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Up to half of the senior dogs suffer from canine cognitive dysfunction syndrome 
(CCDS), the diagnosis method relies on subjective questionnaires such as 
canine cognitive dysfunction rating (CCDR) scores. Therefore, the necessity of 
objective diagnosis is emerging. Here, we developed blood-based biomarkers 
for CCDS early detection. Blood samples from dogs with CCDR scores above 
25 were analyzed, and the biomarkers retinol-binding protein 4 (RBP4), C-X-
C-motif chemokine ligand 10 (CXCL10), and NADPH oxidase 4 (NOX4) were 
validated against neurodegenerative models. Lower biomarker levels were 
correlated with higher CCDR scores, indicating cognitive decline. Machine-
learning analysis revealed the highest predictive accuracy when analyzing the 
combination of RBP4 and NOX4 using the support vector machine algorithm and 
confirmed potential diagnostic biomarkers. These results suggest that blood-
based biomarkers can notably improve CCDS early detection and treatment, 
with implications for neurodegenerative disease management in both animals 
and humans.
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1 Introduction

Global birth rates and increased human lifespans have sparked a trend in companion 
animal (CA) ownership, leading to concerns regarding long-term healthcare and medical costs 
for aging animals  (1, 2). With noticeable increases in elderly dog populations, canine cognitive 
dysfunction syndrome (CCDS) has emerged as a common neurodegenerative condition 
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associated with age (3, 4). In aged dogs, this syndrome shares 
symptoms reminiscent of Alzheimer’s disease (AD), the most 
prevalent cause of dementia in humans (4–7). CCDS is characterized 
by pronounced behavioral changes, such as evident spatial 
disorientation, nuanced changes in social interactions, compromised 
adherence to established housetraining protocols, and clear shifts in 
circadian rhythms and overall activity levels (8, 9). These behavioral 
alterations, exacerbated by a decline in memory functionality and 
learning ability (10–12), markedly distress CA owners and present 
considerable challenges for veterinarians tasked with treating these 
animals. Senior dogs are particularly vulnerable to CCDS; however, 
an objective diagnosis and treatment are still lacking. The onset of 
CCDS often goes unnoticed by CA owners as they frequently overlook 
early behavioral changes in their dogs (4). Typically, canines aged 
>7 years begin to display progressive behavioral and cognitive 
alterations associated with CCDS (8, 13) with the likelihood of 
developing CCDS increasing considerably with age (10, 12, 14, 15). By 
the time most senior dogs are diagnosed with CCDS, the condition is 
usually considerably advanced (4, 13, 16).

In clinical settings, the canine cognitive dysfunction rating 
(CCDR) is commonly used to identify cognitive deterioration in aging 
dogs (17); however, existing rating scales for CCDS have practical 
limitations. The assessment criteria of these scales tend to measure the 
rate of cognitive decline or frequency of unusual behaviors, potentially 
lacking the precision required to detect early cognitive changes 
indicative of CCDS. Identifying these deficiencies at an early stage 
greatly improves the chances of successful treatment (15). Online or 
telephone evaluations are susceptible to subjective interpretations by 
CA owners, possibly leading to over- or underestimation of disease 
severity (10, 12, 14). Current diagnostic methods for CCDS involve 
physical and neurological examinations, blood tests (such as serum 
analysis and complete blood cell count) to identify other conditions 
with similar symptoms, and the completion of CCDS screening 
questionnaires by owners (18). Unfortunately, comprehensive clinical 
tools to evaluate cognitive function in elderly dogs are lacking. While 
advanced techniques, such as MRI, are ideal for identifying 
neurological issues and evaluating cognitive deficits, the costs and 
need for sedation often make veterinary neurologists rely on 
neurological assessments instead (18). Given the anatomical 
complexities of the brain, it is difficult to assess progressive 
pathological shifts directly. However, there is a considerable need for 
diagnostic procedures based on objective findings from readily 
available animal biological specimens in clinical settings. Hence, 
biomarker analysis of the blood and cerebrospinal fluid is expected to 
emerge as the primary diagnostic method for CCDS (3, 12, 19). 
However, most CA owners prefer to collect peripheral blood samples 
over cerebrospinal fluid samples. Although the history of research on 
CCDS diagnosis using blood analysis is relatively short, recent efforts 
to identify valid biomarkers have been notable (3, 4, 20–23). 
Intriguingly, unlike humans, senior dogs with CCDS exhibited 
negligible Aβ1-42 levels and minimal amyloid accumulation in brain 
tissue (24, 25). Therefore, there is a growing demand for promising 
alternative biomarkers to detect CCDS. However, proteomic analysis 
of canine blood using commercially available antibodies presents a 
notable challenge. Given that most research tools are designed for 
laboratory animals, there is a considerable limitation to advancing the 
development of canine biomarkers. Therefore, our selection of 
biomarkers encompassed those previously validated by our research 

group (26, 27), along with common biomarkers identified within the 
proteome array present in the peripheral blood of APP/PS1 mice, a 
standard model for AD, and the MPTP-induced Parkinson’s disease 
(PD) model. Using blood analysis, we identified three early biomarkers 
of CCDS. The biomarkers under study, including retinol-binding 
protein 4 (RBP4), C-X-C-motif chemokine ligand 10 (CXCL10), and 
a marker previously identified by our team (NADPH oxidase 4, 
NOX4), were rigorously validated (26, 27). While numerous studies 
have suggested the potential of these biomarkers as indicators of 
nervous system function (28–35), there has been no endeavor to 
analyze and interpret the results derived from both factors collectively. 
Comparative proteomic analysis of Alzheimer’s and Parkinson’s 
disease models in mice and subsequent enzyme-linked 
immunosorbent assay (ELISA) evaluations underpinned their 
potential as reliable early indicators of CCDS. Additionally, a machine-
learning framework applied to the dataset not only confirmed the 
robustness of these biomarkers but also their predictive power in 
clinical applications.

