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Multiparameter flow cytometry is a routine method in immunological studies 
incorporated in biomedical, veterinary, agricultural, and wildlife research and 
routinely used in veterinary clinical laboratories. Its use in the diagnostics of 
poultry diseases is still limited, but due to the continuous expansion of reagents 
and cost reductions, this may change in the near future. Although the structure 
and function of the avian immune system show commonalities with mammals, 
at the molecular level, there is often low homology across species. The 
cross-reactivity of mammalian immunological reagents is therefore low, but 
nevertheless, the list of reagents to study chicken immune cells is increasing. 
Recent improvement in multicolor antibody panels for chicken cells has resulted 
in more detailed analysis by flow cytometry and has allowed the discovery of 
novel leukocyte cell subpopulations. In this article, we present an overview of 
the reagents and guidance needed to perform multicolor flow cytometry using 
chicken samples and common pitfalls to avoid.
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1 Introduction

Flow cytometry is a routine method in immunological studies incorporated in biomedical, 
veterinary, agricultural, and wildlife research and routinely used in veterinary clinical 
laboratories, albeit not for the diagnostics of poultry disease. The tremendous expansion in 
immunological reagents for livestock species, especially pigs and cattle, has in part been due 
to the availability of cross-reactive antibodies developed in the mouse and human field of 
immunology, as well as dedicated laboratories developing new antibodies (1–4). Although the 
structure and function of the avian immune system show commonalities with those of 
mammals, at the molecular level, there is often low sequence homology across species and low 
cross-reactivity of mammalian immunological reagents. Using commercially available 
reagents, recent improvement in multicolour antibody panels for chicken cells has resulted in 
more detailed analysis by flow cytometry and has allowed the discovery of novel leukocyte cell 
subpopulations (5–8).

Innovations in cytometry, including traditional flow, spectral flow, and mass cytometry, 
are driving its use for the isolation and analysis of cells for multi-omics research. Flow 
cytometry and cell sorting are commonly used tools to phenotype cell populations during, for 
example, infections and vaccine studies, whereas sorting specific cell subsets can be further 
analyzed using downstream transcriptomics, including bulk RNASeq (9, 10), single cell (sc) 
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FIGURE 1

Chicken leukocyte cell lineages and their characteristic markers routinely used in flow cytometry.

(11–13), or single nucleus (sn) sequencing. High-resolution 
transcriptomics are instrumental to understand avian immunology 
and contributing to defining accurate biomarker signatures of 
diseases. Although not yet applied to avian immune cell flow 
cytometry and cell sorting, they can also be  used for single-cell 
proteomics analysis (14, 15) and have been applied to analyse chicken 
sensory epithelium (16). The development of flow cytometry 
combined with omics technologies for avian research is rapidly 
enhancing and reviewed in Liu et  al. (17). Validating scSeq data 
through flow cytometric analysis or immunohistology strengthens 
and verifies the data set, and thus a critical review of the single cell 
analysis should always be  part of the quality control of sequence 
analysis (18). For example, recent studies (18, 19) demonstrated that 
due to little de novo mRNA production, especially avian CD4, is more 
difficult to detect in scSeq data, and results could be  easily 
misinterpreted if not compared with flow cytometric CD4 staining.

The key to robust single-cell preparation is the quality of the cell 
sample. Sample quality is dependent on multiple steps, including the 
freshness of the tissue, the digestion step, either mechanical or 
enzymatic, and the time the preparation takes. These all affect cell 
viability, the amount of cell debris and aggregates, and the loss of 
certain cell subpopulations. The advantage of mechanical dissociation 
is that cell surface antigens are least affected compared to enzymatic 
dissociation; however, the breakdown of extracellular matrix is 
difficult for some tissues, such as the lung, intestine, liver, and brain, 
and isolation of rare cells is less likely. Different digestive enzymes, 
alone or in combination, can be used to break down extracellular 
matrix or cell–cell junction, but one method is rarely suitable for 
different tissues due to the large variation in cellular composition and 
extracellular matrix composition (17, 20). Whatever the choice of cell 
preparation, speed is of the essence, and awareness that changes are 
likely to occur should be taken into account when analysing the data. 
In addition, cell plasticity is widely accepted, but little is known with 
regard to chicken immune cells. Cells can change from one phenotype 
to another, for example, because the cell preparation or purification 

activates the cells, but also clear-cut delineation of cell subpopulations 
has proved challenging in livestock species (10, 21). Transgenic 
chickens represent a great potential to study immune cells in more 
detail, especially those for which few antibodies or known markers are 
available, increasing our capacity to distinguish different cell lineages 
(12, 22). In this article, we present an overview of the reagents and 
guidance needed to perform multicolour flow cytometry using 
chicken cells and common pitfalls to avoid. An overview of chicken 
leukocyte subsets and their delineation by flow cytometric markers is 
shown in Figure 1.

2 CD45—the pan leukocyte marker

The transmembrane glycoprotein CD45 is a tyrosin phosphatase 
that regulates a large variety of cellular functions. In mammals, it is 
expressed in all nucleated cells of haematopoietic origin (23). In 
chickens, CD45 is expressed on all leukocytes, including thrombocytes, 
but absent on nucleated cells of the erythroid lineage (24). The 
expression of CD45 on thrombocytes is significantly lower compared 
to other leukocytes. Depending on the cell isolation procedure, 
antibody, and staining protocol used, additional distinction between 
B cells and myeloid cells (medium expression) and T cells (high 
expression) can also be  observed (see Figure  2) (7). Several anti-
chicken CD45 mAbs are commercially available, such as LT40 (IgM), 
AV53 (IgG1), UM16-6 (IgG2a), and His C7 (IgG2a) (Table  1). 
Alternative splicing of mammalian CD45 leads to the expression of 
isoforms of different lengths, which are named according to the 
presence or absence of exons 4 (A), 5 (B), and 6 (C) (CD45RO, 
CD45RA, and CD45RB, respectively) (25). Expression of the isoforms 
varies between cell types and subsets and depends on the cellular 
differentiation and activation state (26, 27). For chicken CD45, 
expression of different isoforms caused by alternative splicing of exons 
3, 5, and 7 was also demonstrated (28, 29). Whilst the above-
mentioned chicken CD45 mAbs detect all isoforms, mAb 8B1 (IgM) 
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recognises only two different short isoforms, which exhibit different 
expression patterns on B cells, αβ T cells, and γδ T cells (29). As 
activation of γδ T cells upregulated the expression of CD45 short 
isoforms, a varying expression system similar to that of mammals 
could exist in chickens, and the mAb 8B1 would be a helpful tool for 
its analysis. Antibody clones recognising CD45 and other relevant 
surface markers for leukocyte delineation are listed in Table 1.

