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Varying the ratio of Lys: Met 
through enhancing methionine 
supplementation improved milk 
secretion ability through 
regulating the mRNA expression 
in bovine mammary epithelial 
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Introduction: The ratio of lysine (Lys) to methionine (Met) with 3.0: 1 is confirmed 
as the “ideal” profile for milk protein synthesis, but whether this ratio is suitable 
for milk protein synthesis under HS needs to be further studied.

Methods: To evaluate the molecular mechanism by which HS and Lys to 
Met ratios affect mammary cell functional capacity, an immortalized bovine 
mammary epithelial cell line (MAC-T) is incubated with 5 doses of Met while 
maintaining a constant concentration of Lys. The MAC-T cells was treated for 
6  h as follow: Lys: Met 3.0: 1 (control 37°C and IPAA 42°C) or treatments under 
HS (42°C) with different ratios of Lys: Met at 2.0: 1 (LM20), 2.5: 1 (LM25), 3.5: 1 
(LM35) and 4.0: 1 (LM40). RNA sequencing was used to assess transcriptome-
wide alterations in mRNA abundance.

Results: The significant difference between control and other groups was observed 
base on PCA analysis. A total of 2048 differentially expressed genes (DEGs) were 
identified in the IPAA group relative to the control group. Similarly, 226, 306, 148, 
157 DEGs were detected in the LM20, LM25, LM35 and LM40 groups, respectively, 
relative to the IPAA group. The relative mRNA abundance of HSPA1A was 
upregulated and anti-apoptotic genes (BCL2L1 and BCL2) was down-regulated in 
the IPAA group, compared to the control group (p  < 0.05). Compared with the IPAA 
group, the relative mRNA abundance of anti-apoptotic genes and casein genes 
(CSN1S2 and CSN2) was up-regulated in the LM25 group (p  < 0.05). The DEGs 
between LM25 and IPAA groups were associated with the negative regulation of 
transcription RNA polymerase II promoter in response to stress (GO: 0051085, 
DEGs of BAG3, DNAJB1, HSPA1A) as well as the mTOR signaling pathway (ko04150, 
DEGs of ATP6V1C2, WNT11, WNT3A, and WNT9A). Several DEGs involved in amino 
acids metabolism (AFMID, HYKK, NOS3, RIMKLB) and glycolysis/gluconeogenesis 
(AFMID and MGAT5B) were up-regulated while DEGs involved in lipolysis and beta-
oxidation catabolic processes (ALOX12 and ALOX12B) were down-regulated.

Conclusion: These results suggested that increasing Met supply (Lys: Met at 2.5: 
1) may help mammary gland cells resist HS-induced cell damage, while possibly 
maintaining lactation capacity through regulation of gene expression.
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1 Introduction

In a high temperature and humidity environment, the imbalance 
between heat accumulation and dissipation in dairy cows can induce 
heat stress (HS) (1). Once the ambient temperature rises above the 
threshold and the body is unable to dissipate heat effectively, the cow 
will be under HS due to the disruption of internal homeostasis (2). 
Due to the innate self-protection mechanisms of animals, several 
biological processes are initiated, such as reducing dry matter intake 
and rumination time, increasing respiratory rate and hormone 
secretion, to alleviate the negative effects of HS (3). The lactation 
performance of dairy cows is severely negatively affected by HS, which 
seriously undermines the economic efficiency of dairy farming.

Mammary gland is the most important organ for milk synthesis 
and secretion. In addition to the decline in milk production, the 
protein content of milk also decreases during the hot summer months 
(4, 5), partly due to the direct negative impact on milk protein 
synthesis in the mammary gland (6). Milk synthesis and secretion are 
considered system processes incredibly sensitive to both physiological 
and environmental factors (7–9). Previous study suggested that 
inadequate feed intake, changes in postabsorptive metabolism and 
nutrient partitioning may contribute to discordant changes in 
mammary protein synthesizing capacity in heat-stressed cows (10). In 
addition, the apoptosis rate of mammary epithelial cells in dairy cows 
was increased under HS conditions, and cytoskeletal and cell transport 
functions were disturbed (11–13). In modern dairy farms, managers 
adopt a variety of approaches to alleviate or prevent the occurrence of 
HS in dairy cows, and some feed additives [betaine (14), choline (15), 
taurine (16) and methionine (17)] seem to be effective in alleviating 
negative effects of HS.

