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Introduction: Coronavirus (CoV) has become a public health crisis that causes 
numerous illnesses in humans and certain animals. Studies have identified 
the small, lipid-bound structures called extracellular vesicles (EVs) as the 
mechanism through which viruses can enter host cells, spread, and evade 
the host’s immune defenses. EVs are able to package and carry numerous 
viral compounds, including proteins, genetic substances, lipids, and receptor 
proteins. We  proposed that the coronavirus could alter EV production and 
content, as well as influence EV biogenesis and composition in host cells.

Methods: In the current research, Crandell-Rees feline kidney (CRFK) cells were 
infected with feline coronavirus (FCoV) in an exosome-free media at a multiplicity 
of infection (MOI) of 2,500 infectious units (IFU) at 48  h and 72  h time points. 
Cell viability was analyzed and found to be significantly decreased by 9% (48  h) 
and 15% (72  h) due to FCoV infection. EVs were isolated by ultracentrifugation, 
and the surface morphology of isolated EVs was analyzed via Scanning Electron 
Microscope (SEM).

Results: NanoSight particle tracking analysis (NTA) confirmed that the mean 
particle sizes of control EVs were 131.9  nm and 126.6  nm, while FCoV infected-
derived EVs were 143.4  nm and 120.9  nm at 48 and 72  h, respectively. Total DNA, 
RNA, and protein levels were determined in isolated EVs at both incubation time 
points; however, total protein was significantly increased at 48  h. Expression of 
specific protein markers such as TMPRSS2, ACE2, Alix, TSG101, CDs (29, 47, 63), 
TLRs (3, 6, 7), TNF-α, and others were altered in infection-derived EVs when 
compared to control-derived EVs after FCoV infection.

Discussion: Our findings suggested that FCoV infection could alter the 
EV production and composition in host cells, which affects the infection 
progression and disease evolution. One purpose of studying EVs in various 
animal coronaviruses that are in close contact with humans is to provide 
significant information about disease development, transmission, and 
adaptation. Hence, this study suggests that EVs could provide diagnostic and 
therapeutic applications in animal CoVs, and such understanding could provide 
information to prevent future coronavirus outbreaks.
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1 Introduction

Coronaviruses (CoVs) are enveloped viruses with positive-single-
stranded RNA, members of the Nidovirales order, and the 
Coronaviridae family (1, 2). Several reports strongly suggest that 
coronavirus has a zoonotic origin from bats. In SARS-CoV-2, 
angiotensin-converting enzyme 2 (ACE2) is used as the cellular entry 
receptor for virus entry into hosts (3–5). Numerous CoVs affect severe 
illnesses in animals, including canine, feline, dromedary camels, 
porcine, bovine, bird, and murine hepatitis virus (6). To gain insight 
into the effects of human CoV and animal CoVs, and potentially slow 
the next CoV pandemic, it is beneficial to perform more CoV 
research, including animal CoV research. Numerous studies have 
proved that canine–feline recombinant alphacoronavirus can cause 
diseases in humans, such as pneumonia and acute respiratory 
symptoms (7–9). Feline CoV is a highly contagious single-stranded 
RNA virus that infects cats and was first reported in 1960 (10, 11). It 
is primarily found in the gastrointestinal tract of cats, and it mainly 
causes asymptomatic infections (12). FCoV contains two main 
biotypes of FCoV: enteric FCoV (FECV) and feline infectious 
peritonitis (FIP) (13). FIP is a more severe and fatal form of systemic 
disease in young felines (14). FCoV is spread via the feces of infected 
cats, and the FCoV can remain contagious in dry fecal debris for up 
to 7 weeks (10). Previous research has demonstrated that there is no 
effective treatment for FCoV (15). Severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) and FCoV are able to respond to similar 
anti-inflammatory or antiviral compounds, and research on FCoV 
infection in cats can improve the knowledge concerning host-virus 
interaction (16). The first stage of CoV infection constitutes the 
binding of the coronavirus’ crown shape spike (S) protein to the 
cellular entry receptors (17). These entry receptors are mainly 
recognized by numerous CoVs, which involve human aminopeptidase 
N, ACE2, and dipeptidyl peptidase 4 (DPP4) (1, 18).

Extracellular vesicles (EVs), mainly the exosomes, are extensively 
researched in viral infections (8, 19). They are released at the early 
initial and final stages of the steadily increasing viral infection. EVs 
are able to make cells more susceptible to virus infections by conveying 
virus-specific host receptors to the cells (20, 21). EVs originate from 
cells and are enveloped by membranes that are secreted by most cell 
types into the extracellular space (22). They perform a significant role 
in facilitating cell signaling and are able to transport different types of 
molecules (23, 24). They are associated with various physiological and 
pathological processes, including immune control, immune reaction, 
cell differentiation, and cancer (25). EVs are nanoparticles of a range 
of sizes and shapes, including surface receptors, ribonucleic acids, 
membrane and soluble proteins, and lipids (26). They can be secreted 
and detected from biological fluids such as blood, urinary samples, 
breast milk, plasma, saliva, semen, ascitic fluid, spinal fluid, and 
bronchoalveolar lavage (27–31). Microvesicles (MVs), apoptotic 
bodies, and exosomes are the three main subtypes of EVs, and they 
are categorized based on their origin, composition, biological 
functions, dimensions, and emission pathways (24, 32, 33). The 
diameter of microvesicles can vary, typically ranging from 50 to 
1,000+ nanometers, and they are secreted into extracellular space 
through the processes of outward budding and pinching of the cell 
membrane (34). Apoptotic bodies are the largest-sized EVs, generally 
spanning from 50 to 5,000 nanometers in diameter. These are formed 
from apoptosis and play significant roles in inflammation and immune 

responses (35). Exosomes are the smallest EVs, ranging from 30 to 
200 nm (36). Mainly, exosomes are discharged into interstitial space 
by the multivesicular bodies (MVBs) fusing with the cytoplasmic 
membrane and are able to transport cell-specific cargos such as 
proteins, lipids, and genetic materials (36, 37). Exosomes are the most 
researched and thoroughly understood subtype of EVs (38). They are 
characterized by several protein markers, including a cluster of 
differentiation (CD) (CD63), ALG-2-interacting protein X (Alix), and 
tumor-susceptibility gene 101 (TSG101) (39). Previous studies have 
shown that exosomes play a critical part in viral pathogenesis and 
immunity (40). They assist the host in initiating powerful immune 
reactions targeting viruses by carrying antiviral substances and 
activating the antiviral mechanism opposing various viruses in various 
cells (41).