3 Thrombocytes

Thrombocytes are the most common white blood cell population 
in the circulation of chickens, making up to ~80% of circulating 
peripheral blood mononuclear cells. In contrast to mammalian cells, 

avian thrombocytes are nucleated cells that display a variety of 
immunological functions, such as phagocytosis and tissue repair, and 
can release an array of bioactive proteins, including cytokines. The 
type of anticoagulants and isolation procedures affect the viability and 
number of thrombocytes; they can be  isolated by PBL gradient 
centrifugation (Figures  2A–C), whilst slow spin or differential 
centrifugation (60–100× g) results in a major loss of thrombocytes 
(Figures 2D–F) (30, 31).

Differentiation of thrombocytes from lymphocytes based on 
morphology is difficult, although thrombocytes are slightly smaller 
with clear cytoplasm and more oval to spindle-shaped. Compared to 
erythrocytes, they are smaller and have a more rounded nucleus and 
an increased nucleus-to-cytoplasm ratio (32). These cellular properties 
present as low forward side scatter (FSC) similar to lymphocytes but 

FIGURE 2

Thrombocyte characteristics: EDTA blood was processed by density gradient centrifugation (A–C,G) or slow speed centrifugation (D–F,H) and stained 
with anti-CD45 (16-6), followed by anti-mouse-IgG2a-FITC and anti-CD41/61 (11C3) and anti-IgG1-PE (A,B,D,E,G,H) or anti-MRC1L-B (clone KUL01, 
IgG1) and anti-IgG1-APC (C,F–H). Numbers in scatter plots (A,D) represent 1  =  thrombocytes, 2  =  monocytes, and 3  =  lymphocytes; FSC/SSC profile of 
thrombocytes (red), lymphocytes (blue), and monocytes (dark green) analyzed with common (G) or increased SSC voltage (H).
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TABLE 1 Antibodies against surface markers, which are mentioned in the text.

Antigen Clone Isotype Availability Comments

Cath2 N/A Rabbit polyclonal

CD1.1 CB3 IgG1 Southern Biotech

CD107a 5G10 IgG1 DSHB

CD115 (CSF1R) ROS-AV170 IgG1 Bio-Rad

CD127 (IL7R) 8F10E11 IgM Steric hindrance with CD4 when co-staining

CD15 W6D3 IgG1 BioLegend

CD15s CSLEX1 IgM BD Biosciences

CD184 (CXCR4) 9D9 IgG2a Bio-Rad

CD185 (CXCR5) 6A9 IgG1 S. Härtle LMU

CD25 (IL2R-alpha)

20E5 IgG1 T. Göbel LMU

28–4 IgG3 T. Göbel LMU

AbD13504 HuCAL Fab Southern Biotech

AV142 IgG1 Bio-Rad

CD268 (BAFF-R) 2C4 IgG1 Bio-Rad

CD28 AV7 IgG1 Southern Biotech

CD3

CD3-12 IgG1 Thermo Fisher

CT-3 IgG1 Bio-Rad/Southern Biotech

AV36 IgG1 Immunological Toolbox Does not bind to T cells from NARF C.B12 line

CD4

CT4 IgG1 Southern Biotech

EP96 IgM Southern Biotech

2.35 IgG2b Bio-Rad

AV29 IgG2b RI Immunological Toolbox

AV30 IgG1 RI Immunological Toolbox

CD40 IG8 IgG2a Immunological Toolbox

CD41/CD61 11C3 IgG1 Bio-Rad

CD44 AV6 IgG1 Bio-Rad/Southern Biotech

CD45

LT40 IgM Southern Biotech
Lower discrimination between thrombocytes and 

lymphocytes compared to other clones

UM16-6 IgG2a v

AV53 IgG1 RI Immunological Toolbox

His C7 IgG2a WUR NL

CD45 (2 short isoforms) 8B1 IgM T. Göbel LMU

CD5 2–191 IgG1 Discontinued

CD51/CD61 23C6 IgG1
Thermo Fisher/BD Biosciences/

BioLegend

CD56 4B5 IgG1 T. Göbel LMU

CD57 HNK-1 IgM BioLegend Crossreacting human antibody

CD80 AV82 IgG2a Immunological Toolbox

CD8α

11.39 IgG1 Bio-Rad

3–298 IgG2b Southern Biotech
Superior clone recognising the majority of CD8α 

variants

CT-8 IgG1 Southern Biotech

AV12 IgG1 Immunological Toolbox

AV13 IgG1 Immunological Toolbox

AV14 IgG2b Immunological Toolbox

EP72 IgG2b Southern Biotech

(Continued)
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a higher side scatter (SSC) than lymphocytes, whereas monocytes 
have a higher FSC and SSC compared to lymphocytes 
(Figures 2A,D,G,H).

Avian thrombocyte surface markers have been identified and 
facilitate experimentation using flow cytometry mAbs specific for 
alpha IIb beta 3 integrin (GpIIb/IIIa complex or CD41/CD61; 
clone 11C3), and CD45 will distinguish thrombocytes from 
leukocytes based on their CD45Low CD41/CD61+ phenotype 
(Figures  2B,E). However, CD41/61 is not exclusive for 

thrombocytes (33). Chicken TREM-B1 (mAb clones 7E8 and 1E9), 
an inhibitory receptor, is exclusively expressed in thrombocytes. 
The C-type lectin receptor CLEC-2 (mAb clone 8G8) (34) can 
be used in combination with CD8α and K1. The molecule that is 
recognized by mAb K1 has not been identified, but it is expressed 
in thrombocytes, macrophages, and monocytes. The thrombocytes 
can be distinguished based on size, smaller than the macrophages 
and monocytes, if a single cell gate is applied. In addition, 
thrombocytes express a CD51/CD61 integrin on their surface as 

TABLE 1 (Continued)

Antigen Clone Isotype Availability Comments

CD8β EP42 IgG2a Southern Biotech

chB6/Bu-1 AV20 IgG1 Bio-Rad
B cells but also some IELs, subpopulation of 

MCR1L-B macrophages

chB6a/Bu-1a
21-1A4 IgG1 Thermo Fisher

L22 IgG1 Bio-Rad

chB6b/Bu-1b
5-11G2 IgG1 Thermo Fisher

15H6 IgG1 Southern Biotech

ChL12/OV 11A9 IgM S. Härtle LMU

CLEC-2 8G8 IgG2a T. Göbel LMU

FcY/CHIR-AB1 8D12 IgG2b T. Göbel LMU

FLT3 ROS-AV184 IgG1 RI Immunological Toolbox
High on dendritic cells and low on subpopulation 

of MRC1LB+ macrophages

GRL1 I-A5 IgG3 DSHB

GRL2 IgG1 DSHB

Ig Light chain 2G1 IgG1 Bio-Rad

L1 IgG1 VWR/GeneTex

IgA A1 IgG2b Southern Biotech

IgM M1 IgG2b Southern Biotech

IgY 4D12 IgG1 Bio-Rad Optimal use for ELISA/immunohistology not 

suitable for flow

G1 IgG1 Southern Biotech Detects membrane and soluble IgY

MHC I F21-2 IgG1 Southern Biotech

MHC I (beta 2 

microglobulin)