Methionine (Met) and lysine (Lys) are the most-limiting amino 
acids in a large range of diets for dairy cows (18). Previous studies 
indicated that an approximately 3.0: 1 ratio of Lys to Met in dietary 
metabolic proteins can increase the yield of milk protein to an optimal 
level (19, 20), which is considered as the “ideal” amino acid profile 
(IPAA) for milk protein synthesis. However, during HS, the uptake of 
amino acids (including Met) of dairy cows is altered, resulting in 
inhibition of the synthesis of milk protein content (21). Increasing the 
supply of Met in bovine mammary epithelial cells (BMECs) reduced 
apoptosis and necrosis, decreased lipid peroxidation, and increased 
the activities of superoxide dismutase, catalase, and glutathione 
peroxidase, resulting in comprehensive cytoprotective effects under 
high temperature conditions (17, 22, 23). Thus, whether the 3.0: 1 ratio 
of Lys: Met is ideal to promote milk protein synthesis under HS 
conditions and the regulatory mechanisms are not well known.

Our hypothesis was that changing the ratio of Lys: Met by 
increasing or decreasing Met supplementation could be a way to help 
mitigate the negative impact of HS on BMECs. To address this 
hypothesis, an immortalized bovine mammary epithelial cell line 
(MAC-T) was cultured with different ambient temperature conditions: 
thermo-neutral (37°C) and HS (42°C), and 5 media contains 175 mM 
Lys and varying Met concentrations (58 mM, 44 mM, 50 mM, 70 mM, 

and 87 mM). The RNA sequencing (RNA-Seq) approach was used to 
identify the molecular mechanisms regulated by changes in 
Met supplementation.

2 Materials and methods

2.1 Cell culture and treatments

An immortalized bovine mammary cell line (MAC-T) was chosen 
as the model. The MAC-T cells were derived from our laboratory, and 
the cell culture protocol followed our previous similar study with 
minor modifications (24). Briefly, the thawed bovine MAC-T cells 
were cultured in 75cm2 flasks using an incubator at 37°C and 5% CO2 
until sufficient cells were obtained for subsequent experiments. The 
basal medium was prepared with minimum essential medium with 
Earle’s balanced salts (GE Healthcare Life Sciences, Logan, UT) and 
fetal bovine serum at a ratio of 9.0: 1, and supplemented with 5 mg/L 
insulin, 1 mg/L hydrocortisone, 5 mg/L transferrin, 5 μM ascorbic 
acid, 5 mM sodium acetate, 100 U/mL penicillin, 100 μg/mL 
streptomycin, 0.25 μg/mL antimycotic, 1 mg/L progesterone, 0.05% 
lactalbumin, and 0.05% α-lactose. When confluency reached 80–90%, 
the cells were digested with trypsin–EDTA solution and re-inoculated 
in 6-well plates. The basal medium was replaced by the lactogenic 
medium when the cell confluency reached 80–90% again, followed by 
the plates were incubated overnight at 37°C. The lactogenic medium 
was changed minimum essential medium with Earle’s balanced salts 
in the basal medium to high-glucose Dulbecco’s modified Eagle’s 
medium (Hyclone, GE Healthcare Life Sciences), and supplemented 
with 1 g/L bovine serum albumin and 2.5 mg/L prolactin. 
Subsequently, the lactogenic medium was changed to the special 
lactogenic medium containing different ratios of amino acids (as 
presented in Table 1), and the cells were further at cultured 37°C or 
42°C for 6 h (27). Accordingly, there were 6 treatments as follow: 37°C 
treatment with Lys: Met 3.0: 1 (control), 42°C treatments with Lys: 
Met at 2.0: 1 (LM20), 2.5: 1 (LM25), 3.0: 1 (IPAA), 3.5: 1 (LM35) and 
4.0: 1 (LM40). After incubation for 6 h, cell samples were collected and 
stored at −80°C until RNA extraction. The reagents and chemicals 
were purchased from Sigma-Aldrich (St. Louis, MO) unless 
otherwise stated.

2.2 RNA extraction and RT-qPCR analysis

Total RNA was extracted from MAC-T cells using TRIzol reagent 
(#15596026, Invitrogen, United States) and RNA quality determined 
using a NanoDrop  1,000 ND-2000 spectrophotometer (Thermo 
Scientific, USA). The cDNA synthesis was performed using the 
PrimeScript RT reagent Kit with gDNA Eraser (Takara Biotechnology, 
Dalian, China) according to the manufacturer’s instructions. The 
RT-PCR was performed according to the manufacturer’s instructions 
using SYBR Premix Ex Taq (Takara Biotechnology, Dalian, China). 
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The cDNA was diluted to 50 ng with RNase-free water and 2 μL of 
diluted cDNA was combined with the 20 μL reaction mixture. The 
20 μL system contained 10 μL of 2 × SYBR Premix Ex Taq (Tli RNsesH 
Plus), 0.4 μL each of 10 μM forward and reverse primers, 0.4 μL of 50x 
ROX Reference Dye II and 4.8 μL of RNase-free water. All RT-PCR 
was performed in a QuantStudio 6 Flex System (Applied Biosystems, 
Foster City, CA, United States) with the following program: 95°C for 
30 s, 40 cycles at 95°C for 5 s, and 60°C for 34 s. The detailed list of 
primer sequence is presented in Table  2. All primers were 
commercially manufactured by Sangon Biotech Co., Ltd. (Shanghai, 
China). Three reference genes (GADPH, UXT, and RPS9) were used 
to normalize the expression of target genes. The comparative cycle 
threshold (2−∆∆Ct) method was used to determine the mRNA 
abundance of target genes (28, 29).