This paper details the methodology and findings of this novel 
approach with the intention of substantiating blood-based biomarkers 
as indispensable tools for early CCDS detection. We anticipate that the 
insights gained from this research will not only enhance CCDS 
management in dogs, but also offer a translatable framework for 
addressing human neurodegenerative diseases, thereby enriching the 
discourse on comparative medicine.

2 Materials and methods

2.1 Animal study

2.1.1 APP/PS1 mouse Alzheimer’s disease
Serum samples from APP/PS1 transgenic mice were obtained from 

Laboratory Animal Resources Bank (LAREB, Daegu, Korea) at the 
National Institute of Food and Drug Safety Evaluation. All experiments 
were conducted with the approval of the Daegu Gyeongbuk Medical 
Innovation Foundation (approval number: DGMIF 21111602–00).

2.1.2 MPTP-induced mouse Parkinson’s disease
C57BL/6 J mice (n = 20; 7–8 week-old males) were used for the 

experiments. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 
n = 10) was intraperitoneally administered (S47312; Selleck Chemical, 
Houston, TX, United States) dissolved in 0.9% saline at a dose of 30 mg/
kg/day for 30 consecutive days. All experiments were conducted with the 
approval of the Institutional Animal Care and Use Committee (IACUC) 
of Soonchunhyang University (approval number: SCH23-0043).

2.1.3 Canine sample acquisition
Blood samples representing 85 canines were collected by 

partnering with veterinary clinics and requesting that iamdt Co., Ltd. 
collect the samples with the consent of the CA owners. Blood samples, 
collected from healthy dogs and dogs with documented cognitive 
impairment using CCDR scores, were placed in EDTA anticoagulant 
tubes and separated into plasma and blood cells after centrifugation. 
Within 1 h of collection, the plasma was transferred to cryogenic tubes 
and frozen at −80°C until delivery from the veterinary clinics to 
Soonchunhyang University. All the blood samples used here were 
reviewed and approved by the IACUC of Soonchunhyang University 
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(approval number: SCH23-0069). Additionally, blood samples from 
beagle dogs (two aged 5 months and one aged 96 months) that had not 
undergone any surgical or chemical treatment were obtained from 
LAREB. The experiments were conducted with the approval of the 
Daegu Gyeongbuk Medical Innovation Foundation (approval 
numbers: DGMIF-21071203-00 for the beagle dogs aged 5 months 
and KMEDI-22071501-00 for the one aged 96 months).

2.1.4 Canine experimental groups
The animals were classified into four groups: normal; mild 

cognitive impairment (MCI), severe cognitive impairment (SCI), and 
CCDS. The grouping of categories MCI, SCI, and CCDS is based on 
the CCDR (12). Initially comprising 13 behavioral items, this scale was 
refined to 10 questions by excluding three questions that were 
commonly found to be challenging to answer (Table 1). The cumulative 
scores range from 0 to 60, with scores between 25 to 35 indicating MCI 
and scores >36 indicating SCI. Additionally, a CCDS group was 
incorporated into our classification, encompassing both MCI and SCI.

2.2 Proteome profiler arrays

The cytokines, chemokines, and growth factors present in the 
mouse serum from both the control and disease groups (AD or PD) 
were semi-quantitatively evaluated using the Proteome Profiler Mouse 
XL Cytokine Array Kit (ARY028; R&D Systems, Minneapolis, MN, 
United  States). Serum samples were processed by incubation on 
nitrocellulose membranes, pre-spotted with capture antibodies in 
strict adherence to the manufacturer’s instructions. Next, each 
membrane was treated with a biotinylated antibody cocktail, and 
subsequently with streptavidin bound to horseradish peroxidase 

(HRP). HRP luminescence was developed and positive signals were 
captured using a Chemi Reagent Mix on a light-sensitive X-ray film 
with exposure times ranging from 1 to 10 min. Quantification of the 
fold changes involved analysis of the expression levels of each spot on 
the membrane using HLImage++ Software (v25.0.0r, Western Vision 
Software, Salt Lake City, UT, United States), and the intensities were 
compared against the mean values of the control samples.

2.3 Antibodies

The following antibodies were used: monoclonal mouse anti-
RBP4 antibody (orb751184, Biorbyt, Berkeley, CA, United States); 
polyclonal rabbit anti-CXCL10 antibody (abx104024, Abbexa, 
Cambridge, United  Kingdom); polyclonal rabbit anti-NOX4 
antibody (NB110-58849, Novusbio, Centennial, CO, United States); 
polyclonal rabbit anti-transferrin antibody (NBP1-97472, 
Novusbio, Centennial, CO, United States); peroxidase labeled horse 
anti-mouse IgG (H + L) (7076P2, Cell Signaling Technology, 
Danvers, MA, United States); peroxidase labeled goat anti-rabbit 
IgG (H + L) (PI-1000, Vector Laboratories, Burlingame, CA, 
United States).

