Skip to main content

ORIGINAL RESEARCH article

Front. Vet. Sci.
Sec. Veterinary Experimental and Diagnostic Pathology
Volume 11 - 2024 | doi: 10.3389/fvets.2024.1392350

Identification of two novel linear epitopes on the E165R protein of African swine fever virus recognized by monoclonal antibodies

Provisionally accepted
  • 1 Nanyang Normal University, Nanyang, China
  • 2 South China Agricultural University, Guangzhou, Guangdong Province, China

The final, formatted version of the article will be published soon.

    African swine fever (ASF) is a highly fatal infectious disease in pigs, caused by the African swine fever virus (ASFV). It is characterized by short disease duration and high morbidity and mortality. In August 2018, ASF was first reported in China and it subsequently spread rapidly throughout the country, causing serious economic losses for the Chinese pig industry. Early detection plays a critical role in preventing and controlling ASF because there is currently no effective vaccine or targeted therapeutic medication available. Additionally, identifying conserved protective antigenic epitopes of ASFV is essential for the development of diagnostic reagents. The E165R protein, which is highly expressed in the early stages of ASFV infection, can serve as an important indicator for early detection. In this study, we successfully obtained high purity soluble prokaryotic expression of the E165R protein. We then utilized the purified recombinant E165R protein for immunization in mice to prepare monoclonal antibodies (mAbs) using the hybridoma fusion technique. After three subclonal screens, we successfully obtained three mAbs against ASFV E165R protein in cells named 1B7, 1B8, and 10B8. Through immunofluorescence assay (IFA) and Western blot, we confirmed that the prepared mAbs specifically recognize the baculovirus-expressed E165R protein. By using overlapping truncated E165R protein and overlapping peptide scanning analysis, we tentatively identified two novel linear B cell epitopes ( 13 EAEAYYPPSV 22 and 55 VACEHMGKKC 64 ) that are highly conserved in genotype I and genotype II of ASFV. Thus, as a detection antibody, it has the capability to detect ASFV across a wide range of genotypes, providing valuable information for the development of related immunodiagnostic reagents.

    Keywords: African Swine Fever, African Swine Fever Virus, E165R protein, Monoclonal antibody, Conserved epitope

    Received: 27 Feb 2024; Accepted: 24 Jul 2024.

    Copyright: © 2024 He, Li, Luo, Liu, Sun and Yao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence:
    Jingchen Sun, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
    Lunguang Yao, Nanyang Normal University, Nanyang, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.