2.3 RNA sequencing

Total RNA was extracted using Trizol reagent (Invitrogen, 
Carlsbad, CA, United  States) according to the manufacturer’s 
protocols. RNA quality was assessed on an Agilent 2,100 
Bioanalyzer (Agilent Technologies, Palo Alto, CA, United States) 
and checked using RNase free agarose gel electrophoresis. After 
total RNA was extracted, eukaryotic mRNA was enriched by Oligo 
(dT) beads, while prokaryotic mRNA was enriched by removing 
rRNA by Ribo-ZeroTM Magnetic Kit (Epicentre, Madison, WI, 
USA). Then the enriched mRNA was fragmented into short 
fragments using fragmentation buffer and reverse-transcribed into 
cDNA with random primers. Second-strand cDNA was synthesized 
with DNA polymerase I, RNase H, and dNTP. Then, the cDNA 
fragments were purified with QiaQuick PCR extraction kit (Qiagen, 
Venlo, The Netherlands), end repaired, A base added, and ligated 
to Illumina sequencing adapters. The ligation products were size 
selected by agarose gel electrophoresis, PCR amplified, and 
sequenced using Illumina Novaseq6000 by Gene Denovo 
Biotechnology Co., Ltd. (Guangzhou, China). OD260/OD280 
values of all samples were ≥ 1.9, and RNA Integrity Number (RIN) 

values were ≥ 8.0. The cDNA library was constructed using 3 μg 
total RNA for each sample. Before the library was constructed, the 
ribosomal RNA was removed by Epicentre Ribo-zero™ rRNA 
removal kit (Epicentre, United States), and the total RNA removed 
by rRNA was cleaned by precipitation with ethanol. The NEB 
Next®Ultra™ Directional RNA Library Prep Kit for Illumina® 
(NEB, USA) was then used for library construction using RNA with 
the rRNA removed. Library sequencing was performed using 
Illumina HiSeq4000 at Guangzhou Gidio Biotechnology Co., Ltd. 
The short-read alignment tool Bowtie2 (30) (version 2.2.8, https://
bowtie-bio.sourceforge.net/bowtie2/index.shtml) was used for 
mapping reads to the ribosomal RNA (rRNA) database. An index 
of the reference genome was built and paired-end clean reads 
mapped to the reference genome using HISAT 2.2.4 (31) with 
“-rna-strandness RF” and other parameters set as default. The 
mapped reads for each sample were assembled with StringTie v1.3.1 
(32, 33) in a reference-based approach. Principal component 
analysis (PCA) was performed with R package gmodels (http://
www.rproject.org/). RNA differential expression analysis between 
two different groups was assessed via DESeq2 (34, 35). The genes/
transcripts with a false discovery rate (FDR) below 0.05 and 
absolute fold change ≥1.5 were considered as differentially 
expressed genes (DEGs). The DEGs were annotated by Gene 
ontology (GO) functional enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment using the R 
programming language (3.5 version, http://www.r-project.org/), 
based on the hypergeometric distribution.

2.4 Statistical analysis

The mRNA abundance data of each gene were log2 transformed 
to obtain a normal distribution before statistical analysis. The 
statistical analysis was performed using the MIXED model in SAS 
(version 9.3; SAS Institute Inc., Cary, NC, United States) with Lys to 
Met ratios as the main fixed effect and individual cell culture well as 
random effect. Treatment means were generated using the LSMEANS 

TABLE 1 Amino acid composition of the lactogenic medium.

Amino acid 
(μg/mL)

Treatmentsa

Controlb IPAAb LM40 LM35 LM25 LM20

Lys 175 175 175 175 175 175

Met 58 58 44 50 70 87

Lys/Met 3.0: 1 3.0: 1 4.0: 1 3.5: 1 2.5: 1 2.0: 1

Thr 97 97 97 97 97 97

Phe 93 93 93 93 93 93

His 74 74 74 74 74 74

Val 142 142 142 142 142 142

Ile 121 121 121 121 121 121

Leu 206 206 206 206 206 206

Arg 84 84 84 84 84 84

Trp 16 16 16 16 16 16

aControl and IPAA treatments containing Lys: Met at 3.0, LM40, LM35, LM25 and LM20 treatments containing Lys: Met at 2.0: 1, 2.5: 1, 3.5: 1 and 4.0: 1, respectively.
bThe ideal amino acid composition is described as previously described (25, 26).
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TABLE 2 The primer sequences of genes.