2.4 Immunoblot

Canine plasma was homogenized in RIPA buffer (R0278, Sigma-
Aldrich, St. Louis, MO, United  States) and augmented with a 
phosphatase inhibitor (P3200, GenDEPOT, Barker, TX, United States). 
To ensure precise analysis of plasma components, a Minute™ 
albumin depletion reagent (WA-013, Invent Biotechnologies, 

TABLE 1 The canine cognitive dysfunction rating (CCDR) scale.

CCDR scale Score

1 2 3 4 5

1. How often does your dog pace up and down, walk in circles and/or wander with 

no direction or purpose
Never Once a month Once a week Once a day >Once a day

2. How often does your dog stare blankly at the walls or floor? Never Once a month Once a week Once a day >Once a day

3. How often does your dog get stuck behind objects and is unable to get around? Never Once a month Once a week Once a day >Once a day

4. How often does your dog fail to recognize familiar people or pets? Never Once a month Once a week Once a day >Once a day

5. How often does your dog walk into walls or doors? Never Once a month Once a week Once a day >Once a day

6. How often does your dog walk away while, or avoid, being patted? Never Once a month Once a week Once a day >Once a day

7. Compared with 6 months ago, does your dog now pace up and down, walk in 

circles and/or wander with no direction or purpose?
Much less Slightly less The same Slightly more Much more

8. Compared with 6 months ago, does your dog now stare blankly at the walls or 

floor?
Much less Slightly less The same Slightly more Much more

9. Compared with 6 months ago, does your dog urinate or defecate in an area 

it has previously kept clean?

 (if your dog has never house-soiled, tick ‘the same’)

Much less Slightly less The same Slightly more Much more

10. Compared with 6 months ago, does your dog fail to recognize familiar 

people or pets?

  (Multiply by 3)

Much less Slightly less The same Slightly more Much more

Total 12–24 = Normal 25–35 = MCI1 >36 = SCI2

1 Mild cognitive impairment, 2 Severe cognitive impairment.
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Plymouth, MN, United States) was employed, effectively removing 
albumin. The efficacy of this depletion was confirmed using 
SDS-PAGE and Coomassie Brilliant Blue staining (CR2006, 
Biosesang, Yongin, Korea). Protein concentrations in albumin-
reduced plasma were quantified using a BCA assay kit (21,071, 
iNtRON Biotechnology, Seongnam, Korea). Following SDS-PAGE on 
a 10–15% tris-glycine gel, the proteins were transferred onto a PVDF 
membrane (10,600,023, GE Healthcare, Freiburg, Germany). 
Membranes were blocked using 5% bovine serum albumin (BSA, 
SM-BOV, GeneAll Biotechnology, Seoul, Korea) in 1X TBS-T (10X 
TBS with Tween 20, TR2007, Biosesang, Yongin, Korea). Primary 
antibodies—specifically monoclonal mouse anti-RBP4, polyclonal 
rabbit anti-CXCL10, and polyclonal rabbit anti-NOX4—were 
incubated overnight at 4°C in 1% BSA in TBS-T. HRP-conjugated 
secondary antibodies, horse anti-mouse, and goat anti-rabbit were 
then applied for 2 h at ambient temperature. Detection of target 
proteins was facilitated by ECL western blotting detection reagents, 
with signals visualized using a chemiluminescence bioimaging 
instrument (CELLGENTEK, Daejeon-si, Korea). Analytical 
assessment was performed using the ImageJ software v1.52t 
(Bethesda, MD, United States).

2.5 Enzyme-linked immunosorbent assay 
(ELISA) for the diagnosis

Blood samples were analyzed for RBP4 (MBS739348), CXCL10 
(MBS747479), NOX4 (MBS737351), P-Tau (MBS7230007), and NfL 
(MBS7231454) using ELISA kits from MyBioSource (San Diego, CA, 
United States). Each well of a plate, pre-coated with specific detection 
antibodies from the respective kits, received canine plasma 
containing RBP4-, CXCL10-, NOX4-, P-Tau-, and NfL-HRP-
conjugated antibodies. The reactions were performed at 37°C for 1 h. 
Following incubation, the plasma and antibodies were discarded, 
and each well was thoroughly washed with washing buffer. 
Subsequently, a substrate solution was dispensed into each well, and 
the plate incubated again at 37°C for 15 min under light-protective 
conditions. Upon the addition of the stop solution, a colorimetric 
change from blue to yellow was observed, and the optical densities 
of the resulting solutions were measured at 450 nm using a 
microplate reader.

