 
those reared on litter floor (15). Importantly, dryland rearing on 
netting floors has been noted to enhance the intestinal immunity 
and reduce the mortality rate (2). Studies on Nonghua ducks 
demonstrated that floor rearing individuals had significantly 
higher relative weight, relative length and relative weight/relative 
length ratios of the ileum compared to net rearing individuals (16). 
In geese, previous research has indicated that cage rearing geese 
exhibited a higher villus height/crypt depth ratio, suggesting the 
potential benefits of cage rearing in enhancing geese resistance 
against diseases and toxins (17). The impact of rearing systems on 
avian intestinal microbial composition has been extensively 
studied, while there is a paucity of research focused on elucidating 
the effects of alterations in avian intestinal microbial composition 
induced by rearing systems on the intestinal transcriptome.

In this study, we compared the ileal microbial composition and 
ileal mucosal transcriptome of cage rearing (CR) and floor rearing 
(FR) geese to deepen our understanding of how rearing systems affect 
intestines, which provides a theoretical basis for the management of 
intestinal health in geese.

2 Materials and methods

2.1 Experiment animals and sample 
collection

All animal handling procedures were approved by the Institutional 
Animal Care and Use Committee (IACUC) of Sichuan Agricultural 
University (Chengdu campus, Sichuan, China, Permit No. 
DKY20170913).

The same batch of male goslings, from the Sichuan Agricultural 
University Waterfowls Breeding Farm (Ya’an, Sichuan, China), were 
reared under the same rearing environment with free access to feed 

and water until 120 days. Afterwards, they were randomly divided 
into 2 groups: CR and FR. At 270 days old, 8 geese were randomly 
selected for slaughter from each group. The experimental geese were 
euthanised by carbon dioxide inhalation and cervical dislocation 
after approximately 12 h of fasting. The intestinal digesta and 
mid-ileum mucosa were quickly collected and rapidly frozen in 
liquid nitrogen. Digesta was used for 16S rRNA-seq and mucosa was 
used for RNA-seq, and both were stored at −80°C prior 
to sequencing.

2.2 DNA extraction and 16S rRNA 
sequencing

In this study, microbial DNA extraction was conducted using the 
E.Z.N.A. Stool DNA Kit (Omega Bio-Tek, Norcross, GA). DNA 
concentration and purity were characterized by NanoDrop 
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 
United States) and electrophoresis on 1% agarose gels. DNA with 
(OD260/OD280) range from 1.8 to 2.0 and (OD260/OD230) range 
from 2.0 to 2.5 could be used for subsequent experiments. Based on 
the concentration, DNA was diluted to 1ug/μL with sterile water. And, 
the V3−V4 hypervariable region was targeted for amplification, 
utilizing primers 338-F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 
806-R (5′-GGACTACNNGGGTATCTAAT-3′). The PCR reaction was 
performed on a thermocycling PCR system (Bio-Rad T100, Germany) 
using high-fidelity polymerase according to the following procedure: 
98°C for 60 s; 30 cycles of 98°C for 10 s, 50°C for 30 s, and 72°C for 
30 s; 72°C for 5 min. The same volume of IX loading buffer (contained 
SYB green) was mixed with the PCR products and detected by 
electrophoresis on 2% agarose gels. The PCR products were mixed at 
an equidensity ratio. Then, the mixture PCR products were purified 
with Qiagen Gel Extraction Kit (Qiagen, Germany). Following the 
manufacturer’s recommendations, sequencing libraries were 
generated using TruSeq® DNA PCR-Free Sample Preparation Kit 
(Illumina, United States) and index codes were added. Library quality 
was assessed by Qubit@2.0 Fluorometer (Thermo Scientific) and 
Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, 
United  States). Purified amplicons were sequenced on Illumina 
NovaSeq 6000 platform (2 × 250 paired ends) by Novogene Co., Ltd. 
(Beijing, China).