Gene Sequences (5′-3′) Accession number Product length

HSPA5 Forward GATCAAGGCAACCGCATCAC XM_024998380.2 163

Reverse GCTGCACGGACGGGTCATT

HSP90AB1 Forward GCTCAGACGAGGAGGATGATAGT NM_001079637.1 189

Reverse CCAAGTGATCTTCCCAGTCATT

HSPB8 Forward GGAGGTGTCTGGTAAACACGAAG NM_001014955.1 184

Reverse GCTCTCTCCAAACGGTGAGTAA

HSPA1A Forward ACGACGGAGACAAGCCTAAG NM_203322.3 88

Reverse GTCAGCACCATCGACGAGA

BCL2L1 Forward TGAGCAGGTGTTTTGGACAA XM_005214498.4 199

Reverse CACTGGGGGTTTCCATATCT

BCL2 Forward TATTCTCAGCGTGTAACTTGTGT XM_024984176.2 119

Reverse TCAGTCTACCTCCTCCGTGA

CSN1S1 Forward CCCAACAGAAAGAACCTATG XM_059887320.1 175

Reverse CCAATGGGATTAGGGATG

CSN2 Forward GTGAGGAACAGCAGCAAACA XM_015471671.3 233

Reverse AGGGAAGGGCATTTCTTTGT

TSC1 Forward TACTGGGCCACGTCGTGAG XM_059891865.1 102

Reverse CGTCGGTGTCCATCTTGAGAC

TSC2 Forward GCAGCAGGATCCAGACCTCT XM_059881501.1 112

Reverse GTCTCTGTGAGCTCCAGGTGG

RHEB Forward GCTAAGATGCCGCAGTCCA NM_001031764.2 75

Reverse CGTCAACGAGGATTTCCCC

mTOR Forward CTTCTTCCGTTCCATCTC XM_002694043.7 116

Reverse CTTCCACTAAGGCTTCATT

S6K1 Forward TGGAACAATAGAATACAT NM_205816.1 167

Reverse GTTTACATTTGAGGATTT

EIF4EBP1 Forward GGAGTGTCGGAACTCACCTG NM_001077893.2 162

Reverse AACTGTGACTCTTCACCGCC

eIF4E Forward AGGGAGGGTATACAAGGAAAGGTT NM_174310.3 101

Reverse TTTTAGTGGTGGAGCCGCTC

eEF2K Forward TCTCTGTCCTCAATCAAG NM_175813.2 110

Reverse GGTCTCATCTGTATCTGT

eEF2 Forward GAGATCCAGTGTCCAGAA NM_001075121.1 147

Reverse GAAGCCAAAGGACTCATT

RPS9 Forward CCTCGACCAAGAGCTGAAG NM_001101152.2 64

Reverse CCTCCAGACCTCACGTTTGTTC

GAPDH Forward TGGAAAGGCCATCACCATCT XM_001034034.2 53

Reverse CCCACTTGATGTTGGCAG

UXT Forward TGTGGCCCTTGGATATGGTT XM_001037471.2 101

Reverse GGTTGTCGCTGAGCTCTGTG

HSPA5, Heat shock protein 5; Hsp90AB1, Heat shock protein 90 kDa alpha class B member 1; HSPB8, Heat shock protein beta-8; HspA1A, Heat shock 70 kDa protein 1A; BCL2L1, B-cell 
lymphoma-2 apoptosis regulator like 1; BCL2, B-cell lymphoma-2 apoptosis regulator; CSN1S1, ɑS1-casein; CSN2, ɑS2-casein; β-casein; TSC1; TSC2, Tuberous sclerosis complex 2; RHEB, 
GTP-binding protein Rheb; mTOR, Mammalian Target of Rapamycin; EIF4EBP1, Eukaryotic translation initiation factor 4E binding protein 1; eIF4E, Eukaryotic translation initiation factor 
4E; eEF2K, Eukaryotic elongation factor 2 kinase; eEF2, Elongation factor 2; RPS9, 40S ribosomal protein S9; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; UXT, Ubiquitously 
expressed transcript protein.
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option and separated when they were significant with the PDIFF 
option. Statistical significance was considered at p < 0.05.

3 Results

3.1 Heat shock response

The effects of HS on the mRNA expression of heat shock response 
genes are shown in Figure 1. HS up-regulated the gene expression of 
HSPA5, HSP90AB1, HspA1A, and HSPB8 (p < 0.05). However, under 
HS, the gene expression of HSPA5, HSP90AB1, HSPA1A and HSPB8 
was down-regulated in the LM25 and LM20 group (p < 0.05), the gene 
expression of HSP90AB1 and HSPA1A was down-regulated in the 
LM35 group (p < 0.05), the gene expression of HSPA1A and HSP8 was 
down-regulated in the LM35 group (p <  0.05), compared to the 
IPAA group.