Hence, in the present study, we hypothesized that CoV alters EV 
production and content while also controlling the exosome pathway 
and influencing EV biogenesis and composition in host cells. 
We assessed the influence of FCoV infection on the biogenesis and 
composition using CRFK cells produced by EVs. CRFK cells mainly 
originate from feline kidney cells, which are epithelial classification 
based on morphology (42). Our results prove that the release of EVs 
after FCoV infection is time-dependent and leads to an increase in the 
expression of protein biomarkers. Moreover, EVs were examined for 
immune response, pathogen progression, and antiviral responses. Our 
results indicated that EVs derived from FCoV-infected CRFK cells 
play a crucial role in influencing immune responses. Therefore, EVs 
could provide diagnostic and therapeutic applications to treat animal 
CoVs and to obtain insight into the host-cell interactions dealing with 
FCoV as well as events that may occur when the virus enters the cell. 
Such knowledge could provide information to prevent future CoV 
infection in humans and animals.

2 Materials and methods

2.1 Cell culture

CRFK cells were used in this study as a host model for FCoV 
infection. They were obtained from the American Type Culture 
Collection (ATCC). CRFK cells were cultured in Eagle’s Minimum 
growth media (EMEM) (Fisher Scientific), including L-glutamine 
supplemented with 10% horse serum (HS) (Fisher Scientific), which 
is important as a source of growth factors and necessary nutrients 
needed for cell growth, 1% penicillin/streptomycin (Fisher Scientific), 
and 0.2% (0.5 μg/mL) amphotericin B (Fisher Scientific). Importantly, 
exosome-free media was made with 2% exosome-depleted horse 
serum in compliance with the laboratory procedure for virus infection. 
CRFK cells were placed in a 37°C incubator enriched with 5% CO2 
and allowed to reach about 70–80% confluency.

2.2 Viral stock

Feline coronavirus [Enteric; Strain: WSU791683 (3)] stock was 
utilized in this study, which was acquired from ATCC. The viral stock 
concentration (titer) was 8.9 × 106 TCID50/mL. The cytopathic effect 
(CPE) experiment was performed over a 10-day infection cycle, and 
the cytopathic effects caused by FCoV on the CRFK cells were 
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determined to obtain the necessary multiplicity of infection (MOI). 
CRFK cells were exposed to several MOIs (50 IFU, 500 IFU, 2500 IFU, 
4000 IFU) of FCoV and noted for CPE at 24-h intervals. CPE describes 
the alterations in the morphology of host cells following viral 
intrusion. Examples of these changes include circularizing virus-
infected cells and merging with neighboring cells. CPE was not 
identified with an MOI of 50 IFU and 500 IFU for the duration of 
10 days and 8 days after infection, correspondingly. Nevertheless, at a 
MOI of 2,500 IFU and 4,000 IFU in CRFK cells exhibited CPE 
following 3 days and 1 day of infection, correspondingly. Therefore, 
we chose a MOI of 2,500 IFU for further experimentation at 48 h and 
72 h incubation time points based on CPE assay.

2.3 Infection of CRFK cells

After cell densities reached approximately 70–80% confluency, 
cells were trypsinized and counted using a countess cell counter. 
Approximately 5.0 × 105 cells were seeded per cell culture dish and 
then incubated throughout the night at 37°C and 5% CO2. 
Subsequently, the cell-free medium was removed, and a 2% EMEM 
medium devoid of exosomes was added per cell culture dish. The 
EMEM medium was made with exosome-depleted HS, EMEM 
including L-glutamine, 1% penicillin/streptomycin, and 0.2% (0.5 μg/
mL) amphotericin B. Uninfected dishes were used as controls, and 
infected dishes were infected with feline CoV at a MOI of 2,500 
IFU. Both uninfected and FCoV-infected dishes were incubated for 
48 h and 72 h time points (37°C and 5% CO2). The cell supernatant 
was separately gathered from FCoV-infected and uninfected dishes 
and kept at −80°C for later isolation of EVs.

2.4 MTT (3-(4, 5-dimethylthiazo-1-2yl)-
2,5-diphenyltetrazolium bromide) assay

MTT assay (colorimetric assay) evaluates the cell viability and 
cytotoxicity that measures metabolic activities. In 96 well plates, 
1 × 104 CRFK cells were added independently in triplicates and 
incubated throughout the night, maintaining 37°C and 5% CO2 
conditions. The growth medium was discarded on the subsequent day, 
and a 2% exosome-free medium was added to each well. The following 
day, the cells were infected with FCoV at MOI of 2,500 IFU, and the 
infected cells were incubated for 48 h and 72 h while the control wells 
remained in the exosome-free medium. Cells were exposed to 50 μL 
of 5 mg/mL MTT in 1X PBS and incubated for a duration of 4 h, 
maintaining 37°C and 5% CO2 conditions. Following incubation, a 
100 μL stop solution was introduced to each well. Finally, the 
absorbance was measured at 570 nm, and every sample was analyzed 
in triplicates. The number of viable cells was investigated via a bright 
field microscope and compared to the CRFK cell viability at 48 
and 72 h.

2.5 Isolation and purification of EVs

Previously, collected control and infected exosome-free cell 
supernatant were centrifuged at 1,300 Revolutions Per Minute (rpm) 
for a duration of 10 min at 4°C utilizing an Allegra X-14R Centrifuge. 

Then, the pellets were discarded, and the supernatant was collected 
again. Subsequently, the media was subject to centrifugation at 
3900 rpm for 10 min using an Allegra X-14R Centrifuge, and then the 
supernatant was filtered using a 0.22 μm porosity filter. Subsequently, 
the supernatant was moved into an ultracentrifuge tube, the volume 
was prepped with 1X PBS and centrifuged at 10,800 rpm for 45 min 
at 4°C using a Beckman Coulter Optima L-70 K ultracentrifuge. The 
supernatant was once more gathered, and centrifugation was 
performed at 32,000 rpm for 70 min at 4°C. The supernatant was 
removed, and roughly 500 μL of purified EV pellets were saved from 
each control and infected tube. To inhibit the protein degradation, a 
protease inhibitor (10 μL/mL) was introduced to the isolated EVs and 
stored at −80°C until further experimentation (43).

2.6 Total DNA/RNA extraction

TRIzol reagent was used for the extraction and purification of 
DNA and RNA of isolated EVs. EV samples weighing 5 μg were treated 
with 1 unit (U) of RNase-free DNAase I for DNA extraction and 1 U 
of micrococcal nuclease (MNase) for RNA extraction. For total DNA, 
RNase-free DNAase I treated with 5 μg control and infected CRFK-
derived isolated EV samples were incubated in a water bath for a 
duration of 30 min at 37°C. Subsequently, they were processed with 
50 mM Ethylenediaminetetraacetic acid (EDTA) treatment for a 
duration of 10 min at 65°C. DNA isolation was followed through the 
TRIzol extraction method (44). Total RNA was extracted by incubating 
EVs with 1% Triton-X-100 on ice for 30 min and exposed to MNase at 
37°C for 15 min. Subsequently, the RNA isolation was followed by the 
TRIzol extraction method. Finally, total DNA and RNA in isolated EV 
samples were analyzed using Nanodrop (Thermo Scientific).