2.3 Microbial bioinformatics analysis of the 
ileum

The assembly of paired-end reads, characterized by overlaps 
exceeding 10 bp, was accomplished using FLASH software (version 
1.2.11) (18). Subsequently, reads of low quality, containing ambiguous 
characters and sequences shorter than 400 bp, were excluded. QIIME2 
software (version 2023.5) (19) was employed for processing and 
assignment of these assembly readings. The denoise-paired method 
in DADA2 was applied to identify amplicon sequence variants 
(ASVs). Annotation of results utilized the SILVA 138 database (20), 
providing classifications at the kingdom, phylum, class, order, family 
and genus. QIIME2 (version 2023.5) facilitated the calculation of α 
and β diversity, and unweighted UniFrac distance metrics were used 
to generate principal coordinate analysis (PCoA). Differences in 
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microbial composition between the 2 groups were assessed using 
Linear Discriminant Analysis Effect Size (LEfSe) (21), employing 
screening criteria of LDA score > 3 and p < 0.05. Additionally, we then 
predicted ileal microbial metabolic pathways using the PICRUSt2 
(22) and used STAMP software (version 2.1.3) (23) to compare 
differences in function. Welch t-test (two-sided) was used for 
intergroup comparison, and the Welch’s inverted confidence interval 
(CI) method was used for CI calculation. p  < 0.05 indicated a 
significant difference.

2.4 RNA isolation and sequencing

Total RNA extraction from the ileum was accomplished using Trizol 
(Invitrogen, Carlsbad, CA, United States), following the manufacturer’s 
instructions. RNA integrity was assessed using the Fragment Analyzer 
5400 (Agilent Technologies, CA, United States). RNA integrity values 
range from 6.8 to 8.9. The library construction utilizing the obtained 
RNA was undertaken by Novogene Co., Ltd. (Beijing, China). All 
Illumina PE libraries were constructed and 2 × 150 bp RNA-seq was 
completed using the Illumina sequencing platform (NovaSeq 6000). The 
datasets presented in this study can be found in the National Center for 
Biotechnology Information (NCBI) under BioProject ID PRJNA1054312.

2.5 Transcriptome alignment and assembly

Standard quality control measures were implemented using Fastp 
software (version 0.23.1) (24) to filter out low-quality reads, ensuring 
the retention of clean reads for subsequent analyses. The obtained 
clean reads were aligned to the goose reference genome (BioProject 
ID PRJNA801885, data not released) using HISAT2 software (version 
2.2.1) (25). The resulting SAM (sequencing alignment/mapping) files 
were subsequently converted to BAM (binary alignment/mapping) 
files and sorted using SAMtools (version 1.15.1) (26). The expression 
levels of each transcript were computed using featureCounts (version 
2.0.3) (27), while gene expression was quantified using the transcripts 
per million (TPM) method.

2.6 Identification and functional analysis of 
differentially expressed genes

DEseq2 (28) was employed to identify differentially expressed 
genes (DEGs) between groups. Genes exhibiting |Log2(FC)| ≥ 1 and 
p  < 0.01 were designated as DEGs. And the online tool KOBAS 
(version 3.0) (29) was utilized for Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) functional analysis, 
accessible at http://kobas.cbi.pku.edu.cn/kobas3/?t=1. The functional 
gene analysis was conducted using G. gallus as a reference.

2.7 Statistical analysis

Statistical analysis was performed using SPSS 27.0 software. 
Spearman’s correlation coefficients were calculated to analyze the 
correlation. Differences were considered statistically significant at 
p < 0.05.

3 Results

3.1 16S rRNA sequencing basic information 
and classification of amplicon sequence 
variants

Following quality control and filtering procedures, a total of 
957,019 effective reads were generated from 16 samples, averaging 
59,814 reads per sample (Supplementary Table S1). A total of 745 
ASVs were identified through QIIME2 analysis. Of these, 321 ASVs 
were found to be common to both rearing systems, while 221 ASVs 
were exclusive to the CR and 203 ASVs were unique to the FR 
(Figure  1). Subsequent taxonomic classification categorized these 
ASVs into 17 phyla, 34 classes, 88 orders, 167 families, 215 genera.