3.2 Abundant of apoptosis-related genes

Compared with the control group, the gene expression of BCL2 
was down-regulated in the IPAA group (p < 0.05, Figure 2). Under HS, 
compared with the IPAA group, the gene expression of BCL2 was 
up-regulated in the LM20, LM25 and LM40 groups (p < 0.05), the 
gene expression of BCL2L1 was up-regulated in the LM25 group 
(p < 0.05).

3.3 mRNA expression of casein genes

The expression of CSN1S2 and CSN2 in the LM25 group was 
up-regulated compared with the control group (p < 0.05, Figure 3).

3.4 RNA sequencing results

A total of 3.8–5.1 million raw sequencing reads were generated in 
each group. The high-quality (HQ) clean reads obtained accounted for 
more than 99% of all the raw reads (Figure 4A) and were mapped to 

the bovine reference genome (Bos Taurus, assembly ARS-UCD1.2). 
The mean mapping ratio was greater than 96% in each group. A total 
of 13,773, 13,390, 13,552, 13,623, 13,528 and 13,456 known genes and 
591, 591, 585, 592, 593 and 592 new genes were identified in the 
control, IPAA, LM20, LM25, LM35 and LM40 groups, respectively 
(Figure  4B). The cumulative variance contribution rate (65.2%, 
PC1 + PC2) of the principal component analysis (PCA) for the gene 
expression profiles was lower than the standard of 85% (Figure 4C). 
The principal component analysis illustrated that a significant 
difference existed between the control and other groups under HS. At 
the same time, except for the IPAA group, the three repeats in each HS 
groups tended to cluster closely, indicating that adding different 
concentrations of Met resulted in a high similarity in the overall 
expression levels of core genes during HS (Figure 4C). The sample 
clustering analyses further confirmed the PCA results (Figure 4D).

To investigate the regulatory mechanisms for the effects of Met on 
lactation performance, gene function analysis was performed. Genes 
with a p-value <0.05 and an absolute value of log2 fold-change (|log2 
FC|) > 2 were considered as DEGs. A total of 2048 DEGs were screened 
resulting in 742 upregulated and 1,306 downregulated in the IPAA 
group relative to the control group. A total of 306 DEGs with 251 
upregulated and 55 downregulated were in the LM25 group relative 
to the IPAA group, and 130, 62, 55 upregulated and 96, 86, 102 
downregulated were detected in the LM20, LM35 and LM40 group, 
respectively, relative to the IPAA group (Figure 4E).

Increasing Met supplementation significantly affected the 
expression of 28 DEGs under HS (Figure 4F; Supplementary Table S1). 
These included CCN1 (cellular communication network factor 1, 
CCN1) and ZNF182 (zinc finger protein 182, ZNF182), which play a 
role in cell proliferation, differentiation, and apoptosis. In addition, 
FGF2 1 (fibroblast growth factor 21, FGF21) and AFMID 
(arylformamidase, AFMID) function as metabolic regulators. In 
contrast, decreasing Met supplementation significantly affected the 
expression of 4 DEGs under HS (Figure 4F; Supplementary Table S1) 
including SELPLG (selectin P ligand, SELPLG), NR1H4 (nuclear 
receptor subfamily 1, group H, member 4, NR1H4).

The top 10 DEGs encoding heat shock proteins (HSPA5, HSPA1A, 
HSPA6, HSPH1, HSPA8, DNAJA4, HYOU1 and HSP90AA1) were 
highly up-regulated during HS in the IPAA group relative to the 
control group (Figure  5A). BAG3 (BAG cochaperone 3, BAG3), 

FIGURE 1

The relative mRNA expression of heat shock response genes in MAC-T cells with the different treatments. Control (37°C) and IPAA (42°C) treatments 
containing Lys: Met at 3.0, LM40, LM35, LM25 and LM20 containing Lys: Met at 2.0: 1, 2.5: 1, 3.5: 1 and 4.0: 1, respectively. Asterisks indicated significant 
differences between different groups: * p  < 0.05.
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associated with apoptosis, was also upregulated. For more in-depth 
biological function information, KEGG pathway annotation analysis 
was performed using the DEGs list with the assistance of KEGG 
database. The enriched pathways with p value <0.05 are reported in 
Figure 5B. Eight pathways in the Control-vs-IPAA condition had a 
close relationship to the autoimmune disorders including cushing 
syndrome, breast cancer, endocrine resistance, AGE-RAGE signaling 
pathway in diabetic complications, endometrial cancer, basal cell 
carcinoma, prostate cancer, and MicroRNAs in cancer. Some of the 
pathways are associated with cellular responses by HS including 
sphingolipid signaling pathway, protein processing in the endoplasmic 
reticulum, Wnt signaling pathway, IL-17 signaling pathway, GnRH 
signaling pathway, ubiquitin mediated and proteolysis, and 
peroxisome. Two pathways are related to metabolism including 
Selenocompound metabolism and nicotinate and nicotinamide 

metabolism. Nearly all these top-affected pathways are related to 
immune and heat shock response. The responsiveness of bovine 
MAC-T cells to HS in this study, clearly suggested its suitability as a 
model to understand the modulation of cow mammary gland 
expression signatures in response to HS.