2.7 Bicinchoninic acid (BCA) assay

The quantitation of the total protein of CRFK-derived EVs was 
analyzed using a BCA assay. Five μL of 0, 0.2, 0.4, 0.8, and 1.6 μg/μL 
standards [bovine serum albumin (BSA)], CRFK-derived control, and 
infected EVs were introduced in triplicates in a 96-well plate. 
Subsequently, BSA protein assay reagents A and B were added, 25 and 
200 μL, respectively, to each well. The 96-well tissue culture plate was 
covered with aluminum foil and positioned on a shaker for a duration 
of 10 min. Then, the plate was read at 595 nm absorbance. The 
standard curve was graphed to discover the accurate protein 
concentration in CRFK-derived control and infected EVs.

2.8 NanoSight tracking analysis

NanoSight tracking analysis (NTA) was performed to characterize 
the nanoparticles as well as to analyze the concentration (particles per 
mL) and nano-size distribution of the CRFK-derived control and 
infected EVs based on the rate of Brownian motion and light scattering 
using a Zeta View R Particle Matrix Tracking Analyzer instrument. 
For analysis, a 20 μL volume of EV samples was diluted at 1:75 in 
microbial cell culture-grade water before loading the prepared EV 
samples into the chamber of the Zeta View instrument. The mean 
values were investigated at 11 distinct positions.
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2.9 Scanning electron microscope

Scanning electron microscope (SEM) was performed to examine 
the surface morphology of the CRFK-derived EVs. The CRFK-isolated 
EVs were vortexed and stabilized with 2.5% EMS-quality 
glutaraldehyde at a 1:1 ratio. 30 μL of exosome samples were added in 
vesicle mixtures to a clean carbon disc-SEM mounting stud. The 
vesicles were immobilized subsequent to drying and left overnight. 
Then, the EV samples on a carbon-SEM mounting stud were affixed 
to an SEM stage utilizing carbon paste. Prior to imaging using Phenom 
XL G2 Desktop SEM, a 5 nm coating of gold–palladium alloy was 
implemented by sputtering to improve surface conductivity. SEM was 
executed within the reduced beam energies. To achieve the best results 
in vesicle surface morphology under SEM, freshly isolated exosomes 
were fixed and attached to a conductive, adhesive carbon substrate 
immediately following isolation and were imaged within a week. An 
examination of exosome size was performed utilizing the SEM images 
with the assistance of Image-J software.

2.10 Dot blot analysis

Dot blot experiment examines the expression of particular protein 
markers such as exosomal markers, immune response markers, 
pathogenic markers, apoptotic proteins, and stress-specific proteins 
(Hsps) in CRFK-derived EVs. Five μL of CRFK-derived EVs were added 
to the reducing buffer (1: 1) and were boiled for a duration of 10 min at 
95°C. Prepared control and infected EVs were dotted on the 
nitrocellulose membrane and blocked for 30–45 min with 5% nonfat dry 
milk to prevent nonspecific bonding at room temperature (RT). Then, 
the membrane was washed three times for 10 min each with 1× Tris-
buffered saline containing Tween-20 (0.2%) buffer solution (TBST) and 
incubated with primary antibodies including Alix (Fisher Scientific), 
CD63 (Santa Cruz Biotechnology), TSG101 (Fisher Scientific), ACE2 
(DHSB), TMPRSS2 (DHSB), anti-flotillin-1 (BD Bioscience), Clathrin 
(BD Bioscience), cadherin (DSHB), CD29 (DSHB), anti-TLR3 
(Abnova), TLR6 and 7 (Invitrogen), IRF4 (DSHB), mCCL22 (RD 
Systems), TGFβ-3(DHSB), TNF-α (Bioss Antibodies Inc.), CD47(Bioss 
Antibodies Inc.), LAMP-1 (human) (DSHB), ATPase (DSHB), TSPAN8, 
HSPB8-13B6 (Hsp22) (Invitrogen), HSPB1-1 (Hsp27) (DSHB), Hsp100 
(DSHB), DIS3-1D7 (DSHB), and cleaved caspase-3 (RD Systems). The 
nitrocellulose membrane was washed three times on a subsequent day 
using a TBST buffer solution. Horseradish peroxidase (HRP)-
conjugated secondary antibody, goat anti-mouse (Fisher Scientific), goat 
anti-rat (Fisher Scientific), or goat anti-rabbit (Novus Biologicals LLC) 
were added to the blocking buffer and incubated with membranes for a 
duration of 60–120 min. The target protein signals were identified 
utilizing the Super Signal West Femto Maximum Sensitivity Substrate 
(Invitrogen). Subsequently, the image was developed through the 
Bio-Rad ChemiDoc™ XRS+ System (Bio-Rad Laboratories).

2.11 Sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) and western blot analysis

Protein biomarkers were further analyzed using a western blot. 
Here, approximately 32 μL of isolated EVs were mixed with reducing 

buffer at a 1:1 ratio and were boiled (95°C) for a duration of 10 min. 
Prepared samples were placed in a 4–20% 1.5 mm Bio-Rad precast gel 
and run at 100 V. The procedure continued overnight until proteins 
were transferred to the Polyvinylidene difluoride (PVDF) membrane 
in a transfer chamber at 45 mA. Then, the PVDF membrane was 
blocked for 35 min using the blocking solution (5% nonfat dry milk) 
at RT and washed three times for 10 min each using 1× TBS containing 
Tween-20 (0.2%) buffer solution. Then, the PVDF membrane was 
incubated with primary antibodies, including ACE2 (DHSB) and 
TMPRSS2 (DHSB). On a subsequent day, the membrane was washed 
three times for 10 min with TBST buffer solution. It was incubated 
with secondary antibodies, which can be either HRP-conjugated goat 
anti-mouse, goat anti-rat, or goat anti-rabbit, and was added to the 
blocking buffer for 1–2 h at RT. Finally, signals were developed using 
Super Signal West Femto Maximum Sensitivity Substrate (Invitrogen).

2.12 Statistical analysis

Statistical analysis was conducted using a t-test on the acquired 
data employing the GraphPad Version 5 software and Bio-Rad 
imaging program. The statistical significance was calculated by mean 
value ± standard deviation, and the statistical significance of the 
p-value was described as p  ≤ 0.05(*), p  ≤ 0.01(**), p  ≤ 0.001(***), 
p ≤ 0.0001(****).

3 Results

3.1 Feline coronavirus altered CRFK cell 
viability

The cellular morphology was analyzed using bright-field 
microscopy, which indicated a reduced CRFK cell count with an 
increased incubation time after FCoV infection (Figure 1A). The cell 
viability was assessed utilizing an MTT assay, which exhibited that the 
cell viability of FCoV-infected CRFK cells was reduced with increased 
incubation time (Figure 1B). The cell viability of FCoV-infected cells 
was significantly reduced by nearly 9% (* p  ≤ 0.05) and 15%  
(* p ≤ 0.05) at 48 h and 72 h, respectively, contrasted to the control 
CRFK cells. The decrease in cell viability with prolonged incubation 
times after FCoV infections indicates that FCoV infection significantly 
induces cell demise in CRFK cells.