3.2 Ileal microbial composition and 
differential microbiota identification

The complexity of the ileal microbiota was estimated on the basis 
of α-diversity indices (Observed_features, Shannon, Chao1, Faith’s 
PD, Evenness). The analysis revealed that the Faith’s PD α-diversity of 
CR was significantly lower than that of FR (Figure 2A). PCoA analyses 
demonstrated that the first principal coordinate (PCo1) explained 
30.02% of the variations among samples and the second principal 
coordinate (PCo2) explained 18.34% of the variations (Figure 2B). The 
ANOSIM test further confirmed significant differences in ileal 
microbial communities between CR and FR (R  = 0.22, p  = 0.04). 
Comparison analysis of ileal microbiota at the phylum level and genus 
levels revealed broad similarities in dominant microbiota between the 
2 rearing systems. At the phylum level, the dominant phyla in CR were 
Firmicutes (72.11%), Proteobacteria (10.39%) and Fusobacteriota 
(6.27%); in FR the dominant phyla were Firmicutes (54.64%), 
Fusobacteriota (19.76%) and Bacteroidetes (10.62%) (Figure 2C). At 
the genus level, in CR the top 3 genera were Romboutsia (45.03%), 
Clostridium_sensu_stricto_1 (12.26%) and Fusobacterium (6.78%); in 
FR, the top 3 genera were also Romboutsia (23.38%), Fusobacterium 
(21.13%) and Clostridium_sensu_stricto_1 (8.85%) (Figure 2D).

At the genus level, LEfSe analyses identified 2 and 14 differential 
microbiota from CR and FR, respectively (Figures 3A,B). In CR, the 
abundance of hgcI_clade and Faecalibacterium was significantly higher 
than that of FR. Meanwhile, Bacteroides, Proteiniphilum, 
Proteiniclasticum, Syner_01, Phascolarctobacterium, Sutterella, 
Thermovirga, Colidextribacter, Allorhizobium_Neorhizobium_
Pararhizobium_Rhizobium, Paraclostridium, Petrimonas, Succinivibrio, 
Desulfovibrio, and Campylobacter had higher abundance in FR. In 
addition, PICRUSt2 predictive function analyses indicated that 4 
metabolic pathways differed between the 2 groups, including Alzheimer 
disease, biosynthesis of amino acids, nicotinate and nicotinamide 
metabolism and pantothenate and CoA biosynthesis (Figure 3C).

3.3 Overview of transcriptome sequencing 
and identification of the differentially 
expressed genes

A comprehensive set of 292,451,214 raw reads were generated 
across the 7 samples, and subsequent stringent filtering yielded an 
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average of 40,961,820 clean reads for each sample. The quality metrics, 
including Q20, Q30, GC content, and mapping rates, exhibited 
favorable ranges of 97.15–97.81%, 92.82–94.08%, 44.72–52.03%, and 
86.86–93.52%, respectively (Supplementary Table S2). These results 
attested to the robust sequencing quality essential for subsequent 
analyses. We identified a total of 1,198 DEGs (Figure 4A), of which 
241 were up-regulated and 957 were down-regulated (Figure 4B). The 
clustering heatmap of TPM illustrated the expression profiles of DEGs 
in the ileum of CR and FR geese in a visually informative manner 
(Figure 4C).

3.4 Functional enrichment analysis of 
differentially expressed genes

Compared to FR, 957 genes were up-regulated in CR. These genes 
were enriched to 220 GO terms, including 129 biological processes 
(BP), 44 cellular components (CC), and 47 molecular functions (MF) 
(p < 0.05) (Figure 5A). The top 3 GO terms were cytosol, protein 
homodimerization activity, and lysosome. Based on KEGG pathway 
enrichment analysis, 28 pathways were identified significantly 
(p  < 0.05) (Figure  5B). Metabolic pathways, lysosome, and 
glycosaminoglycan degradation were included. Further analysis 
revealed that 15 of the 28 pathways were related to metabolism, 5 to 
genetic information processing, 5 to cellular processes, 2 to 
environmental information processing, and 1 to organismal systems. 
Metabolism was the most up-regulated function, with 46.67% of the 
pathways associated with amino acid metabolism. These pathways 
included glycosaminoglycan degradation, biosynthesis of amino acids, 
glycosphingolipid biosynthesis—ganglio series, glutathione 
metabolism, taurine and hypotaurine metabolism, selenocompound 
metabolism, and glycine, serine and threonine metabolism.

Compared to CR, 241 genes were up-regulated in the FR and 
they included 119 BP, 39 CC, and 41 MF (p < 0.05) (Figure 5C). 

Integral component of membrane, cytosol, and GTPase activator 
activity were the GO terms with the highest significance. Through 
KEGG enrichment analysis, we  identified 19 signaling pathways 
(p < 0.05), with the highest percentage of pathways associated with 
cellular processes (Figure  5D). Pathways associated with cellular 
processes included apoptosis, regulation of actin cytoskeleton, 
necroptosis, cellular senescence, and gap junction were 
up-regulated in FR.