2.6 Machine learning for CCDS speculation

Here, we  analyzed the CCDS classification using proposed 
biomarkers for machine learning, for which we  utilized Python 
(v3.6.13)‘s scikit-learn (v0.24.2). In the machine-learning 
classification task, three comparisons were made: normal vs. MCI, 
normal vs. SCI, and normal vs. CCDS with the numbers of samples 
used in these classifications being 50, 46, and 85, respectively. The 
machine-learning model was trained and evaluated through 10 
repeated experiments. Of the total data, 70% were used as training 
data and the remaining 30% as test data. The machine-learning 
model utilized various algorithms, including support vector machines 
(36), extra trees (37), random forests (38), gradient boosting (39), 
bagging (40), AdaBoost (41), and XGBoost (42), all of which 

provided by Scikit-Learn. Performance was measured using metrics 
such as Area Under the Curve (AUC), Accuracy, and the F1 Score.

2.7 Statistics

All statistical analyses were performed using Prism 10 (GraphPad 
Software Inc., San Diego, CA, United States). Data are presented as 
mean ± standard error of the mean (SEM). Statistical analyses were 
performed using a Student’s two-tailed t-test to compare the two 
groups. For multiple group comparisons, an analysis of variance 
(ANOVA) with post hoc comparisons was performed using Tukey’s 
multiple comparison test. p values (* p < 0.05; ** p < 0.01; *** p < 0.001; 
and **** p < 0.0001) were considered statistically significant.

3 Results

3.1 Novel biomarker screening in AD and 
PD models

Our study involved screening for new biomarkers within the 
proteomic profiles of blood samples from AD and PD mouse models 
as well as from normal animals (Figure 1A). Our results indicated that 
among the 111 inflammatory cytokine markers analyzed, RBP4 and 
CXCL10 showed significant differential expression in both AD and 
PD models. These findings suggest that RBP4 and CXCL10 in the 
blood could serve as reliable indicators of neurodegenerative diseases 
(Figure 1B).

3.2 RBP4, CXCL10, and NOX4 are 
decreased in the plasma of canine with 
cognitive decline

3.2.1 General details of the canines used
The general details of the animals used in this study are shown in 

Table 2.

3.2.2 Validation of the usefulness of selected 
biomarkers expressed in canine plasma

To validate the observed results for RBP4 and CXCL10 in the 
disease animal model, we conducted western blot analysis (Figure 2A). 
Moreover, we investigated the association between the expression of 
NOX4—a key molecule contributing to the progression of AD and PD 
in the brain as identified in previous studies—and the expression of 
RBP4 and CXCL10 in canines. We identified a significantly lower 
expression of RBP4, CXCL10, and NOX4 in the plasma of CCDS 
canines than in normal canines, consistent with the results obtained 
from APP/PS1 and MPTP-induced mice (Figure 2B).

3.2.3 Biomarker expression measurements in 
canine blood collected from outpatients using 
ELISA analysis

We confirmed the utility of the biomarkers by performing ELISA 
with additional samples (Figure 3). Similarly, decreased expression of 
RBP4, CXCL10, and NOX4 was observed in the plasma of CCDS dogs 
compared to normal dogs. Although the p value for RBP4 was not 

https://doi.org/10.3389/fvets.2024.1390296
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Kim et al. 10.3389/fvets.2024.1390296

Frontiers in Veterinary Science 05 frontiersin.org

FIGURE 1

Protein profiling of the serum from APP/PS1 mice and MPTP-induced mice for disease model animals was obtained by performing proteome array 
analysis. (A) Images of array spots on the membrane are proteome array for immune blot, including 111 cytokine, chemokine, and growth factor types. 
The red rectangle indicates RBP4 and CXCL10 showing expression levels in the APP/PS1 and MPTP-induced mice. Magnifying indicates an enlarged 
image of RBP4 and CXCL10 in the square below each image. Array spots were analyzed according to the manufacturer’s instructions. (B) Quantifying 
RBP4 and CXCL10 levels in control and disease model animals from serum. Data are mean  ±  standard error of the mean (SEM). *, p  <  0.05; **, p  <  0.01; 
***, p  <  0.001 vs. control by a Student’s two-tailed t-test. AD: Alzheimer’s disease; PD: Parkinson’s disease.

TABLE 2 Baseline characteristics of all canines in the study.

Groups Normal MCI1 SCI2 CCDS3

N = (%) 37 (44) 25 (29) 23 (27) 48 (56)

Age, y (Mean ± SD) 7 ± 3.5 12 ± 3.0 15 ± 2.7 14 ± 3.3

Males, % 16 (43) 14 (56) 11 (48) 25 (52)

CCDR score (Mean ± SD) 24 ± 0.0 30 ± 4.0 49 ± 7.5 40 ± 11.4

1 Mild cognitive impairment, 2 Severe cognitive impairment, 3 Canine cognitive dysfunction syndrome.
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significant, a declining trend was noted in the concentrations between 
normal and CCDS dogs. Notably, in comparison to the normal group, 
significant decreases in CXCL10 and NOX4 were observed in the MCI 
and SCI groups, respectively. Likewise, when compared to the 
combined MCI and SCI group (CCDS group), the measurement 
values of normal animals and statistical significance were also 
established. This observation is consistent with the results found in 
mouse models of the disease.