3.2 Evaluation of CRFK-derived EV size, 
concentration, surface morphology, and 
biomolecules

To examine the impact of FCoV on EVs, CRFK cells were infected 
with FCoV at 48 h and 72 h time points. Cell supernatants were 
ultracentrifuged through a series of high-speed centrifugation steps to 
isolate and purify EVs produced from CRFK cells. Isolated EVs were 
examined using SEM and NTA to identify the surface morphology, 
particle size in nanometers (nm), and concentration (particles per mL). 
The SEM image revealed the surface morphology of CRFK-derived 
control and FCoV-infected EVs in both time references. Figure 2A 
represents an SEM image, which indicates control CRFK-derived EVs 
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at the 72 h-time point at 5 μm, verifying the presence of EVs in the 
sample. NTA was performed to characterize EVs by determining the 
mean particle size (nm) and concentration (particles/mL). The mean 
particle size was slightly increased (143.4 nm) in FCoV-infected EVs 
compared to the control EVs (131.9 nm) at 48 h (Figure 2B). The mean 
particle size was slightly decreased (120.9 nm) in FCoV-infected EVs 
compared to the control EVs (126.6 nm) at 72 h (Figure 2B). Therefore, 
NTA analysis confirmed that the average size of EVs ranges from 100 to 
200 nm at 48 and 72 h times points. The particle concentration 
(particles/mL) of FCoV-infected EVs exhibited a negligible decrease 
compared to the control EVs at both time points (Figure 2C). At 48 h, 

the mean concentration of control and infected EVs were 2.5 × 107 and 
2.0 × 107 particles/mL, respectively. In addition, at 72 h, the mean 
concentration of control and infected EVs were 2.2 × 107 and 
1.8 × 107 particles/mL, respectively. The levels of total DNA, RNA, and 
protein were analyzed in control and FCoV-derived EVs at 48 h and 72 h 
times points. Figure 3A indicates that there was a gradually increasing 
trend in total DNA with increased incubation time. Figure 3B indicates 
that there was a negligible increase in total RNA levels with increased 
incubation time. However, the total protein level of FCoV-infected EVs 
was significantly increased as compared to the control EVs at 48 h (**** 
p ≤ 0.0001) (Figure 3C).

FIGURE 1

The impact of FCoV on CRFK cell viability. (A) Bright-field microscopy images indicate the morphology of CRFK cells at 48 and 72  h. (B) CRFK cells 
were infected with FCoV in exosome-depleted media at a MOI of 2,500 IFU at 48 and 72  h time points. Post-infection enumeration of viable CRFK cells 
was subsequently incubated with MTT at 37°C for a duration of 3–4  h; absorbance was measured at 570  nm. Statistical analysis of the acquired data 
points was conducted using a t-test. Statistical significance is implied through the mean  ±  standard deviation (SD) as stated: ∗p ≤  0.05.

FIGURE 2

Morphological analysis of FCoV-infected CRFK-derived EVs. (A) Scanning electron microscopy (SEM) images demonstrating the surface morphology of 
the CRFK-derived control EVs at 72  h-time points at 5  μm. (B) NTA indicates the CRFK-derived EV’s mean particle size; (C) particle concentration after 
48  h and 72  h FCoV infection. Statistical analysis of the acquired data points was conducted using a t-test.
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FIGURE 4

The influence of FCoV infection on CRFK-derived EVs’ classical markers. Graphs indicate the quantitative dot blot analysis of (A) Alix at 48 and 72  h 
(Supplementary Figure S1A); (B) TSG101 at 48 and 72  h (Supplementary Figure S1B); and (C) CD63 at 48 and 72  h (Supplementary Figure S1C) in CRKF-
derived control and FCoV-infected EVs. The dots displayed in the figure indicate the results obtained from six-fold dot blot experiments. Statistical 
analysis of the acquired data points was conducted using a t-test. Statistical significance is implied through the mean  ±  SD as stated: ∗p ≤ 0.05, 
∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.001.

3.3 Identification of the presence of 
classical biomarkers in EVs

Classical exosome proteins are used to characterize EVs; they are 
found on the surface of the exosome membrane and the inner space 
(45). Alix and TSG101 are multivesicular body (MVB) related proteins 
engaged in the endosomal-sorting complex, which is necessary for 
transportation (ESCRT) (45). TSG101 protein marker plays a 
significant role in the control of growth and differentiation (46). CD63 
are tetraspanins that play a crucial function in sorting cargo-like 
premelanosome protein (PMEL) onto intraluminal vesicles (ILVs) 
within MVBs (47, 48). In the present investigation, we conducted a 
dot blot to assess the expression of classical biomarkers. The dot blots 
of Alix (Supplementary Figure S1A), TSG101 
(Supplementary Figure S1B), and CD63 (Supplementary Figure S1C) 
in control and infected derived EVs were analyzed via the Bio-Rad 
imaging program and GraphPad. FCoV-infected CRFK-derived EVs 
presented significantly elevated expression of Alix (∗∗p  ≤ 0.01), 
TSG101 (∗∗∗p ≤ 0.001), and CD63 (∗∗p ≤ 0.01) at 48 h infection and 
significantly increased expression of TSG101 (∗p  ≤ 0.05) at 72 h 

infection relative to the control EVs, respectively, (Figures 4A–C). Our 
results indicate that FCoV infection affects the abundance of 
tetraspanins and regulates the ESCRT pathway.

3.4 Presence of the host receptors and 
host cell protease after FCoV infection

ACE2 has been determined to be a cellular receptor on the cell 
surface for both SARS-CoV and SARS-CoV-2 (5). ACE2 is a 
carboxypeptidase, mainly detected in the heart, lungs, and kidneys. 
It is recognized as a counter-regulator of the renin-angiotensin 
system (RAS) and substantially influences the cardiovascular system 
(5, 49). Transmembrane protease, Serine 2 (TMPRSS2), plays a 
pivotal role as a cofactor in SARS-CoV-2 entry and is able to activate 
glycoproteins of respiratory viruses (50, 51).TMPRSS2 is found in 
epithelial cells at different locations, such as respiratory, 
genitourinary, and gastrointestinal systems (52). ACE2 attaches with 
the spike protein of SARS-CoV-2 to obtain access to the host cell and 
serine protease (53). TMPRSS2 is able to activate the S protein and 