F21-21 IgG1 Southern Biotech

MHC II 2G11 IgG1 Southern Biotech

TAP1 IgG2a DSHB

MRC1L-B KUL01 IgG1 Southern Biotech

Putative CD11c 8F2 IgG1 S. Härtle LMU

SLAMF4 8C7 IgG1 T. Göbel LMU

TCR αβ1 (Vβ1) TCR2 IgG1 Southern Biotech

TCR αβ2 (Vβ2) TCR3 IgG1 Southern Biotech

TCRγδ TCR1 IgG1 Southern Biotech

TIM4 JH9 IgG1 RI Immunological TOOLBOX

TREM-A1 14C9 IgM T. Göbel LMU

TREM-B1 7E8 IgG1 T. Göbel LMU

1E9 IgG2a T. Göbel LMU

Unknown K1 IgG2a B. Kaspers/S. Härtle LMU
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well as a signaling lymphocyte activation molecule (SLAM)F4 (35), 
TREM-A1 (33), CD40 (36) and MHC I  (37). However, these 
markers have to be used in a multicolour panel to distinguish the 
thrombocytes from leukocytes, and in addition, a marker such as 
SLAMF4 is only expressed in a subpopulation of thrombocytes 
(35). Although it has been reported that thrombocytes express 
MHC II mRNA (38), accurate demonstration of MHC II surface 
expression is lacking so far.

4 Polymorphonuclear cells

Chickens have limited numbers of eosinophils and mast cells, and 
the dominant polymorphonuclear cell type is the heterophil. To the 
best of our knowledge, no specific flow cytometry-applicable surface 
markers for granulocyte subsets are available in chickens. Heterophils 
have been reported to lack myeloperoxidase activity; however, older 
literature (39) and immunocytochemical staining (40) suggest there 
is peroxidase activity that in the future may be detected by cross-
reactive antibodies. The mAbs, anti-GRL1 and anti-GRL2, stain the 
granules of chicken granulocytes and thrombocytes, in addition to the 
surface expression of these proteins due to exocytosis (41). Increased 
expression can therefore be detected after permeabilisation of the cells, 
staining both surface and intracellular GRL1 and GRL2. Surface 
expression of GRL2 can also be  found on activated T cells (18). 
Heterophils also express antimicrobial peptides, including the 
cathelicidin CATH-2, which can be stained with a rabbit polyclonal 
serum (40), which in principle could be used for intracellular staining 
and flow cytometry. The most applicable method to detect heterophils 
is through a high SSC pattern and the lack of expression of B-cell, 
T-cell, thrombocyte, and macrophage markers in the CD45+ 
population. The high SSC is a consistent feature of heterophils, but the 
FSC pattern has been shown to be dependent on the flow cytometry 
equipment and the software used to analyse the data (7, 42).

Eosinophils are found in peripheral blood based on the staining 
of eosinophilic granules in their cytoplasm. However, chickens lack 
IgE isotypes and components of allergic reactions, which make it 
questionable if these eosinophils are functionally comparable to 

mammalian eosinophils. Whilst heterophils have a high SSC and low 
FSC pattern, eosinophils have a low SSC and higher FSC pattern (7), 
but a lack of specific markers hampers quantitative analysis by flow 
cytometry. Eosinophils have been reported to also have endogenous 
peroxidase activity (43), but the use of peroxidase activity in flow 
cytometry for chicken cells has not been demonstrated. Like 
eosinophils, detecting mast cells by flow cytometry is problematic due 
to a lack of markers. Cells containing Alcian Blue-positive granules in 
the lamina propria of the intestinal tract have been described (44) but 
the flow cytometric analysis of granulocyte subsets remains limited.

5 Natural killer cells

Natural killer (NK) cells display many different inhibitory and 
activating receptors that mediate a variety of functions, from the 
classical role of killing pathogen-infected cells to regulatory functions 
influencing adaptive immunity through interactions with dendritic 
cells (DCs) and secretion of cytokines. Chicken NK cells have been 
described in the embryonic spleen before the T cells enter the 
periphery. These cells are CD45+ and lack T-cell or B-cell-specific 
markers on the cell surface, i.e., surface CD3−, BAFF-R−, and Ig Light 
chain−, but CD3 is detected intracellularly (45). The number of NK 
cells in peripheral blood is low, whereas more substantial numbers can 
be found in tissues. Two inconsistencies in the avian NK cell literature 
should be highlighted before describing the recent flow cytometric 
data. Firstly, the mAb clone 28–4 has been used to detect chicken NK 
cells in the intestinal epithelium for many years, until more recently, 
it was shown to detect IL2Rα (CD25) (46). Therefore, although very 
useful in a multicolour panel, the antibody is not specific for NK cells. 
Secondly, chB6 has been used as a B-cell marker for decades (47). 
However, it is also expressed on intraepithelial leukocytes in the 
intestine that are CD45+ CD3− Ig Light chain− and lack markers 
expressed on mononuclear phagocytes (Figure 3) (44).

Many antibodies have been tested to identify chicken NK cells, but 
none were shown to be uniquely expressed by NK cells, as these also 
detect subpopulations of T cells, thrombocytes, or myeloid cells (48–
51). Alternatively, they only detect a subpopulation of NK cells 

FIGURE 3

chB6 expression on non-B cells: an IEL preparation was stained with antibodies against chB6 (AV20), TCRγδ (TCR1), and BAFF-R (2C4). Cells were 
gated for viable, single leukocytes. Gating on chB6+ cells (A) reveals that chB6+ cells consist of three subsets: BAFF-R+/TCRγδ− B cells, BAFF-R−/TCRγδ+ 
γδ T cells, and so far, uncharacterised BAFF-R−/TCRγδ− cells (B).

https://doi.org/10.3389/fvets.2024.1385400
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Härtle et al. 10.3389/fvets.2024.1385400

Frontiers in Veterinary Science 07 frontiersin.org

[reviewed in Straub et al. (52)]. Expression of receptors also varies 
between tissues and subpopulations of NK cells in the lung, liver, and 
intestinal epithelium (52). These include antibodies specific for CD56 
(49) and CHIR-AB1 (53), a high-affinity IgY Fc receptor. Nonetheless, 
they are useful for flow cytometry in multicolour panels in 
combination with the lack of surface CD3, BAFF-R, or Ig Light chain 
staining (48). Chicken NK cells that are CD3− Ig Light chain− can 
express CD8αα, but the expression level alters upon activation, and 
expression on NK cells in peripheral blood may vary. A NK cell-like 
population in peripheral blood was detected, which expressed low 
levels of CD4, CD5, and CD11c and high levels of CHIR-AB1, CD56, 
and 28–4 but lacked CD3, CD8α, and chB6 (54).