3.3 Machine learning for the CCDS 
classification

This study applied machine-learning algorithms to evaluate the 
combination of biomarkers that would most effectively determine a 
dog’s condition (normal, MCI, SCI, and CCDS). Changing the 
number of samples used in machine learning can notably affect the 
results. Therefore, the analysis was performed on an equal number of 
randomly selected samples in order to equalize the number of normal 
samples in the analysis group. Ten randomly repeated experiments 
were performed using seven classification algorithms, with 70% of the 
total data used as training data in each experiment.

3.3.1 Identification of correlations between 
variables

Prior to the development of the machine-learning model, a 
correlation heatmap was generated to assess the relationships between 
the variables using all 85 samples (Figure 4). The variables analyzed 
included RBP4, CXCL10, NOX4, CCDR, and age. Higher and lower 

correlations are depicted in red and blue, respectively. Notably, the 
correlation coefficient between CCDR and age was 0.66, indicating an 
increasing trend in the CCDR scores with advancing age. A significant 
correlation (r = 0.7) was observed between CXCL10 and NOX4. 
Furthermore, the results for RBP4, CXCL10, and NOX4 appeared to 
be  inversely proportional to the CCDR scores, with their levels 
diminishing as CCDR scores increased.

3.3.2 Normal and MCI state prediction
To assess the discriminative ability between normal and MCI, 

we randomly selected an equal number of normal samples for analysis, 
matching the 25 MCI samples. Among the biomarker combinations 
listed in Table 3, the RBP4 and NOX4 combination yielded the highest 
prediction results, with an F1 score of 0.84. However, the other three 
combinations resulted in an F1 score of 0.77 (RBP4 + CXCL10 & 
CXCL10 + NOX4) or 0.73 (RBP4 + CXCL10 + NOX4). In the 
comparative analysis between normal and MCI samples, the gene 
combination of RBP4 and NOX4 emerged as the most effective among 
all combinations (Table  3). Utilization of the receiver operating 
characteristic (ROC) curve for predicting favorable outcomes in the 
normal and MCI states was based on animal plasma analysis 
(Figure 5A).

3.3.3 Normal and SCI state prediction
When comparing the results of the three combinations formed by 

pairing two genes, that of RBP4 and NOX4 exhibited the highest 
performance (F1 score of 0.73), while that of RBP4 and CXCL10 
yielded the lowest result (F1 score of 0.59) (Table 4). Additionally, 
when all three genes were used, the Extra Tree showed the best 

FIGURE 2

RBP4, CXCL10, and NOX4 protein levels in dogs of normal and CCDS groups. (A) Representative immunoblot analysis of RBP4, CXCL10, and NOX4 
expression in CCDS groups compared to normal groups. (B) Quantifying RBP4, CXCL10, and NOX4 levels in normal and CCDS groups from plasma. 
Data are mean  ±  SEM. *, p  <  0.05 vs. normal by a Student’s two-tailed t-test.
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FIGURE 3

RBP4, CXCL10, and NOX4 levels were measured in the plasma from animal groups diagnosed with mild cognitive impairment (MCI) and severe 
cognitive impairment (SCI) based on CCDR scores. CCDS represents a group inclusive of both MCI and SCI, separated by a dotted line. (A) The bar 
graphs represent the quantification of RBP4, CXCL10, and NOX4 ELISA levels in each group. Data are mean  ±  SEM. (B) Representative violin plot graphs 
of the distribution of biomarker levels in each group. The dot in the graph revealed the distribution of individual samples, and the lines in the violin 
shape represent quartiles and medians. *, p  <  0.05; **, p  <  0.01; ***, p  <  0.001; ****, p  <  0.0001 vs. each group by a one-way ANOVA. ###, p  <  0.001; ####, 
p  <  0.0001 vs. normal by a Student’s two-tailed t-test.

FIGURE 4

The correlation heatmap manifested the correlation between five variables: RBP4, CXCL10, NOX4, CCDR, and age. The color of each cell indicates a 
high correlation in red and a low correlation in blue, with the darker color indicating the strength of the correlation.

https://doi.org/10.3389/fvets.2024.1390296
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Kim et al. 10.3389/fvets.2024.1390296

Frontiers in Veterinary Science 08 frontiersin.org

analysis result among the seven algorithms (F1 score of 0.75) (Table 4). 
Despite the small sample size, the use of a combination of the three 
genes proved to be the most effective set for distinguishing between 
healthy and SCI patients. Utilization of the ROC curve for predicting 
favorable outcomes in the normal and SCI states was based on animal 
plasma analysis (Figure 5B).

3.3.4 Normal and CCDS state prediction
For the discrimination between normal and CCDS, the 

combination of RBP4 and NOX4 biomarkers showed the highest 
performance with an F1 score of 0.81. In contrast, the combination of 
CXCL10 and NOX4 exhibited the lowest performance, with an F1 
score of 0.74 (Table 5). When utilizing all three genes, resulted in an 
F1 score of 0.79 (Table 5). The comparison analysis between normal 
and CCDS samples demonstrated that the combination of RBP4 and 
NOX4 is the most effective set for distinguishing between the two 
states. The utilization of ROC curves for predicting favorable results 
in normal and CCDS conditions was based on plasma analysis 
(Figure 5C).