The KEGG pathway annotation analysis revealed that DEGs were 
mainly involved in amino acid metabolism, immune system, 
infectious diseases, and signal transduction (Figure 6A). In addition, 
most DEGs (DNAJB1, EEF1A2, EGR1, EGR2, FGF21, HSPA1A, 
MAPK12, and WNT3A) among the four groups were all significantly 
enriched in immunology-related pathways involved in the heat stock 
response (Figure 6B; Supplementary Table S2). In addition, the DEGs 
of the LM25 group were also significantly enriched in glyoxylate and 
dicarboxylate metabolism and mTOR signaling pathway (Figure 6B). 
The DEGs of the LM35 group were significantly enriched in nicotinate 

FIGURE 2

The relative mRNA expression of apoptosis-related genes in MAC-T cells with the different treatments. Control (37°C) and IPAA (42°C) treatments 
containing Lys: Met at 3.0: 1, LM40, LM35, LM25 and LM20 containing Lys: Met at 2.0: 1, 2.5: 1, 3.5: 1 and 4.0: 1, respectively. Asterisks indicated 
significant differences between different groups: * p  <  0.05.

FIGURE 3

The relative mRNA expression of casein genes in MAC-T cells with the different treatments. Control (37°C) and IPAA (42°C) treatments containing Lys: 
Met at 3.0: 1, LM40, LM35, LM25 and LM20 containing Lys: Met at 2.0: 1, 2.5: 1, 3.5: 1 and 4.0: 1, respectively. Asterisks indicated significant differences 
between different groups: * p  <  0.05.
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and nicotinamide metabolism, glycine, serine and threonine 
metabolism (Figure 6B). The DEGs of the LM40 group were markedly 
enriched in the MAPK signaling pathway and nicotinate and 
nicotinamide metabolism (Figure 6B).

The effects of Met supplementation on mRNA abundance of milk 
fat, lactose, and mTOR signaling pathway genes is reported in Table 3. 
Compared with the IPAA group, the mRNA abundance of LPL, 
ACACA, SCD, FADS1, GPAM, PGM2, LPIN1, SPTLC1, SPTLC2, 
INSIG1, INSIG2 and PPARG was up-regulated in the LM25 group, as 
well as the lactose synthesis genes of UGP2, B4GALT1 and GALE. In 
addition, an upregulation in the expression of EIF4E, EEF2K, and 
RHEB, and a downregulation in expression of EIF4EBP1 and eEF2 
were also detected in the LM25 group. It was observed that the Met 
concentration at 70 mM in the LM25 group resulted in a higher 

expression of genes coding for milk fat, lactose and mTOR signaling-
responsive genes.

As presented in Figure 7, the RT-qPCR results were consistent 
with the RNA-Seq data. The relative mRNA expression of eIF4E in the 
LM25 group was significantly higher than that in the IPAA, LM35 and 
LM40 groups (p < 0.05). Compared with the control group, the relative 
expression of TSC2 in all other groups was significantly down-
regulated (p < 0.05).

4 Discussion

The heat shock protein (HSPs) family members constitute a group 
of chaperone proteins that exhibit rapid up-regulation in response to HS, 

FIGURE 4

Regulation of gene transcription expression in MAC-T cells with the different treatments. Control (37°C) and IPAA (42°C) treatments containing Lys: Met 
at 3.0: 1, LM40, LM35, LM25 and LM20 containing Lys: Met at 2.0: 1, 2.5: 1, 3.5: 1 and 4.0: 1, respectively. Read number obtained by RNA sequencing (A); 
genes number identified by RNA sequencing (B); PCA analysis (C); sample cluster analysis (D); number of differentially expressed genes (E); Venn 
diagram (F).
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thereby ensuring cellular homeostasis through the regulation of protein 
folding and maturation within cells (36). In accordance with previous 
findings (37–39), the expression of genes encoding Hsps (HSPA5, 
HSPA1A, HSPA6, HSPH1, HSPA8, DNAJA4, HYOU1 and HSP90AA1) 
was significantly up-regulated in MAC-T cells upon exposure to HS in 

this study. It has been demonstrated that the 70 kDa heat shock protein 
(HSP70) is a reliable biomarker for monitoring changes in body 
temperature in mammals. These proteins contribute significantly to the 
heat tolerance of cells by up-regulating protein expression to help restore 
homeostasis in heat-exposed cells (40–43). The supplementation of Met 

FIGURE 5

Analysis of differential genes function in MAC-T cells with the the different treatments. Control (37°C) and IPAA (42°C) treatments containing Lys: Met 
at 3.0: 1, LM40, LM35, LM25 and LM20 containing Lys: Met at 2.0: 1, 2.5: 1, 3.5: 1 and 4.0: 1, respectively. Top 20 differential genes (A); KEGG analysis 
(B).
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(70 mg/L) decreased the protein level of HSP70 compared with the 
control group (60 mg/L Met) (44). Improving the supply of Met has also 
been reported to prevent heat-induced oxidative stress and significantly 
reduce mortality of BMECs in vitro (23). In this study, the relative 
mRNA abundance of the genes encoding HSP70 (HSPA5, HSPA1A, 
HSPA6 and HSPA8) was down-regulated with the increase of Met 
addition under HS, indicating that enhancing Met supply has a potential 
role in increasing the tolerance of MAC-T cells to heat.