To measure NK cell function, a flow cytometry-based 
degranulation assay can be applied that is based on the expression of 
CD107a (LAMP-1 or LEP100) (48). Cytotoxic activity via the 
perforin-granzyme pathway occurs in pre-formed lytic granules 
surrounded by lipid bilayers containing LAMPs that are fused with the 
plasma membrane. A chicken homolog of LAMP-1 (CD107a) exists 
(also known as LEP100), and a mAb antibody (5G10) is available, 
which was first used to assess the degranulation of chicken NK cells 
(48) and then applied to study CTLs (55). To distinguish between NK 
cells and CTLs, this staining must be combined with additional mAbs 
to exclude degranulation of cytotoxic T cells (55) and heterophils (48). 
More recently, flow cytometric-based staining of the release of 
perforin and granzyme A was developed to measure NK cell activation 
in ED14 embryonic splenocytes (56), but like CD107a expression, 
both perforin and granzyme A are not restricted to NK cells, and 
multicolour analysis is warranted to exclude CTLs. The lack of 
exclusivity is also demonstrated by perforin and granzyme A 
expression in the macrophage cell line HD-11 and low levels of 
perforin expression in the B-cell line DT-40 (56), which is in 
agreement with expression in human macrophages and granzyme B 
secretion by human B cells.

6 Mononuclear phagocytic cells

Similar to mammals, the cells of the chicken mononuclear 
phagocytic system (MPS) consist of monocytes, macrophages, and 
dendritic cells (DC). Studies into the biology of these cells using flow 
cytometry have focused on cells of the blood, spleen, and occasionally 
the liver and lung. In the blood, monocytes can be detected using the 
antibody KUL01, which recognises the mannose receptor C-type 1 
Like B (MRC1L-B (57)). In whole blood cell preparation, monocytes 
are characterized by their high FSC and low SSC compared to 
lymphoid cells (7). MRC1L-B+ monocytes also express CSF1R and 
MHC class II (22, 58).

TIM4 binds phosphatidylserine, a lipid normally found on the 
inner surface of the plasma membrane that is rapidly redistributed to 
the outer cell surface during apoptosis (59). Like humans, chickens 
express short and long isoforms of TIM4. Hu et al. generated two 
monoclonal antibodies against chicken TIM4. Clone JH9 was raised 
against the extracellular domain of TIM4 and recognises all TIM4 
isoforms, whilst clone IE12 was raised against the additional linker 
found in some of the TIM4 long isoforms. This clone only recognises 
one of the long TIM4 gene products (available through the Roslin 
Institute, Immunological Toolbox). Currently, there is no known 
functional difference between the chicken TIM4 isoforms, but 

differential expression at the mRNA level appears to be specific to 
chicken lines (60). Staining chicken leukocytes with the TIM4 mAb 
JH9 does not provide a distinct staining pattern in flow cytometry, and 
it is therefore challenging to distinguish clear boundaries between 
TIM4+ and TIM4− populations without correct unstained and FMO 
controls. However, in combination with MRC1L-B, the antibody has 
been useful in the identification of subpopulations of cells in chickens.

In chickens, the presence of monocyte subsets described in 
mammals, such as the classical CD14++ CD16− (mouse equivalent 
LyC6++ CD43+), the non-classical CD14++ CD16++ (LyC6+ CD43++), 
and intermediate CD14++ CD16+ (LyC6++ CD43++) monocytes (61), 
cannot be clearly defined due to a lack of antibodies against these 
markers. Unlike mammalian CD14, chicken CD14 is a GPI-anchored 
protein rather than a transmembrane protein (62). To date, no 
specific staining has been demonstrated for the mAb anti-chicken 
CD14. However, chicken monocytes can be  segregated based on 
their expression of TIM4. MRCL1-B+ TIM4+ and MRCL1-B+ TIM4−-
cell populations both express transcripts for genes involved in 
murine monocyte–macrophage differentiation, indicating these cells 
are part of a differentiation series rather than distinct subsets (63). 
For in vitro characterization of monocytes, cells can be enriched by 
their adherence to glass or plastic tissue culture plates. Studies have 
shown that monocytes can adhere to glass after 1 h of culture. 
However, nucleated thrombocytes attach to these surfaces within 
30 min but these cells die within 48–72 h; therefore, monocytes 
cultured for shorter periods of time will be  contaminated with 
thrombocytes (64).

6.1 Macrophages

Chicken macrophages can be universally studied in tissues by flow 
cytometry using the MRC1L-B antibody (9, 10, 60, 65, 66). Tissue-
resident macrophages exhibit diverse functionality and can be defined 
based on their location in the organ. For example, in the chicken 
spleen, several macrophage subpopulations exist. These include 
periarteriolar lymphoid sheaths, resident macrophages, ellipsoid-
associated macrophages, and red-pulp macrophages. The ability to 
segregate different macrophage subsets is difficult as specific markers 
for each population have yet to be  identified. Splenic MRC1L-B+ 
macrophages universally express MHC class II, CD40, and CD80 and 
lack FLT3 expression (10, 67). Although mAbs against chicken CD83 
and CD86 have been described, no convincing staining of mononuclear 
phagocytes has been demonstrated. In the liver, MRC1L-B+ 
macrophages can be segregated into MRC1L-BLow TIM4Hi cells and 
MRC1L-BHi TIM4Low and MRC1L-BHi TIM4− cells. Transcriptome 
analysis indicates that MRC1L-BLow TIM4Hi represent Kupffer cells, 
which are highly phagocytic compared to the MRC1L-BHi liver-resident 
macrophages (63). The TIM4 mAb JH9 stains a small population of 
CD3+ and Bu1+ cells in the liver and bursa, respectively (63).

Functional assays involving the assessment of phagocytosis can 
be integrated into flow cytometry experiments. Using commercially 
available fluorescent beads, which can be labeled with antigens such as 
LPS or inactive avian influenza virus, pH-sensitive pHrodo-labeled 
bioparticles, such as Salmonella or E. coli, or CFSE-labeled dead cells, 
can be utilized to determine the efficiency and specificity of chicken 
macrophage phagocytosis or effectorcytosis (10, 68–70). Performing 
phagocytosis assays at 4°C, a temperature commonly referred to as “on 
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FIGURE 4

Enriching for splenic cDC1 cells without the FLT3 antibody. Splenocytes were stained for CD3 (CT3), chB6 (AV20), MRC1L-B (KUL01), MHC class II 
(Tap1), and putative CD11c (8F2). (A) Cells gated for live, single CD3−/chB6− leukocytes, the CD3− chB6− cell population can be analyzed according to 
MHC class II and MRC1L-B expression. (B) Amongst the CD3− chB6− MRC1L-B− MHC class II+ cells, CD11c + cDCs (green) can be addressed. (C) ChB6 
(AV20) antibody stains MRC1L-B+ macrophages in the spleen.

ice,” should be used to assess specific binding or adhesion of particles 
to cell surfaces without allowing active internalization (phagocytosis) 
to occur. This approach helps researchers differentiate between particles 
that are merely attached to the cell membrane and those that have been 
engulfed by the cell. It should be noted that 4°C control may not always 
be optimal for in vitro model antigen uptake studies. For example, 4°C 
control does not prevent bone marrow-derived macrophages from 
phagocytosing pH-sensitive pHrodo-labeled bioparticles. Instead, an 
actin polymerization inhibitor, cytochalasin D, inhibited the uptake of 
these bioparticles (70). The differential expression of surface markers, 
such as CD40 and MHC class II, can be an indicator of cell activation. 
In chickens, LPS-treated bone marrow-derived macrophages 
upregulate CD40 expression and downregulate MHC class II 
expression (71). In the chicken lung, MRC1L-B+ that phagocytosed 
LPS- or avian influenza-coated beads had significantly higher CD40 
expression compared to cells that had taken up uncoated beads. The 
same study also demonstrated an increase in MHC class II expression 
by cells that phagocytosed LPS-coated beads (72). This observation is 
still to be determined for other tissue-resident macrophages, and more 
research is required to understand how infection alters the expression 
of these markers in a tissue-specific manner.