FIGURE 3

The biological significance of FCoV-infected CRFK-derived EVs. Graphs showing the (A) total DNA, (B) total RNA, and (C) total protein content of 
CRFK-derived EVs after 48  h and 72  h FCoV infection. Statistical analysis of the acquired data points was conducted using a t-test. Statistical 
significance is implied through the mean  ±  SD as stated: ∗∗∗∗p  ≤  0.0001.
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release subunit S2, which facilitates the merging of the viral and 
cellular membranes. Consequently, viral genes enter the host cell and 
spread (54, 55). Therefore, in SARS-CoV-2 infection, ACE and serine 
protease TMPRSS2 play critical roles in viral entry and S protein 
priming, respectively (54, 56). In our investigation, we evaluated the 
presence of ACE2 and TMPRSS2 in isolated CRFK-derived control 
and FCoV-derived EVs and both time points via western blot and 
dot blot analysis (Figures 5A,B). The western blot analysis of ACE2 
and TMPRSS2 indicated gel bands, approximately 130 kilodaltons 
(kDa) and 60 kDa, respectively. The ACE2 protein marker was 
significantly increased at 48 h (∗p ≤ 0.05) and 72 h (∗p ≤ 0.05) in 
FCoV-derived EVs relative to the control-derived EVs (Figure 5C). 
TMPRSS2 was found to significantly increase in FCoV infection-
derived EVs relative to the uninfected control-derived EVs at 48 h 
(∗p  ≤  0.05) and 72 h (∗∗p  ≤  0.01) (Figure  5D). These results 
indicated the presence of CoV host receptor (ACE2) and 
TMPRSS2  in the control and FCoV-derived EVs produced from 
CRFK cells.

3.5 Expression of membrane trafficking 
protein markers following FCoV infection

We evaluated the expression of Flotillin-1 and Clathrin membrane 
trafficking protein markers in isolated CRFK-derived control EVs and 

FCoV-derived EVs by utilizing a dot blot assay. Flotillin-1 is a 
membrane-associated lipid raft protein engaged in endocytosis, cell 
signaling, protein trafficking, protein sorting, and gene expression 
(57). Levels of Flotillin-1 (Supplementary Figure S1D) in FCoV 
infection-derived EVs were significantly upregulated at 48 h and 72 h 
(∗p ≤ 0.05 and ∗∗p ≤ 0.01, respectively) contrasted with control-
derived EVs (Figure 6A). Another membrane trafficking molecule, 
Clathrin, acts as a prototype self-assembling protein and is able to coat 
transport vesicles (58). Clathrin is involved in receptor-mediated 
endocytosis, which plays a significant role in membrane trafficking 
and mitosis (58, 59). Clathrin expression (Supplementary Figure S1E) 
in EVs was significantly elevated after FCoV infection at the 72 h 
(∗∗p ≤ 0.01) time point (Figure 6B). Hence, our finding suggested that 
FCoV infection of CRFK regulates membrane protein trafficking and 
EV formation.

3.6 Expression of adhesion molecules in EV 
cargoes in response to FCoV infection

The expressions of several adhesion molecules were analyzed in 
CRFK-derived EV post-infection via dot blot analysis. Cadherin is a 
transmembrane cell–cell adhesion molecule and plays an important 
role in tissue morphogenesis by regulating cell signaling (60). 
Cadherin (Supplementary Figure S1F) was slightly reduced at the 48 h 

FIGURE 5

The presence of host receptors and host cell protease in response to FCoV infection. (A) Western analysis showing the expression of coronavirus host 
receptor, ACE2 at 48  h, and dot blot analysis showing the expression of ACE2 at 48 and 72  h in CRFK-derived control and FCoV infected EVs. 
(B) Western analysis showing the expression of CoV host cell protease, TMPRSS2 at 48  h, and dot blot analysis showing the expression of TMPRSS2 at 
48  h and 72  h in CRFK-derived control and FCoV-infected EVs. Graphs indicate the quantitative dot blot analysis of (C) ACE2 at 48 and 72  h and 
(D) TMPRSS2 at 48 and 72  h in CRKF-derived control and FCoV-infected EVs. The dots displayed in the figure indicate the results obtained from six-fold 
dot blot experiments. Statistical analysis of the acquired data points was conducted using a t-test. Statistical significance is implied through the 
mean  ±  SD as stated: ∗p ≤ 0.05 and ∗∗p ≤ 0.01.
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infection time point and significantly increased at 72 h (∗p ≤ 0.05) in 
FCoV-derived EVs relative to the control-derived EVs (Figure 6C). 
Moreover, we determined the impact of FCoV exposure on CD29 
expression (Supplementary Figure S1G and Figure 6D, respectively). 
CD29 is also known as integrin β-1 (61). Integrins are large proteins 
composed of α/β-chain subunit cell adhesion molecules and are able 
to regulate cell adhesion and signaling (62). CD29 was significantly 
decreased at 48 h (∗p  ≤  0.05) and significantly elevated at 72 h 
(∗∗∗∗p ≤ 0.0001) in infected EVs as compared to the uninfected. 
Therefore, these results indicated that FCoV infection of CRFK cells 
modulates the process of internalization and encapsulation as well as 
membrane protein presence within EVs.

3.7 FCoV infection stimulated pathogen 
recognition and proinflammatory 
responses

We evaluated the expression of several toll-like receptors (TLRs) 
in EVs obtained from CRFK cells after FCoV infection. TLRs are 
known as pattern recognition receptors, which are accountable for 
stimulating innate immune responses and pathogen recognition (63). 

In this study, we investigated TLR3, 6, and 7 expressions via dot blot 
analysis (Supplementary Figures S1H–J, respectively). TLR3 is a 
double-stranded RNA (dsRNA), which is found on the endosome 
membrane and plays a significant role in innate immune responses 
against viral infections (64). TLR3 is able to activate the transcriptional 
factors of Interferon Regulatory Factors (IRFs), Nuclear Factor-Kappa 
β (NF-κβ, and Activating Transcription Factor 1(ATF1) (65). It is also 
capable of inducing the formation of Interferon-Beta (IFN-β) 
proinflammatory cytokines (65). We found that TLR3 was significantly 
increased at 72 h in FCoV-derived EVs relative to the uninfected 
control EVs (∗∗∗p ≤ 0.001) (Figure 7A). Similarly, Figure 7B indicates 
that the expression of TLR6 was significantly increased at 72 h in 
FCoV-derived EVs relative to the uninfected EVs (∗p ≤ 0.05). TLR2 
is capable of forming heterodimers with TLR6, which leads to 
activating the myeloid differentiation primary response 88 (MyD88)-
dependent signaling pathway to induce the production of 
proinflammatory cytokines (66). TLR6 also activates NF-κB (67). 
We further analyzed the expression of TLR7, which recognizes single-
stranded RNA (SSRNA) viruses (68). It also activates the generation 
of Tumor Necrosis Factor (TNF) and interleukin-6 (IL-6) 
proinflammatory cytokines (69). FCoV infection induced a significant 
upregulation in TLR7 in infected CRFK-derived EVs contrasted with 

FIGURE 6

The influence of FCoV infection on membrane trafficking proteins and adhesion molecules. Graphs indicate the quantitative dot blot analysis of 
(A) Flotillin-1 at 48 and 72  h (Supplementary Figure S1D); (B) Clathrin at 48  h and 72  h (Supplementary Figure S1E); (C) Cadherin at 48 and 72  h 
(Supplementary Figure S1F); and (D) CD29 at 48 and 72  h (Supplementary Figure S1G) in CRKF-derived control and FCoV-infected EVs. Statistical 
analysis of the acquired data points was conducted using a t-test. Statistical significance is implied through the mean  ±  SD as stated: ∗p ≤ 0.05, 
∗∗p ≤ 0.01, and ∗∗∗∗p ≤ 0.0001.
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uninfected control EVs at 72 h (∗p ≤ 0.05) (Figure 7C). Hence, these 
findings indicate that TLRs modulate the presence of protein markers 
associated with proinflammatory and immune activation within the 
EV’s response to FCoV infection.