Apoptosis is the ultimate outcome of mammalian cells undergoing 
sustained HS. In this process, cell death occurs due to the programmed 
control of genes and the stepwise activation of the apoptotic pathway. 
B-cell lymphoma 2 (BCL-2)-associated athanogene 3 (BAG3) protein is 
a co-chaperone of HSP70, acts by binding to the ATPase domain to help 
the chaperone release ADP and nucleotide cycle (45), and responds to 
HS with elevated expression. It also has the binding site for BCL-2, an 
intrinsic (mitochondria-dependent) pathway leading to apoptosis, as 
well as activation of macrophage phagocytosis through co-infection 
with HSPs (46). The level of the anti-apoptotic BCL-2 family protein 
Bcl-xL decreased with the knockdown of BAG3 (47). In this study, 
compared to the control group, the gene expression of BAG3 was higher 
in the IPAA group, while the mRNA level of the anti-apoptotic gene 
(BCL2) was lower in the IPAA group. Moreover, the mRNA level of the 
anti-apoptotic genes (BCL2 and BCL2L1) was higher in the LM25 group 
than that in the IPAA group. This result is consistent with previous 
reports (17), which may be related to the fact that Met effectively triggers 
the anti-apoptotic response in cells during HS (48). Thus, enhancing 
Met supply up-regulated the expression of anti-apoptotic genes in 
MAC-T cells, which may help alleviate heat-induced apoptosis.

There could be  a direct link between the decline in milk 
production and the down-regulation of gene expression associated 
with milk protein synthesis caused by hyperthermia (49). The ratio of 
Lys to Met has been demonstrated to alter the expression of casein 
genes in BMECs (20, 50, 51). In the current study, the mRNA level of 
casein genes (CSN1S1 and CSN2) was the highest in the LM25 group. 
There was a dose-dependent relationship between the synthesis of 
milk fat and the supply of Met, and the secretion of triglycerides and 
lipid droplets was greatest in BMECs at a dose of 0.6 mM (52). 
Similarly, in this study, the transcriptional abundance of genes related 
to de novo synthesis of fatty acids (ACACA, SCD and FADS1), 
triacylglycerol synthesis (GPAM, PGM2 and LPIN1), sphingolipid 
synthesis (SPTLC1 and SPTLC2), and transcription regulation 
(INSIG1, INSIG2 and PPARG) were up-regulated in the LM25 group 
compared to the IPAA group. Following mammary cell uptake, 
glucose is converted to uridine diphosphate (UDP-) glucose and 
UDP-galactose in the cytoplasm under the action of UDP glucose 
pyrophosphorylase (UGP2) and galactose epimerase (GALE). Finally, 
one molecule of UDP-galactose and one molecule of glucose are 
combined by β-1,4-galactosyltransferase 1 (B4GALT1) in the Golgi 
apparatus to produce lactose (53). The transcript abundance of UGP2, 
B4GALT1 and GALE was upregulated in the LM25 group compared 
to the IPAA group. The differences in the expression levels of these 
genes (related to casein, milk fat and lactose synthesis) indicated that 
the ratio of Lys to Met at 2.5: 1 may be more conducive to the synthesis 
of milk components in mammary cells under HS conditions.

There is growing evidence that the mammalian target of 
rapamycin (mTOR) signaling pathway is the central node of the 

FIGURE 6

KEGG analysis of differential genes in MAC-T cells with the different treatments. Control (37°C) and IPAA (42°C) treatments containing Lys: Met at 3.0: 1, 
LM40, LM35, LM25 and LM20 containing Lys: Met at 2.0: 1, 2.5: 1, 3.5: 1 and 4.0: 1, respectively. KEGG Pathway annotation (A); Top10 of KEGG 
Enrichment (B).
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amino acid regulatory pathway that controls the synthesis of milk 
protein, milk fat and lactose (54–57). Previous studies have 
demonstrated that increased availability of Met and arginine (54), 
tryptophan (58) and Lys (59) could affect milk protein synthesis by 
changing the mTOR signaling pathway. Additionally, our earlier study 
has also indicated that modifications in the intracellular metabolism 
of glutamate, arginine and proline, alanine, aspartate, and tryptophan 
can provide sufficient substrates and energy for milk protein synthesis 
during HS (24). Thus, the upregulation of genes involved in amino 
acid metabolism (AFMID, HYKK, NOS3, and RIMKLB) in the LM25 
group confirmed the biological correlation between Met supply and 
the mTOR signaling pathway compared to the IPAA group during 
HS. The mTOR signaling pathway also regulates the metabolism of 
lipids and carbohydrates by up-regulating the expression of related 
genes to control enzyme synthesis (60). Compared with the control 
group, the transcriptional abundance of AFMID and MGAT5B 