It has been well known that a small population of chicken splenic 
macrophages stain for chicken B-cell marker chB6 (Figure 4C) (47). 
Therefore, the BAFF-R mAb is a more specific reagent for chicken B 
cells (73). Of note, MRC1L-B may be sensitive to enzymatic digestion. 
To assess the impact of isolation techniques on MRC1L-B expression, 
researchers should examine immunohistology sections of their tissue 
samples to visualize the level/abundance of cells expressing the 
marker. Specifically, comparing the effects of non-enzymatic 
approaches to enzymatic methods can provide insights into how 
different isolation techniques influence MRC1L-B expression.

6.2 Dendritic cells

Generally, in mammals, DCs are defined by their expression 
levels of MHC class II, CD11c, and co-stimulatory molecules CD40 
and CD86 (74). Using this general phenotype, researchers have 

sought to phenotype chicken DCs in this manner by flow cytometry. 
Vu Mahn et al. found that MHC class II+ putative CD11c+ MRC1L-
B− splenocytes express gene transcripts associated with mammalian 
cDC1 cells (75). The antibody against DEC-205, a marker for murine 
DC, was generated for chickens. Although useful in 
immunohistology, this antibody does not provide a strong staining 
pattern in flow cytometry (76). Recently, reagents against chicken 
FLT3, XCR1, and CSFR2 were developed, which aid to study chicken 
cDC without dependence on transgenic chickens (67). The anti-
chicken FLT3 monoclonal, designated ROS-AV184, was found to 
label two cell populations in the spleen, FLT3Hi and FLT3Low cells. 
The FLT3Hi cells, known as cDC1 cells, lack expression of the 
macrophage marker, MRC1L-B, and exhibit slightly lower levels of 
CD45 and MHC class II expression compared to the FLT3Low cells. 
The FLT3Low cells express MRC1L-B, making them macrophages. If 
receptor–ligand interaction is of high affinity, this offers an 
opportunity to analyse protein expression on cells through flow 
cytometry with fluorochrome-labeled ligands instead of antibodies. 
Recently, Wu et al. demonstrated that chicken XCL1-AF647 binds to 
XCR1 on FLT3+ cDC1 cells. In addition, to detect CSF2R expression, 
a CSF2-AF647 protein was generated and found not to stain chicken 
cDC1 cells (67). Together, this demonstrates that chicken cDC1 cells 
can be distinguished by staining for FLT3 or XCR1. However, if 
researchers do not have mAb FLT3, DC can be enriched by including 
MRC1L-B, CD3, and chB6 or BAFF-R staining with MCH class II to 
remove T and B cells and macrophages from MHC class II+ cell 
population (Figures 4A,B).

The maturation status of chicken cDC1 can be defined by their 
expression of CD1.1 using mAb CB3 clone (77). In the blood, a 
majority of XCR1+ cDC1 are MHC class IILow and CD1.1Hi, whereas 
small subpopulations have the MHC class IIHi CD1.1Hi or MHC 
class IIHi CD1.1− phenotype. In the spleen, these subpopulations 
are present from 1 week of hatch, with the MHC class IIHi and 
CD1.1− cells becoming the most abundant by 2-week post-hatch. 
It is hypothesized that the splenic XCR1+ MHC class IIHi CD1.1Hi 
cDC1 is derived from the blood XCR1+ MHC class IIHi CD1.1Hi 
cDC1 pool that lose CD1.1 expression as they mature and develop 
in the spleen (12).
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7 B cells

Chickens use the bursa Fabricii, a gut-associated lymphoid tissue 
(GALT), to expand B-cell precursors and diversify the BCR repertoire. 
This unique primary B-cell organ is the most striking difference to 
B-cell development in most mammals and causes the classification of 
avian B-cell development into a pre-bursal, bursal, and post-bursal 
phase, resulting in the discrimination of pre-bursal, bursal, and post-
bursal B cells (78).

7.1 Pre-bursal B cells

The earliest B-cell-specific surface marker expressed on pre-bursal 
B cells is Bu1/chB6, with the first chB6+ cells becoming detectable 
simultaneously around embryonic day (ED) 10  in the embryonic 
bursa and spleen (79). As chB6 is strongly expressed at all stages of 
B-cell development except in differentiated plasma cells (47), it has 
become the most used marker for chicken B cells. The protein is a 
typical type I  transmembrane protein with a highly glycosylated 
extracellular region and no recognizable similarity to known 
mammalian molecules. chB6 is recognized by several commercially 
available mAbs like AV20 and BoA1 (a cross-reactive guinea fowl 
antibody). It is an alloantigen with two alleles, Bu1a/chB6a and Bu1b/
chB6b, which are recognized by anti-chB6a (clone L22) and anti-
chB6b (clone 11G2) (80, 81). If using the allotype-specific antibodies 
to address all B cells, it is important to determine the presence of the 
alleles in the chicken line; otherwise, only a fraction of B cells might 
be stained.

Shortly after chB6 expression becomes detectable, pre-bursal B 
cells begin to express another pan-B-cell marker, the BAFF receptor 
(BAFF-R), recognized by mAb anti-BAFF-R clone 2C4 (73) and at 
ED14, chB6+ cells in the spleen are all BAFF-R+ (82).

Whilst most cells before their migration to the bursa are 
Ig-negative, very few pre-bursal cells have completed a productive 
BCR rearrangement and express surface Ig, detectable with anti-Ig 
Light chain or anti-IgM staining (82, 83). All pre-bursal B cells in the 
spleen express relatively high levels of CXCR4 and CXCR5 (82, 84); 
hence, migration of pre-bursal B cells can be  mediated by their 
attraction toward CXCL12 and CXCL13L1-L3, respectively. 
Potentially also connected to their migratory behavior, pre-bursal B 
cells express sialyl-Lewis-X/CD15s but not Lewis-X/CD15 (85, 86). 
CD15s is a tetrasaccharide carbohydrate that is usually attached to 
O-glycans on the surface of cells and can mediate the interaction with 
selectins as the first step of leukocyte emigration from blood vessels. 
The chicken molecules can be detected with cross-reacting mAbs for 
the human molecules, e.g., mouse anti-human CD15s clone CSLEX1 
and mouse anti-human CD15 clone W6D3 (85, 86).