4 Discussion

Despite notable progress in veterinary technology and the 
increased lifespan of CAs owing to heightened awareness among 
owners (43), advances in diagnostic technologies for unpredictable 
cognitive disorders still need to be made. The increasing number of 
geriatric animals has led to an increase in medical expenses which 
poses a considerable financial and psychological burden when 
diagnosing and managing cognitive disorders, such as CCDS, is 
delayed or missed (44). The difficulty of definitively determining 
cognitive decline in older animals through CCDR evaluation 
complicates the diagnosis of CCDS (45). CA owners may overlook 
subtle deteriorations in the condition of their animals, especially when 
overt symptoms of cognitive dysfunction are absent (4). This oversight 
can delay the diagnosis and treatment of CCDS. While the CCDR 
system is functional, relying solely on it and the subjective assessments 
of owners and veterinarians may not provide a comprehensive 
evaluation of the cognitive function of the animal in CCDS cases (6, 
45, 46). Collectively, if objective indicators are introduced to 
differentiate between healthy animals and those exhibiting cognitive 
dysfunction based on CCDR scores, veterinarians can collaborate with 
CA owners to formulate precise treatment strategies with greater 
diagnostic certainty. A comprehensive list detailing the health statuses 
of the animals involved in the experiments is provided in 
Supplementary Table S1.

As we  mentioned in “2.1.4. Canine Experimental Group” in 
“Materials & Methods,” the CCDR score used in our study differs 

TABLE 3 Machine learning results summary for the normal and MCI.

Feature Algorithm AUC ACC Sensitivity Specificity Precision F1

RBP4, CXCL10 Random Forest 0.77 0.76 0.77 0.77 0.78 0.77

RBP4, NOX4 SVM1 0.84 0.83 0.89 0.79 0.82 0.84

CXCL10, NOX4 Extra Tree 0.78 0.78 0.83 0.74 0.74 0.77

RBP4, CXCL10, 

NOX4
SVM1 0.64 0.66 0.91 0.38 0.61 0.73

1 Support vector machine.

FIGURE 5

ROC curve graph between each group obtained through machine 
learning. (A) ROC curve for the combination of RBP4 and NOX4 
between normal and MCI using the SVM algorithm. AUC is shown as 
0.83. (B) ROC curve for the combination of RBP4, CXCL10, and 
NOX4 between normal and SCI using the Extra Tree algorithm. AUC 
is shown as 0.78. (C) ROC curve for the combination of RBP4 and 
NOX4 between normal and CCDS using the SVM algorithm. AUC is 
shown as 0.75.
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somewhat from the score intervals for Normal, MCI, and SCI used in 
CCDR score (12).

When we initiated this study, veterinarians from the hospitals that 
provided the CCDR questionnaires used by Salvin et al. (12) indicated 
that specific behavioral items were challenging for dog owners to 
respond to, specifically items 7 (“How often does your dog have 
difficulty finding food dropped on the floor?”), 11 (“Compared with 
6 months ago, does your dog have difficulty finding food dropped on 
the floor”), and 13 (“Compared with 6 months ago, is the amount of 
time your dog spends active?”) (12). The veterinarians expressed 
concerns that the owners’ recollections might not be  sufficiently 
accurate to provide reliable responses for these items, potentially 
leading to erroneous scores that could adversely affect the machine-
learning analysis. Considering that the CCDR score depends on the 
owners’ responses, we  deemed it prudent to exclude cases where 
response accuracy might be compromised to ensure a more reliable 
machine-learning analysis. Consequently, we decided to exclude the 
scores for these three items from the total CCDR score. As a result, the 
scoring ranges for Normal, MCI, and SCI appear different from those 
proposed by Salvin et al. (12), since we omitted the scores for the three 
specified items from the total CCDR score. It is important to note that 
this adjustment does not imply any deficiencies in the study by Salvin 
et al. (12). Instead, it reflects considerations made by veterinarians in 
the clinics, tailored to the design and specific requirements of 
our research.

This study explored novel biomarkers using methodologies 
similar to those used to identify effective biomarkers of classical AD 
and PD in experimental animals (Figure  1). Our selection of the 
potential biomarkers RBP4 and CXCL10 deliberately excluded well-
documented biomarkers and those encumbered by intellectual 
property rights (Supplementary Figures S1, S2). We also incorporated 
NOX4, anticipated as a notable indicator in various neurological 
disorders (26, 27, 33, 47). We hypothesized that this approach would 
enhance the ability to effectively distinguish cognitively impaired 
animals from their healthy counterparts. The ability to differentiate 
between normal and cognitively impaired animals via blood analysis 
is expected to provide a substantial opportunity for making early 