3.8 Evaluation of protein and inflammatory 
markers in EVs in response to FCoV 
infection

We examined the level of immune proteins, including interferon 
regulatory factor 4 (IRF4) (Supplementary Figure S1K), cluster of 
differentiation 47 (CD47) (Supplementary Figure S1L), transforming 
growth factor-beta-3 (TGF-β-3) (Supplementary Figure S2A), 
and mouse c-c motif chemokine ligand 22 (mCCL22) 
(Supplementary Figure S2B), and inflammatory markers such as tumor 
necrosis factor-alpha (TNF-α) (Supplementary Figure S2C) in CRFK-
derived EVs after FCoV infection. FCoV infection induced a slight 
upregulation and downregulation in IRF4 protein levels in FCoV-
derived EVs as compared to the control-derived EVs at the 48 h and 72 h 
time points, respectively (Figure 8A). IRF4 functions as a transcription 
factor for interferons that play a significant regulatory role in the immune 
system (70). To further analyze immune proteins, we examined the 
expression of CD47, a transmembrane immunoglobulin Ig superfamily 
protein that plays a significant role in inhibiting phagocytosis (71), 
TGF-β-3 which plays a pivotal role in tissue fibrosis (72), and mCCL22. 
CD47 was found to have significantly increased in CRFK-derived 
infected EVs relative to the uninfected control EVs at both 48 h 
(∗p ≤ 0.05) and 72 h (∗p ≤ 0.05) (Figure 8B). TGF-β-3 was significantly 
downreglated in EVs after FCoV infection at 48 h (∗p  ≤  0.05) and 
significantly upregulated 72 h (∗p  ≤  0.05) (Figure  8C). Figure  8D 
indicates that the presence of the mCCL22 protein marker was 
significantly increased in FCoV-infected EVs contrasted with the 
uninfected EVs at 72 h (∗p ≤ 0.05). We conducted further analysis to 
examine TNF-α, a cytokine that acts as a key regulator of inflammatory 
responses (73). Levels of TNF-α were significantly lower in CRFK-
derived infected EVs relative to the uninfected control EVs at 48 h 
(∗∗∗p ≤ 0.001) and significantly higher at the 72 h (∗∗∗p ≤ 0.001) than 
that in the control-derived EVs at 72 h time point (Figure 8E). Therefore, 

these results demonstrated the expression of immune and inflammatory 
response-associated biomarkers in EVs obtained from CRFK cells 
following FCoV infection.

3.9 Transmembrane molecules, activation 
of stress-specific and apoptotic response 
markers expression in response to FCoV 
infection

We investigated the expression of several transmembrane 
molecules, stress-specific heat shock proteins (Hsps), and varying 
caspases in control and infection-derived EVs after FCoV infection. 
We  measured the expression of LAMP-1 (human) 
(Supplementary Figure S2D), a transmembrane glycoprotein that can 
be found in lysosomes (74), ATPase (Supplementary Figure S2E), and 
TSPAN8 (Supplementary Figure S2F) transmembrane protein in 
CRFK-derived EVs’ post-infection. We detected that LAMP-1 was 
significantly increased at 48 h and 72 h, respectively (∗p ≤ 0.05 and 
∗p ≤ 0.05). ATPase was significantly upregulated at 72 h (∗p ≤ 0.05) 
after FCoV infection (Table 1). Additionally, TSPAN8 was significantly 
downregulated and significantly upregulated at the 48 h (∗p ≤ 0.05) 
and 72 h (∗p ≤ 0.05) time points, respectively (Table 1) in FCoV-
derived EVs when compared to the control-derived EVs. Therefore, 
these results indicated that FCoV infection modulates the 
transmembrane protein expression in CRFK-derived EVs and the 
packaging of EVs.

Hsps are recognized as molecular chaperones involved in 
unfolding cellular proteins due to stress or high-temperature (75). 
We  analyzed the FCoV-infected EVs for the presence of Hsp22, 
Hsp100, Hsp27, and DIS3 (Supplementary Figures S2G–J, 
respectively) (Table  1). At the 48 h infection time point, Hsp22, 
Hsp100, Hsp27, and DIS3 were confirmed to be significantly 
downregulated (∗p ≤ 0.05), significantly upregulated (∗p ≤ 0.05), 
slightly downregulated, and significantly upregulated (∗p ≤ 0.05), 
respectively in FCoV-derived EVs in contrast with the uninfected 
control EVs. Additionally, at the 72 h time point, Hsp22 (∗p ≤ 0.05), 
Hsp100 (∗p  ≤  0.05), and DIS3 (∗∗∗p  ≤  0.001) were significantly 
upregulated, and Hsp27 was slightly upregulated after FCoV infection. 

FIGURE 7

Initiation of pathogen recognition and proinflammatory responses after FCoV infection. Graphs indicate the quantitative dot blot analysis of (A) TLR3 at 
48 and 72  h (Supplementary Figure S1H); (B) TLR6 at 48 and 72  h (Supplementary Figure S1I); and (C) TLR7 at 48 and 72  h (Supplementary Figure S1J) in 
CRKF-derived control and FCoV-infected EVs. Statistical analysis of the acquired data points was conducted using a t-test. Statistical significance is 
implied through the mean  ±  SD as stated: ∗p ≤ 0.05 and ∗∗∗p ≤ 0.001.
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These findings confirmed that these stress-specific protein markers 
were regulated during FCoV infection.

Caspases play a significant role in cell death and inflammation 
responses (76). The expression of cleaved caspase-3 
(Supplementary Figure S2K) was significantly increased at 48 h 
(∗p ≤ 0.05) and 72 h (∗∗∗p ≤ 0.001) in FCoV-derived EVs relative to 
the uninfected control EVs (Table 1). Hence, our results show that 
FCoV infection influences the caspase protein in EVs produced by 
CRFK cells.