7.2 Bursal B cells

Between ED9 and ED12, a small number of pre-bursal stem cells 
migrate to the bursa anlage and colonize the lymphoid follicles, where 
they start to strongly proliferate and diversify their BCR by gene 
conversion. From ED14 to 18, bursal B cells show a homogeneous 
expression of chB6, BAFF-R, MHC class II, CD40, CXCR4, and 
CXCR5 (36, 82, 84, 87, 88) and the initially small percentage of surface 

IgM-positive cells increases up to 50%. During their differentiation in 
the bursa, B cells lose CD15s expression and become CD15-positive 
(85, 86). Around hatch, the first B cells emigrate from the bursa into 
the periphery. The small fraction (ca. 5%) of emigrating cells amongst 
bursal B cells can be addressed as Ig Light chain+, MHC class II+, 
chL12+, and CXCR4Low cells (see Figure 5A) (82, 89). ChL12, or the OV 
antigen, is recognized by mAb 11A9. The nature of the antigen is not 
known, but it should always be considered that it is an alloantigen, 
which is not recognised by 11A9 in every chicken line (90).

7.3 Peripheral B cells

Post-emigration from the bursa, the immature B cells seed B-cell 
areas in secondary lymphoid organs, such as the peri-ellipsoidal white 
pulp in the spleen or the B-cell areas in caecal tonsils. Due to the special 
structure of the avian spleen, there is no histological discrimination 
between marginal zone and follicular B cells (91) and, to date, no markers 
have been described that would assign splenic B-cell subpopulations. All 
chicken B cells are CD5+ (92) hence, CD5-based discrimination of 
chicken B1 and B2 cells performed in mice and with reservations in 
humans is not possible. Splenic B cells are quite homogeneously BAFF-
R+, Ig Light chain+, MHC class II+, and CD40+ (36, 83, 93). Frequently, 
chB6 expression is not completely homogenous; instead, especially in the 
spleen, a small immunoglobulin Light chain+ fraction expressing higher 
amounts of chB6 and a higher FSC can be observed (Figures 5B,C) (84). 
The BCR on the vast majority of cells (>95%) is an IgM isotype, with very 
few cells expressing a class-switched BCR of IgY or IgA isotype 
(Figure 5B). Noteworthy, not all commercially available anti-chicken IgY 
antibodies stain both soluble and membrane-bound IgY. Whilst clone 
4D12 works optimally for ELISA and immunohistology, it does not stain 
membrane-bound IgY. However, anti-chicken IgY clone G1 stains both 
IgY variants (see Figures 5D,E) (94).

7.4 Germinal centre B cells

In the spleen and similarly in all larger secondary and tertiary 
lymphoid accumulations, encapsulated germinal centres (GCs) 
can be identified, consisting predominantly of GC B cells. It is 
important to be  aware that in regular spleen preparations 
(mincing through a strainer), GCs and hence GC B cells will not 
be present. The GCs strongly stick to the residual artery tree and 
do not pass through the sieve without further measures. Imamura 
and colleagues have shown that chB6+ GC B cells can be obtained 
when the splenic artery tree with adjacent GCs is freed of the red 
pulp and separately digested with collagenase (95). Large GCs 
with a comparatively thinner capsule, which are not attached to 
an artery, are found in the caecal tonsils (96) hence, caecal tonsil 
preparations potentially contain GC B cells. To date, no markers 
are available to address these cells specifically. However, next to 
a high expression of chB6, immunohistochemistry of GCs 
revealed a weak positivity for CD57 (using the cross-reactive 
anti-human CD57 clone HNK-1) (97). In addition, HNK-1 works 
in flow cytometry, and as PWP B cells are chB6+ CD57−, it could 
serve as a marker to identify GC B cells in cell suspensions. 
Indeed, despite the lack of dead cells and doublet exclusion, older 
flow cytometric analysis of caecal tonsil cell suspensions found a 
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chB6high CD57+ cell population, which could readily represent GC 
B cells (97).

7.5 Memory B cells

As with GC B cells, due to the lack of markers, it is currently not 
possible to identify memory B cells by flow cytometry. Here, new 
techniques like single-cell sequencing of B cells from different tissues 
and BCR sequencing will certainly help to identify these differentiation 
stages and potential new markers. Interestingly, scRNA sequencing of 
chicken blood leukocytes has identified several different B-cell 
subclusters (18). Though these have so far not been functionally 
assigned, it highlights the great value of this technique to identify 
chicken B-cell subpopulations.

7.6 Plasma cells

Histologically, plasma cells, the final differentiation stage of B 
cells, can be identified by their typical morphology with a cartwheel 
nucleus structure. They have been identified in the spleen and in 
mucosa-associated lymphoid tissues (HALT, BALT, and GALT). 
Immunohistochemistry has also shown that in contrast to all other 
known chicken B-cell stages, plasma cells do not express chB6 or 
show only very weak staining (47). Downregulation of chB6 has 
also been shown by flow cytometry when B cells were differentiated 
toward a plasma cell phenotype in vitro by the presence of CD40L 
(93). Based on single color immunohistochemistry, it is also 
suggested that splenic plasma cells express CD57, and basic flow 
cytometry revealed a small population of large cells in the spleen 
and caecal tonsils expressing chB6low CD57+ (97). However, this 

FIGURE 5

B-cell phenotypes (A) Bursa cells from a 5-day-old bird were stained for chL12 (11A9), chB6 (AV20), MHCII (2G11), and IgL (2G1). tSNE analysis with the 
FlowJo plugin was performed on viable, single, chB6+ cells, clearly displaying the phenotype of bursal emigrants (arrow). Leukocytes from the blood 
(B) and spleen (C) were stained for chB6 (AV20) and IgM (M1). Plots are gated for viable, single leukocytes. (D,E) Recognition of membrane-bound IgY. 
Spleen cells were stimulated for 6  days with CD40L and IL-10 to induce B-cell proliferation and class switch. Cells were stained with anti-chB6 (AV20) 
to address undifferentiated B cells and anti-IgY clone G1 (D) or anti-IgY clone 4D12 (E). Plots are gated for viable, single leukocytes. (F) Immediately 
after isolation (blue) or after stimulation with CD40L and IL-10 for 48  h (red), splenic leukocytes were analyzed for MHC class II (2G11), CD80 (AV82), 
CD25 (28–4) and CD57 (HNK-1) expression. Histograms were gated for viable, single chB6+ B cells.
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observation should be verified with further experiments, including 
additional markers. A rich source for plasma cells may be  the 
Harderian gland, a lacrimal gland in the eye orbit. The gland reacts 
to intra-ocular vaccination, and it is described that leukocytes, 
including those with a plasma cell phenotype, can be isolated from 
the gland (98–101). Immunohistochemistry of the gut reveals a 
multitude of IgA-positive plasma cells in the lamina propria (LP), 
and with enzymatic digestion, it is possible to isolate IgA surface-
positive cells (98).