3.5 Correlation analysis of differential 
microbiota and key differentially expressed 
genes

Combining these findings, we generated heat maps based on the 
results of Spearman correlation analysis. Illustrated in Figure  6A, 
we performed Spearman correlation analysis between up-regulated 
DEGs involved in amino acid metabolism and differential microbiota 
in CR. The abundance of hgcI_clade was significant positively 
correlated with the expression of MARS, NAGLU, ACY1, IDH2, 
ST6GALNAC6, HYAL1, SGSH, SCLY, GGT7, and GRHPR, while 
demonstrating a significant negative correlation with the expression 
of GLB1 (p  < 0.05). Simultaneously, we  analyzed the correlation 
between up-regulated DEGs involved in cellular processes and 
differential microbiota in FR, and the results showed that FGF10 was 
significantly and positively correlated with Phascolarctobacterium 
(p < 0.05), and, PIK3R1 was significantly and positively correlated with 
Sutterella (p < 0.01) (Figure 6B).

4 Discussion

The intestinal microbiota of animals represents a complex and 
dynamic entity susceptible to environmental influences (8). Several 

FIGURE 1

Venn diagram of the number of ASVs.
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studies have highlighted the profound impact of rearing systems on 
avian intestinal development (30) and microbial composition (4, 
31, 32), thereby influencing intestinal functions, digestion, and 
nutrient absorption (33). However, the consequences of altered 
microbial composition on intestinal transcriptome have received 
limited attention.

Consistent with previous reports (34), the rearing system was 
found to impact ileal microbial composition. Comparison of the 
microbial composition in CR and FR revealed dominant phyla such 
as Firmicutes, Proteobacteria, Fusobacteriota, and Bacteroidetes, 
consistent with previous goose studies (35). Firmicutes, 
Bacteroidetes, and Proteobacteria have also been identified as the 
major phyla in the intestinal tracts of chickens and turkeys, 
collectively constituting over 90% of all sequences (36). Additionally, 
Romboutsia emerged as the primary genus in both rearing systems, 
a finding somewhat divergent from certain investigations into ileal 
microbial composition in chickens (37, 38). Notably, Romboutsia 
has been identified as the predominant genus in the ileum of cage 
rearing chickens, potentially linked to body weight maintenance 
(39), lipid metabolism (40), and intestinal water metabolism (41). 

Further analysis revealed 2 and 14 differential microbiota in CR and 
FR, respectively.

Differential microbiota identified in CR, hgcI_clade, belongs to 
Actinobacteria (42), which has been repeatedly reported to be present 
in water bodies (43, 44). Some reports considered it as a potential 
probiotic (45). The results of Spearman’s correlation analysis showed, 
hgcI_clade was significant correlated with MARS, NAGLU, ACY1, 
IDH2, ST6GALNAC6, HYAL1, SGSH, SCLY, GGT7, GRHPR, and 
GLB1. This suggested that hgcI_clade may influence amino acid 
metabolism by modulating enzyme levels. MARS, encoding the 
methionyl-tRNA synthetase, may play a role in regulating the cell cycle 
by linking methionine and cyclin-dependent kinase 4 (46). The 
NAGLU encodes an enzyme involved in the catabolism of 
glycosaminoglycans through hydrolysis of the terminal N-acetyl-D-
glucosamine residue in N-acetyl-alpha-D-glucosaminides (47). A 
Study on rats demonstrated that the expression of ACY1 (aminoacylase 
1) was associated with the development of the jejunal crypt-villus axis 
and could be  used as a marker for the metabolism of intestinal 
N-α-acetylated protein metabolism (48). Isocitrate dehydrogenase-2 
(IDH2) is a marker of mitochondrial function (49), and its main 