4 Discussion

Virus-infected cells are able to release EVs and facilitate the 
spread of virus infection (77). EVs play a significant role in viral 
entry, spread, and immune responses against viral infections and 
stimulating antiviral mechanisms (22, 77). During viral infections, 
EVs can assist in transferring viral genomes into specific cells and are 
involved in cell physiology to aid the infection (22). Delivering drugs 
to target cells is one of the key issues in pharmacology, and adding 

FIGURE 8

The influence of FCoV infection on CRFK-derived EVs’ protein and inflammatory markers. Graphs indicate the quantitative dot blot analysis of (A) IRF4 
at 48 and 72  h (Supplementary Figure S1K); (B) CD47 at 48 and 72  h (Supplementary Figure S1L); (C) TGF-β-3 at 48 and 72  h (Supplementary Figure S2A); 
(D) mCCL22 at 48 and 72  h (Supplementary Figure S2B); and (E) TNF-α at 48 and 72  h (Supplementary Figure S2C) in CRKF-derived control and FCoV-
infected EVs. Statistical analysis of the acquired data points was conducted using a t-test. Statistical significance is implied through the mean  ±  SD as 
stated: ∗p ≤ 0.05 and ∗∗∗p ≤ 0.001.

TABLE 1 The influence of FCoV infection on transmembrane molecules, caspases, and initiation of stress-specific responses in response to FCoV 
infection.

Category Protein Makers 48  h 72  h

Transmembrane molecules LAMP-1 (Human) Significantly Upregulated Significantly Upregulated

ATPase Slightly Upregulated Significantly Upregulated

TSPAN8 Significantly Downregulated Significantly Upregulated

Activation of stress-specific responses after 

FCoV infection

HSP22 Significantly Downregulated Significantly Upregulated

HSP100 Significantly Upregulated Significantly Upregulated

HSP27 Slightly Downregulated Slightly Upregulated

DIS3 Significantly Upregulated Significantly Upregulated

Activation of apoptotic responses to FCoV 

infection

Cleaved Caspase-3 Significantly Upregulated Significantly Upregulated

Table indicates the result of quantitative dot blot analysis of LAMP-1 (human) (Supplementary Figure S2D), ATPase (Supplementary Figure S2E), TSPAN8 (Supplementary Figure S2F), 
HSP22 (Supplementary Figure S2G), HSP100 (Supplementary Figure S2H), HSP27 (Supplementary Figure S2I), DIS3 (Supplementary Figure S2J) and cleaved caspase-3 
(Supplementary Figure S2K). Statistical analysis of the acquired data points was conducted using a t-test. Statistical significance is implied through the mean ± SD as stated: ∗p ≤ 0.05 and 
∗∗∗p ≤ 0.001.
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specific targets onto the EV membrane might assist in delivering 
drugs to specific cells (78, 79). Studies have reported that in COVID-
19, EVs facilitate the development of a prothrombotic state, which 
leads to vascular impairment and heightened hypertyrosinemia and 
disrupts both innate and adaptive immune responses (80, 81). 
However, there is still a lack of studies on CoVs. In recent years, 
more studies have focused on the exosomes released from the 
mesenchymal stem cells as a promising treatment for COVID-19 
infection (82).

In our study, we  investigated how FCoV infection modulated 
CRFK-derived EV production, content, biogenesis, and composition. 
The CRFK cells were infected with FCoV at an MOI of 2,500 IFU and 
incubated at 48 h and 72 h. Examination through MTT assay revealed 
that CRFK cell viability was significantly reduced with increased 
incubation time after FCoV infection (Figure  1B). These results 
indicated that FCoV infection with increased incubation time leads to 
upgraded CRFK cell’s cytotoxic activity, confirming a decreased CRFK 
cell survival rate. Morphological characteristics, including particle size, 
particle concentration, surface morphology, total DNA, RNA, and 
protein levels, were examined in CRFK-derived uninfected and FCoV-
infected EVs. Moreover, Figure 3A indicates a gradually increasing 
trend in total exosomal DNA, and Figure 3B indicates a negligible 
increase in total exosomal RNA levels as time progressed. The total 
protein content (Figure 3C) was significantly increased at 48 h in FCoV-
infected EVs relative to the control EVs, suggesting that FCoV infection 
elevated EV production, assembly, and release from CRFK cells.

In this study, we  investigated the expression of several protein 
markers, including classical biomarkers (Alix, TSG101, CD63), 
membrane trafficking molecules (flotillin, clathrin), adhesion molecules 
(cadherin, CD29), virus-specific host receptor/protease markers (ACE2, 
TMPRSS2), pathogen recognition markers (TLRs), immune biomarkers 
(IRF4, TNFα, mCCL22, CD47, TGF-β-3), transmembrane markers 
(LAMP-1 (human), ATPase, TSPAN8), stress response markers (Hsps, 
DIS3), and apoptotic response markers (cleaved-caspase-3) in CRFK-
derived control and FCoV-infected EVs at 48 h and 72 h time points. 
We discovered that classical exosome markers Alix (Figure 4A), TSG101 
(Figure 4B), and CD63 (Figure 4C) levels were significantly upregulated 
in FCoV-infected EVs relative to the control EVs. Alix and TSG101 are 
MVB-related proteins that engage in the endosomal-sorting complex, 
which is essential for transport (ESCRT) (45, 46). CD63 are tetraspanins 
that serve a key function in understanding cargo sorting, such as PMEL, 
into intraluminal vesicles and biogenesis within EVs (47, 83, 84). Hence, 
the FCoV infection may stimulate the generation of intraluminal 
vesicles, modulate the ESCRT pathway, and enhance EV release. 
Another tetraspanin-associated marker is CD29 (Integrin-β-1), which 
plays a crucial role in cell adhesion, organ development, signal 
transduction, and tissue repair (62, 85, 86). Moreover, the integrin–
tetraspanin complex can be mediated by the exosome uptake (87), and 
the tetraspanin-rich exosomal membrane might enhance the SARS-
CoV-2 internalization and cellular penetration (88). CD29 was 
significantly upregulated in infected EVs, which could suggest higher 
FCoV particle entry, modulated internalization, encapsulation, and 
membrane protein expression in EVs (Figure  6D). Additionally, 
cadherin, a transmembrane cell–cell adhesion molecule that plays an 
important role in tissue morphogenesis, was significantly increased in 
the EVs during FCoV infection (Figure 6C) (60). Flotillin-1 (Figure 6A) 
and clathrin (Figure 6B) membrane trafficking protein markers were 
significantly elevated in FCoV-derived EVs relative to the control EVs. 

Flotillin-1 is a membrane-associated lipid raft protein mainly involved 
in endocytosis, cell signaling, protein trafficking, protein sorting, and 
gene expression (57). The significantly increased level of flotillin-1 in the 
infected EVs induced an increase in endosomal sorting, EV release, and 
elevated protein recruitment within the lipid raft. Clathrin plays a key 
role in receptor-mediated endocytosis, which is essential to membrane 
trafficking and mitosis (58, 59), and clathrin-coated vesicles are involved 
in EV release and uptake (89).