Another approach to identify B-cell differentiation stages could 
be staining for transcription factors. Two key transcription factors for 
plasma cell differentiation are IRF4 and Blimp1/PRDM1. Whilst IRF4 
induces plasma cell differentiation by directing immunoglobulin class 
switching, proliferation, and survival, BLIMP1 acts as a transcriptional 
repressor that represses B-cell features (102). For the rat anti-
human-IRF4, clone 3E4 cross-reaction with porcine cells has been 
demonstrated (103) and preliminary data suggest cross-reaction with 
chicken cells (personal communication, Dr. W. Gerner). At least for 
one anti-Blimp1 antibody (mAb rabbit anti-human Blimp1, clone 
C14A4), cross-reactivity with the chicken protein in Western blots was 
demonstrated (104), and in mammals, this antibody was used in 
flow cytometry.

7.7 Post-bursal stem cells

In contrast to mammals, where B-cell production in the bone 
marrow can be a lifelong process, the bursa Fabricii, and hence 
the chicken’s primary B-cell organ, involutes with sexual maturity 
(78). As analysis of older birds and studies with bursectomised 
birds have clearly shown the establishment of a bursa-
independent dividing B-cell pool post-hatch, it is postulated that 
after bursa involution, the peripheral B-cell pool is maintained 
by post-bursal stem cells (89). Whilst after bursal emigration all 
B cells are chL12+, with increasing age, a chB6+/chL12− B-cell 
population becomes detectable in the spleen, which might 
represent these cells (105). As chL12 detects an alloantigen, it 
may not be useful for birds lacking the allele. With the availability 
of new techniques and markers, these cells can now 
be further analyzed.

7.8 Activation markers

As antigen-presenting cells, all B cells are MHC class II+, but 
CD40L stimulation and mimicking T cells help further increase MHC 
class II (93). Whilst freshly isolated B cells from bursa, PBL, and 
spleen are CD80−, in vitro activation of B cells leads to strong 
upregulation of CD80 and also strongly increases CD25 expression 
(106, 107). As mentioned, regular spleen cell preparations do not 
contain GC B cells, so it is possible that, like human B cells, CD80 is a 
marker for activated and dividing chicken GC B cells. Up to one-third 
of freshly isolated splenic B cells are already CD57+ (97). This fraction 
is doubled by in vitro stimulation. Overall, activation of B cells can 
lead to an increase in already existing marker expression on all cells 
(MHC class II, CD25), complete de novo expression on a subset of B 
cells (CD80), or expression on an increased fraction of cells (CD57) 
(Figure 5F).

8 T cells

T-cell progenitors in the bone marrow express several markers 
like c-kit, HEMCAM, BEN, αIIbβ3, ChT1, MHC class II, and CD44 
(108), and they colonize the thymus in three waves (first from 
paraaortic foci starting at ED6, second at ED12, and third at ED18, the 
two latter from bone marrow) (109). Embryonic thymocytes 
expressing the TCR γδ can first be detected around ED12, whereas 
cells expressing TCRα/vβ1 are not present until ED15 and TCRα/vβ2 
around ED18 (110, 111). As in mammals, avian extra-thymic T 
lymphocytes all express the T-cell marker CD3. The common 
commercial antibody clone CT-3 recognises an extracellular domain 
of the chicken CD3 molecule (112). However, CT-3 staining may or 
may not give optimal separation between negative and positive 
populations, especially in whole blood. Moreover, even in isolated 
PBMCs, the staining can be influenced by, e.g., the chicken breed or 
cell activation status (7). In addition to CT-3, commercial anti-human 
CD3ε (clone CD3-12) antibodies exist where cross-reaction with 
chicken CD3 has been shown for intracellular staining (113). Reports 
exist on CD3 polymorphism, and another anti-chicken CD3 antibody, 
clone AV36, supposedly recognises a variable epitope and did not bind 
to splenocytes from the NARF C.B12 (B12 haplotype) inbred chicken 
line (114), whereas clone CT-3 could detect C.B12 splenocytes. In 
addition to CD3, avian T-cell subsets can be defined according to the 
expression of T-cell receptor variants. Avian homologs of the 
mammalian γδ and αβ TCR exist, but two variants of the latter were 
shown to differ in the variable regions in the β chain [encoded by 
either Vβ1 or Vβ2 genes (115)].

8.1 αβ T cells

Avian T-cell subsets expressing the variants of the αβ TCR can 
be  identified by staining with the commercial clones TCR2 (TCR 
αVβ1) and TCR3 (TCR αVβ2), respectively (116). TCR2+ and TCR3+ 
subsets differ in ontogeny and tissue distribution, with TCR2+ cells in 
general being more abundant than TCR3+ cells (117). Functional 
differences between TCR2+ and TCR3+ subsets are poorly described, 
but interestingly, TCR2+ cells but not TCR3+ cells migrate to the 
chicken intestine, hence being of importance to mucosal IgA 
production (118, 119). Several subsets of αβ T cells can be identified 
by staining for the co-receptors CD4 and CD8 (120). As opposed to 
chicken CD4 and CD8β, the chicken CD8α gene is polymorphic 
(121). Several antibodies exist (CT-8, 3–298, EP72, AV12-14) 
recognising chicken CD8α, but the 3–298 clone may be superior in 
being the only commercial reagent recognising the majority, if not all, 
of CD8α variants (122). In contrast to CD8α, only a single commonly 
used CD8β antibody exists (EP42). Within the αβ T-cell population 
in, e.g., peripheral blood, the following subsets exist: CD4+ CD8αα+, 
CD4+ CD8αβ+, and CD4− CD8αβ+, in addition to the less well-
characterized subsets of CD4− CD8αα+ (123) and CD4+CD8αβ+ 
cells (124).

8.2 Cytotoxic T cells

Chicken cytotoxic T lymphocytes (CTL) recognize peptides 
presented by MHC I molecules and show cytotoxic activity (125, 126). 
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FIGURE 6

Demonstration of CD4/CD8 double-positive cells is affected by the choice of fluorochrome and the individual animal. PMBCs from adult birds were 
stained with TCRγδ (TCR1), CD4 (CT-4), and CD8α (3–298), and plots are shown for viable singlets and TCR1− lymphocytes. (A) Chicken with high level 
of peripheral CD4  +  CD8+ cells and (B) a low level of double-positive cells. (C) Chicken with high level of CD4  +  CD8+ cells, which is not picked up by 
the less bright APC-Cy7 staining of CD8α.

Interestingly, CD3+CD8+ cells in peripheral blood usually express the 
CD8αβ isoform, but a CD8αα-positive subset also exists and may 
expand, e.g., during viral infection (127). A common CTL assay in 
mammals is based on the detection of transient expression of 
lysosomal-associated membrane glycoproteins (LAMPs) on the cell 
surface. Cytotoxic activity via the perforin–granzyme pathway occurs 
in pre-formed lytic granules surrounded by lipid bilayers containing 
LAMPs that are fused with the plasma membrane. Hence, the LAMP-1 
(CD107a) degranulation assay described above can also be used in 
studies of chicken cytotoxic T cells. Within the αβ T-cell population 
(αVβ1+ splenocytes), both CD8αα+ and CD8αβ+ showed potential to 
degranulate in vitro upon phorbol myristate acetate (114).