(involved in glyoxylate and dicarboxylate metabolism as well as 
mannose type O-glycan biosynthesis) was up-regulated in the LM25 
group, indicating that the increased supply of Met may also regulate 
carbohydrate and lipid metabolism in MAC-T cells through the 
mTOR signaling pathway.

Taken together, the data from this study indicated that an 
increased supply of Met (Lys: Met at 2.5: 1) had the ability to attenuate 
cellular damage (e.g., apoptosis) during HS. In addition, increasing the 
supply of Met may help increase the synthesis of casein, milk fat, and 
lactose in mammary cells, in part by altering the expression of genes 
involved in intracellular metabolism of amino acids, lipids, and 
carbohydrates, as well as the mTOR signaling pathway. The limitation 
of this study is that only the MAC-T cell model was used to investigate 
the increase in Met supply to mitigate the negative effects of HS on 
milk secretion ability, rather than in vivo. Thus, more studies should 
be conducted on dairy cows to validate the results of this study.

TABLE 3 The mRNA abundance (log2FC) of milk fat, lactose, and mTOR singal pathway genes in MAC-T cells with the different treatments.

Genes Treatmentsa

Control IPAA LM40 LM35 LM25 LM20

Milk fat synthesis

LPL 0.08 0.13 0.08 0.07 0.11 0.06

PGM2 7.5 9.46 7.74 9.32 14.3 11.12

LPIN1 13.76 9.74 8.15 9.26 12.06 7.01

SPTLC1 12.99 5.77 4.88 5.63 8.55 5.2

SPTLC2 84.8 105.43 90.59 99.73 124.85 103.11

GPAM 1.05 1.5 1.69 1.64 2.71 2.02

ACACA 18.94 16.82 15.32 15.44 19.07 14.86

FADS1 2.87 1.83 1.43 1.57 1.85 1.37

SCD 188.39 194.17 190.56 187.26 252.07 186.42

VLDLR 18.56 13.04 11.36 9.98 14.61 12.72

ACSL1 2.83 2.61 2.88 2.47 3.94 2.95

PPARG 0.21 0.12 0.11 0.1 0.14 0.1

INSIG1 39.26 49.14 48.12 51.63 67.74 53.84

INSIG2 5.84 7.02 5.92 6.71 7.3 6.48

Lactose synthesis

GALE 47.7 34.81 43.52 40.25 41.14 34.87

HK2 25.15 36.68 35.21 32.37 46.92 33.43

UGP2 24.11 23.29 18.92 22.54 27.13 22.77

HK1 118.84 107.39 96.25 98.39 99.04 95.36

B4GALT1 63.55 72.54 66.96 62.87 73.74 69.21

Milk protein synthesis

mTOR 16.69 17.28 17.77 16.59 20.43 17.18

EIF4E 43.62 41.85 39.69 42.28 48.57 44.75

EEF2K 24.36 25.57 24.23 21.76 30.53 21.72

EIF4EBP1 83.64 80.81 86 84.09 69.81 92.61

RHEB 28.56 31.15 30.99 34.3 35.25 34.36

EEF2 1183.62 1116.51 1033.31 1007.04 971.53 1003.23

TSC2 24.33 11.02 9.48 8.98 9.05 7.27

aControl and IPAA treatments containing Lys: Met at 3.0, LM40, LM35, LM25 and LM20 treatments containing Lys: Met at 2.0: 1, 2.5: 1, 3.5: 1 and 4.0: 1, respectively.
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5 Conclusion

Heat stress causes changes at the level of gene transcription in 
MAC-T cells. These changes are partially reversed by the addition of 
Met supply (ratio of Lys to Met of 2.5:1). The potential mechanism is 
related to the mRNA expression regulation of HSPs, anti-apoptosis 
and milk component synthesis genes explored by whole transcription 
sequencing technology. The findings of this study raise the possibility 
supplementation with Met might have a positive effect on mammary 
cells during HS.
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FIGURE 7

The relative mRNA expression of mTOR signaling pathway related genes in MAC-T cells with the different treatments. Control (37°C) and IPAA (42°C) 
treatments containing Lys: Met at 3.0: 1, LM40, LM35, LM25 and LM20 containing Lys: Met at 2.0: 1, 2.5: 1, 3.5: 1 and 4.0: 1, respectively. Asterisks 
indicated significant differences between different groups: * p  <  0.05.
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