diagnosis of cognitive disorders and delaying the pathological 
progression through various therapeutic interventions. However, 
these endeavors have been markedly constrained by the blood–brain 
barrier and practical limitations in clinical settings (48, 49). Contrary 
to our initial hypothesis, the three identified biomarkers demonstrated 
lower expression levels in the blood of both the experimental animals 
and those with CCDS than in their healthy counterparts. However, 
our finding of lower expression levels of these biomarkers in CCDS-
afflicted animals was initially unexpected, given their previously 
documented elevated levels in AD and PD (26, 27). Nonetheless, 
further analysis confirmed this pattern, suggesting that expression 
levels may vary selectively based on tissue characteristics. Specifically, 
in PD models, a marked increase in NOX4 expression is not observed 
in brain regions other than the hippocampus, highlighting the 
potential for a differential expression depending on the specific 
pathology and tissues involved (26). RBP4 belongs to the lipocalin 
family and serves as the primary transporter for hydrophobic retinol, 
which is also referred to as vitamin A (29). RBP4 is a plasma protein 
that specifically binds to retinol and acts as its transporter in the 
circulation (50). This protein is primarily synthesized in the liver 
before entering circulation (29). Its influence on the body, shaped by 
protein expression patterns and interactions with receptors, is 
complex, leading to various hypotheses (29). Apart from the liver, it is 
present in the retinal pigment epithelium, testes, adipose tissue, 
muscle tissue, brain, and choroid plexus (29, 51–53). While the precise 
function of RBP4 in the central nervous system remains unclear (51, 
52), studies have shown that RBP4-deficient mice display decreased 
mobility and anxiety-like behavior, along with neuronal loss and 
gliosis in the cerebral cortex and hippocampus (29). Furthermore, 
evidence suggests a reduction in neuroblast proliferation in the 
subventricular zone (31). Specifically, the RBP binding site is localized 
in the endothelium surrounding the choroid plexus, enabling 
substantial transportation of retinol through the blood–brain barrier 
(51). The CXC chemokine ligand (CXCL10) is believed to have a 
significant impact on neuroinflammatory conditions (54), potentially 
affecting neuronal cells and astrocytes (33). As per Bajova et  al., 
persistent CXCL10 stimulation in the culture model triggers ERK1/2, 

TABLE 4 Machine learning results summary for the normal and SCI.

Feature Algorithm AUC ACC Sensitivity Specificity Precision F1

RBP4, CXCL10 Bagging 0.59 0.61 0.55 0.64 0.53 0.59

RBP4, NOX4 SVM1 0.62 0.64 0.92 0.33 0.63 0.73

CXCL10, NOX4 Bagging 0.70 0.69 0.72 0.67 0.72 0.70

RBP4, CXCL10, 

NOX4
Extra Tree 0.78 0.77 0.73 0.83 0.82 0.75

1 Support vector machine.

TABLE 5 Machine learning results summary for the normal and CCDS.

Feature Algorithm AUC ACC Sensitivity Specificity Precision F1

RBP4, CXCL10 Extra Tree 0.71 0.71 0.75 0.67 0.78 0.75

RBP4, NOX4 SVM1 0.75 0.77 0.89 0.61 0.75 0.81

CXCL10, NOX4 XgBoost 0.69 0.69 0.77 0.60 0.74 0.74

RBP4, CXCL10, 

NOX4
Extra Tree 0.72 0.72 0.77 0.67 0.78 0.79

1 Support Vector Machine.
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CREB, and NF-kB pathways, leading to enhanced levels of anti-
apoptotic BCL-2 proteins and antioxidant enzymes like manganese 
superoxide dismutase (SOD2), which offer protection against 
superoxide radicals (33). The findings of this study indicate a potential 
close correlation between the presence of CXCL10 and its 
neuroprotective effects. While the efficacy and associated mechanisms 
of the three newly suggested biomarkers for early detection of CCDS 
require further exploration, there is an expectation that they could 
be beneficially applied in neurodegenerative conditions in canines.

Securing blood samples from outpatients required obtaining 
consent from their guardians, which notably protracted the sample 
collection timeline. Moreover, concerns regarding the integrity of the 
stored blood samples imposed restrictions on the duration of the 
collection period for analysis. Despite these challenges, the samples 
utilized here yielded high accuracy and prediction using machine-
learning algorithms, indicating that various combinations of 
biomarkers could distinctly differentiate between normal and 
cognitively impaired dogs. This outcome underscores the potential of 
these biomarkers in advancing the diagnostic capabilities of CCDS. A 
study sought to differentiate between healthy individuals and patients 
by training machine-learning algorithms using brain imaging data 
from human patients with AD. However, this approach primarily 
aimed to ascertain the presence of AD in patients based on existing 
imaging results (55). In essence, it was not an endeavor to proactively 
identify individuals deviating from the normative range at an early 
stage but rather a retrospective confirmation of AD in already 
diagnosed individuals. Taking this into account, it is highly 
encouraging that the predictive capability for CCDS is effectively 
enhanced through the identification and combination of novel blood 
biomarkers. In a comparison of normal versus MCI and normal versus 
CCDS, the pairing of the biomarkers RBP4 and NOX4 yielded optimal 
outcomes with the application of support vector machine (SVM) 
methods.

Conversely, to distinguish between normal and SCI states, the 
most effective results were obtained using the Extra Tree algorithm, 
which incorporated the full spectrum of biomarkers. The complete 
results of the SVM analysis for various biomarker combinations are 
shown in Supplementary Tables S2–S4. This outcome suggests that the 
potency of the predictive algorithm can be  further refined and 
improved by acquiring additional samples in future studies, thereby 
advancing the early detection and management of CCDS. In other 
words, although our machine-learning analysis was conducted with a 
limited number of samples, the accuracy and predictive capability 
achieved are promising. It is anticipated that with additional sample 
data, the errors in these metrics will diminish progressively, enhancing 
their reliability as objective indicators in clinical practice. These results 
are expected to serve as valuable standards for guiding treatment 
decisions. Historically, there has been considerable skepticism 
regarding the feasibility of detecting early biomarkers of cognitive 
impairment through blood, a sentiment prevalent in both human and 
veterinary medicine. In canine studies, although certain biomarkers 
have been identified in the blood, their lack of discriminatory power 
has rendered them impractical for clinical application (3, 4, 18, 20, 21, 
56, 57). We are dedicated to identifying viable biomarkers of dementia-
related cognitive impairment and to building a substantial 
understanding of the pathological mechanisms of these biomarkers. 
Therefore, we  did not rely solely on comparing the ELISA 
measurements of suspected cognitive impairment biomarkers. 