Literature sources have documented that ACE2 and TMPRSS2 
have been involved in SARS-CoV-2 (56). ACE2 functions in the 
capacity of the primary entry receptor of SARS-CoV-2 (90), and 
TMPRSS2 is able to activate SARS to facilitate both virus-cell and cell–
cell fusion (91). Research studies highlighted the transfer of ACE2 by 
EVs among different cells, confirming the capability for SARS-CoV-2 
to associate with ACE2 on EVs (92). This finding elicited the concept 
of inhibiting EV trafficking as an antiviral strategy against SARS-
CoV-2 infection (92). In addition, other studies discovered that EVs 
play an important role in transmitting CoVs and producing EVs 
within the host when EVs have packaged and expressed ACE2 at 
markedly elevated levels (92). CRFK-derived EVs at the 48 h and 72 h 
infection time points contained significant levels of ACE2 (Figure 5C) 
and TMPRSS2 (Figure 5D), which may confirm that infected EVs 
serve an important function in assisting the dissemination of CoV and 
extracellular virus production in the host. The role of these protein 
markers in viral entry affects EV biogenesis and composition. TLR3 
(Figure 7A), TLR6 (Figure 7B), and TLR7 (Figure 7C) significantly 
increased at 72 h in FCoV-derived EVs compared to the control-
derived EVs. TLRs are pattern-recognition receptors that are vital in 
stimulating innate immune responses and pathogen recognition (63). 
They are located on immune cells, including macrophages, dendritic 
cells, neutrophils, mast cells, and natural killer cells (63). TLR3 
participates in the activation of the transcriptional factors of IRFs, 
NF-κB, and Activating Transcription Factor 1(ATF1). TLR3 triggers 
the formation of IFN-β and proinflammatory cytokines (65). TLR6 
contributes to activating myeloid differentiation primary response 88 
(MyD88) (66, 67), and TLR7 triggers the formation of TNF and IL-6 
proinflammatory cytokines (69). Therefore, our finding confirmed 
that the presence of TLRs provides a defensive mechanism against 
FCoV infection by controlling the expression of inflammation and 
immune response-associated markers. Furthermore, CD47 
(Figure 8B), TGF-β-3 (Figure 8C), mCCL22 (Figure 8D), and TNF-α 
(Figure  8E) immune biomarkers were significantly increased in 
infected EVs relative to uninfected control EVs. While IRF4 
(Figure  8A) was expressed, it was significantly unchanged in 
isolated EVs.

CD47 engages in inhibiting phagocytosis (71). Literature has 
reported that there is a relationship between EV secretion and TGF-β-
triggered inflammatory changes (93). TNF-α is a key regulator of 
inflammatory responses (73). Hence, these results confirmed that FCoV 
infection has the ability to control the immune responses within CRFK-
derived EVs, which helps to understand the host-virus interaction and 
host immune responses to the FCoV. Expression of several 
transmembrane molecules such as LAMP-1 (human), ATPase, and 
TSPAN8 transmembrane proteins was significantly upregulated in 
CRFK cell-derived EVs’ post-infection. Transmembrane molecules play 
a significant role in budding and releasing viruses, including CoV 
infection. Detection of Hsps, such as Hsp22 and Hsp100, were 
significantly increased at 72 h post-infection, and DIS3 was revealed to 
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significantly increase at 48 h and 72 h in EVs post-infection (Table 1). 
Hsps mainly act as molecular chaperones. They are able to protect 
damaged proteins from heat and unfold aggregated proteins (94). Hsps 
play an important role in identifying virus entry, replication, and 
survival during host-viral interaction (95). Hence, these results can 
provide insight into all viral infections, including CoV infection. 
Furthermore, we examined stress-specific biomarkers; cleaved caspase-3 
was significantly elevated at different time points after FCoV infection 
(Table 1), which indicated inflammation and severe disease. Caspases 
are mainly engaged in cell death and inflammation responses (76). 
Caspases are involved and active in SARS-CoV-2 infection (96). 
Furthermore, there was an increase in active caspase-3 in SARS-CoV-2 
infected patients’ cortical organoids and glial cells, which indicates a 
solid association between SARS-CoV-2 and initiation of apoptosis (96). 
Hence, our results confirmed that EVs released from FCoV-infected 
CRFK cells stimulate apoptotic pathways mediated by cleaved caspase-3 
and are able to facilitate the CoV-induced inflammatory responses. 
These findings of key biomarkers, such as stress-specific proteins, 
immune response-specific proteins, and apoptosis proteins in the 
context of FCoV infection, provide new prospects for focused 
therapeutic interventions. For example, regulating Hsp100 activity can 
hinder the process associated with viral replication, and the function of 
caspase proteins in regulating cell death and inflammation emphasizes 
the promise of apoptosis protein inhibitors to mitigate tissue injuries 
and enhance therapeutic outcomes (76, 95, 97, 98). Furthermore, 
focusing CD47 on improving immunological cell detection and 
eliminating diseased cells could enhance the host organism against 
viruses’ immune defenses (99–101). Hence, it is important to 
comprehend the interaction between these protein markers and various 
immunological routes, which culminates in the evolvement of in-depth 
and efficient treatment regimens.

5 Conclusion

EVs play significant roles during viral infection, including 
facilitating cell-to-cell communication, transporting viral genetic 
materials into specific cells, as well as being involved in cell physiology 
and virus entry that aids viral infection. Hence, EV-based technology 
demonstrates great potential for disease diagnosis and therapeutic tools 
to prevent CoV and other viral infections. Our study has confirmed 
that in vitro FCoV has a significant effect on CRFK cell viability and 
survival, which supports the fact that FCoV-infected CRFK-derived 
EVs are able to introduce stress responses and apoptotic pathway 
signals. We found that FCoV-infected CRFK-derived EVs trigger EV 
production in response to the infectious agent. This study revealed that 
under the stress induced by FCoV infection, CRFK-derived EVs can 
efficiently package markers and proteins, providing a clear indication 
of the impact of the virus on the physiological state of feline cells.

Future studies will investigate the receptor-agnostic penetration 
of CoV into additional target cells (e.g., lung, spleen, and 
gastrointestinal) and the synthesis of extracellular vesicles facilitated 
by the host. Furthermore, gene expression studies need to 
be  investigated to explore the varied specific gene functions and 
modulation mechanisms of post-CoV infection. However, conducting 
more in-depth investigations of the interspecies transition of animal 
CoVs and their adaptation to human carriers is crucial. Hence, it is 
necessary for further exploration to study virus-host interaction in 

various animals associated with close contact with humans to prevent 
future CoV strain mutation. The result of this research could improve 
the insight into the EVs’ engagement in viral infections and the 
significance of the therapeutic utility of EVs.
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