FIGURE 2

Ileal microbiological composition comparison between CR and FR. (A) Faith’s PD α-diversity. (B) The PCoA based on the unweighted UniFrac distance. 
(C) Phylum-level microbial composition. (D) Genus-level microbial composition.
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function is catalyzing the oxidative decarboxylation of isocitrate to 
producing α-ketoglutarate (50). The ST6GALNAC6 gene encodes ST6 
N-acetylgalactosaminide α-2,6-sialyltransferase 6, an enzyme 
belonging to the family of sialyltransferase that may catalyze the 
addition of sialic acid to N-acetylgalactosamine via an α-2,6 linkage 
(51), and its expression is associated with colon health (52). 
Degradation of intracellular hyaluronan acid is the main function of 
hyaluronidase 1 (HYAL1), which affects cell proliferation, migration 

and differentiation (53) and participates in neuroimmunomodulators 
in the microbiota-gut axis (54). SGSH, SCLY, GGT7, GRHPR, and 
GLB1, encoding N-sulfoglucosamine sulfohydrolase (55), 
selenocysteine lyase (56), gamma-glutamyltransferase 7 (57), glyoxylate 
and hydroxypyruvate reductase (58), and galactosidase beta 1 (59), are 
involved in various processes of amino acid metabolism. Another 
differential microbiota in CR, Faecalibacterium is known to exert vital 
effects in immune system regulation, intestinal barrier protection, and 

FIGURE 3

Differential microbiota identification and function prediction. (A) Differential microbiota in the CR and FR ileum. (B) Cladogram of differential 
microbiota. (C) Differential metabolic pathways predicted.

FIGURE 4

Characterizations of ileal transcriptome variation between CR and FR. (A) The number of DEGs. (B) Volcano map. The red dots represent up-regulated 
genes and blue dots represent down-regulated genes. (C) Hierarchical clustering of DEGs. DEG, differentially expressed gene; CI, ileum of cage rearing 
geese; FI, ileum of floor rearing geese.
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microbiota regulation (60). Recent findings have shown that 
spermidine produced by Faecalibacterium could improve intestinal 
function in geese (61) and chickens (62). Integrating the insights from 
our previous studies (17) and the current study, Faecalibacterium may 
be involved in enhancing ileal development in CR geese.

In our study, the FR system appeared to increase the number of 
harmful genera in the goose ileum, such as Campylobacter, Sutterella, 
Paraclostridium, Succinivibrio, and Desulfovibrio. Campylobacter is a 
common cause of gastroenteritis in humans worldwide (63) and 
poultry is the primary host (64, 65). Our findings suggested that cage 
rearing is essential for reducing Campylobacter colonization in the 
ileum, thus preventing contamination of goose products (66). Sutterella, 
a gram-negative microaerophilic bacterium, has been implicated in 
various human diseases such as autism (67, 68), Down syndrome (69) 
and inflammatory bowel disease (70). And it has been found in the liver 
and breast of chickens, which could be  a potential source of 
contamination for humans (71). Some species of Paraclostridium have 
been linked to fatal infections in humans and animals (72), but the 
mechanism is unknown (73). It was certain that Paraclostridium was 
associated with poultry meat spoilage and was difficult to eradicate 

(74). Succinivibrio, belonging to the family Succinivibrionaceae, 
ferments glucose and other carbohydrates to produce large amounts of 
acetic acid and succinic acid (75), which might have pro-inflammatory 
effects (76). Studies in pigs have implicated Desulfovibrio as a major 
contributor in the utilization of feces for H2S production (77). And, H2S 
has been hypothesized to contribute to intestinal diseases such as 
inflammatory bowel disease (78), particularly ulcerative colitis (79). 
The RNA-seq results seemed to reflect the effect of harmful genera on 
ileal function. Because, the increase of these bacteria up-regulated 
pathways associated with apoptosis, necroptosis, and cellular 
senescence, suggesting adverse effects on ileal cells (80, 81).

5 Conclusion

In conclusion, there might be  differences in ileal amino acid 
metabolism levels between CR and FR geese. Besides, the increase in 
harmful bacterial species in FR might affect the activity of ileal cells. 
This study provides new insights into the selection of appropriate 
dryland rearing systems to maintain intestinal health in geese. And 

FIGURE 5

GO terms and KEGG pathways enriched by DEGs. (A) Top 30 GO terms enriched by DEGs up-regulated in CR. (B) The KEGG pathways significantly 
enriched by DEGs up-regulated in CR. (C) Top 30 GO terms enriched by DEGs up-regulated in FR. (D) The KEGG pathways significantly enriched by 
DEGs up-regulated in FR. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological processes; CC, cellular components; 
MF, molecular functions.
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more comprehensive molecular regulatory networks remain to 
be further investigated.
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