Instead, we employed advanced machine-learning analysis tools to 
assess the existence of CCDS for each unique combination of 
identified biomarkers, thereby enhancing the precision and 
applicability of our findings in clinical settings. In other words, if 
we were simply trying to differentiate between MCI and SCI based on 
the level of a single biomarker, there would be  no need to apply 
machine learning techniques to train on the combination of results 
from multiple biomarkers. It is important to remember that a high 
CCDR score does not necessarily imply a proportional decrease in 
biomarker expression levels in the blood. Thus, we utilize machine 
learning with multiple biomarkers as variables because it is challenging 
to distinguish between Normal, MCI, and SCI using a single biomarker.

Our discoveries show great promise as a means of evaluating the 
cognitive health of elderly animals in clinical environments, 
potentially improving the well-being of companion animals and their 
caregivers. Regular monitoring of these biomarkers could act as a 
valuable indicator for identifying cognitive impairment early on, 
thereby enabling early diagnosis and intervention. It’s worth noting 
that in our study, elderly animals were categorized into MCI and SCI 
groups based on CCDR scores provided by caregivers, rather than by 
veterinarians’ long-term observations. The assignment of scores in 
the CCDR could be  influenced by unrelated conditions, such as 
cataracts leading to blindness. This indicates a bidirectional 
association between sensory impairment and behavioral changes, 
potentially indicative of CCDS (58). While our proposed new 
biomarker combination might not exhibit a distinct statistical 
variance between MCI and SCI, it’s important to recognize the 
subjective nature of the CCDR score itself. Our goal is to introduce 
innovative biomarkers that can detect early signs of cognitive decline 
and offer insights into disease progression. Therefore, gathering 
additional clinical samples is essential. Moreover, by observing how 
these biomarkers respond to treatment in animals diagnosed with 
CCDS, we aim to assess the effectiveness of our biomarkers. This 
endeavor mirrors our aspiration to expand our dataset and refine our 
methodology for identifying cognitive impairment in companion 
animals, while also differentiating between different forms of 
degenerative brain disorders. This advancement may pave the way for 
tailoring treatment strategies, allowing veterinarians to provide 
precise and prompt care to geriatric animals in clinical settings. This 
advancement will potentially enable the development of more 
nuanced treatment strategies, empowering veterinarians in clinical 
practice to provide targeted and timely care to aging animals. Several 
dogs classified as MCI or SCI were reported not to have been 
diagnosed with CCDS but instead exhibited neurological conditions 
such as MUO (including GME and NME), meningitis, and 
hydrocephalus in Supplementary Table S1. When looking at the data, 
these disorders may present with forebrain signs, including 
restlessness and behavioral changes, which are likely to result in 
higher scores on the CCDR, a scoring system that relies on clinical 
observations. These disorders can manifest as forebrain signs, 
including restlessness and behavioral changes, which are likely to 
result in higher scores on the CCDR—a scoring system that relies on 
clinical observations. Another point to consider is whether dogs with 
a history of brain diseases are more predisposed to developing CCDS 
later in life, a phenomenon already reported about idiopathic epilepsy 
in dogs (59, 60). Therefore, in the future, more clinical case data and 
additional biomarkers will be  needed to improve the ability to 
distinguish between other brain diseases and cognitive impairment.
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5 Conclusion

We are dedicated to identifying biomarkers that can be used to 
diagnose cognitive impairment early in elderly animals, thereby 
providing a critical window for appropriate therapeutic intervention. 
The source of clinical samples is of paramount importance in this 
quest as the blood–brain barrier poses substantial challenges in 
detecting prodromal symptoms of cognitive impairment in both 
humans and animals. Despite these obstacles, we posit that with the 
aid of this diagnostic tool, companion animals can enjoy prolonged 
quality of life alongside their owners, who, in turn, may experience 
reduced psychological distress as a result of mitigating the behavioral 
changes associated with severe cognitive decline in their pets. 
We advocate early screening for cognitive impairment through blood 
tests, leveraging the predictive values derived from CCDR scores. This 
approach empowers veterinarians to diagnose and initiate treatment 
strategies for animals that are likely to develop CCDS and to monitor 
their brain health through regular follow-up testing. The predictive 
accuracy and sophistication of our model are expected to improve as 
we refine our methodology and expand our sample size. Given the 
substantial diagnostic value demonstrated thus far, we are optimistic 
regarding the clinical applicability of our method. Looking ahead, 
we envision that the early detection capabilities of companion animals 
will pave the way for similar advances in human medicine, thereby 
broadening the scope and impact of our research.
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