In addition to the granzyme/perforin killing pathway, evidence 
exists of a Fas/FasL pathway in chickens (128) and an anti-human 
FasL antibody (CD178, clone SB93a) was shown to cross-react with 
the chicken FasL by immunohistochemistry (129) but its suitability 
for flow cytometry is to be  determined. A common parameter 
reported in relation to CTL responses is the production of IFN-γ. A 
number of monoclonal antibodies directed against chicken IFN-γ 
exist. Some only recognize the recombinant protein they were raised 
against, and others perform well in ELISA but are not suited for flow 
cytometry. Induction of IFN-γ production in splenocytes or PBMC by 
mitogens or specific antigens is reported to be  detected by using 
antibody clones: 2B7, 11G5, 7E3, 12F12 (130, 131), mAb80 (132), and 
a rabbit polyclonal anti-chIFN-γ reagent (133). Clones 12F7, 12D4 
(130) and EH9 (134) seem less suitable for intracellular staining (ICS) 
and flow cytometry. The anti-chicken IFN-γ antibody (clone 
5C.123.02/08) from the commercial chicken IFN-γ Invitrogen ELISA 
kit works for intracellular staining (ICS) of the recombinant protein 
expressed by CHO cells (133). However, although some report 
staining of the native protein using these antibodies, others observe 
only weak staining with the ELISA reagents (135) or fail to reproduce 
even a dim signal (136). Additional clones MT6C2 and MT7C1 from 
Mabtech, as well as four Chinese clones, were found not suitable for 
ICS (136, 137). Unfortunately, the two superior antibody clones for 
intracellular staining and flow cytometry, mAb80 and 5G11, are not 
commercially available.

8.3 T helper cells

Several reagents recognising chicken CD4 are available, e.g., the 
clones CT4, EP96, AV29, and 2–35. In other species, CD4 may also 
be expressed by monocytes, but this is not the case in chickens (138). 
However, a small CD3− CD4+ NK population (with slightly higher 
FSC/SSC than resting lymphocytes) is sometimes identified in 
peripheral blood (54) and hence at least TCRαβ or CD3  in 
combination with CD4 should be used to identify chicken Th cells. 
Interestingly, some lines of chickens have a high abundance of 
CD4+CD8+ double-positive TCRαβ+ lymphocytes, and there is a 
genetic influence on levels in peripheral blood but not necessarily in 
the intestine (121, 123, 138). The double-positive subset exists either 
as CD4+CD8αα+ or CD4+CD8αβ+ with a dimmer CD8 signal than 
CD4− CD8+ cells (127); hence, using bright fluorochromes for CD8 
detection is crucial to obtain good separation between CD8−, CD8dim, 
and CD8Hi subpopulations (Figure 6).

In mammals, major Th subsets can be  differentiated by 
intracellular staining for the transcription factors T-bet (Th1), 
GATA-3 (Th2), RORγt (Th17), and Foxp3 (Treg). To the best of our 
knowledge, no reagents are available for staining important chickens 
Th transcription factors, despite the obvious value of developing such 
reagents for flow cytometry. The success rate of identifying cross-
reacting mammalian reagents is generally poor for chicken surface 
markers (139, 140), but for highly conserved intracellular proteins 
such as transcription factors, the chances may be higher. However, 
testing of two widely used anti-murine Foxp3 clones, FJK-16 s and 
MF-14, proved they were unsuitable for Foxp3 detection in chicken 
cells (141).

The basic Th1 response system appears to be  conserved in 
chickens (142), and CD4+ cells producing IFN-γ are often interpreted 
as Th1 cells. Indeed, the Th1/Th2 paradigm was early on made 
probable through gene expression analysis of tissue from Newcastle 
disease virus and Ascaridia galli, infected chickens, respectively (143). 
However, flow cytometry studies addressing production of multiple 
cytokines and linking Th1 or Th2 profiles to, e.g., TCR αVβ1 or TCR 
αVβ2 expression are still missing. The limited quality of the chicken 
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cytokine antibodies is often a problem that has inspired the use of 
alternative methods such as identification of intracellular cytokine 
RNA by the PrimeFlow™ system (130).

Putative chicken regulatory T cells that can suppress T-cell 
proliferation in vitro were identified by co-expression of CD4 and 
CD25 (144). However, the CD4+ CD25+ population includes other 
subsets than just Tregs. More recently, FOXP3 was identified in the 
chicken genome, and Foxp3 mRNA was shown to be abundant in 
CD4+ CD25+ in contrast to CD4+ CD25− subsets in the spleen and 
caecal tonsils (141). The gene expression studies identified two CD4+ 
CD25+ subsets where the cells expressing high levels of IL-10 and 
Foxp3 were suggested as mature Tregs, whereas cells expressing low 
levels of IL-10 in combination with IL-2 were rather activated Th cells 
(141). Staining with CD4 and CD25 will hence provide a mixed 
population, and the production of chicken Foxp3 antibodies is 
expected to give better opportunities for studying Treg subsets in the 
future. Several chicken CD25 antibodies exist where AV142 and the 
bivalent human recombinant Fab AbD13504 are widely used. In 
addition, clones like 6C9, chCD25-32, and chCD25-54 exist (145), as 
well as 28–4, which was originally described as an NK cell marker but 
later identified as recognising CD25 (46).

Various in vitro and in vivo models have shown chicken IL-17 
mRNA gene expression and suggested the presence of Th17 cells 
(146–149) but only recently have monoclonal antibodies useful for 
ICS been developed, namely the 1E7 clone recognising IL-17F (with 
slight cross-reactivity to IL-17A) and the two IL-17A-specific clones 
9F11 and 10D5 (150). The IL-17 antibodies were all able to stain a 
small population of CD4+ splenocytes upon PMA activation. The 
10D5 clone was furthermore used to show that IL-17A was primarily 
expressed by CD3+ CD4+ T cells in the spleen and PBMC, but staining 
of smaller subsets of γδ T cells was also evident (151). Interestingly, 
IEL staining patterns were slightly different with IL-17A+ cells largely 
CD4−, CD8−, and TCR1− but for the most part expressing CD3 and 
CD25 (150). In addition, the same antibody was used to show weak 
signals of IL-17A in lung T-cell populations (131).

8.4 γδ T cells

The commercially available antibody TCR1 recognises the TCRγδ 
variant, and hence all TCR1+ cells are actually γδ T cells (111). 
However, whether all γδ TCRs indeed express the TCR1 epitope is still 
not proven but might be solved in the near future with the availability 
of new TCR sequencing protocols (152). As shown by frequency 
within a lymphocyte gate, γδ T cells are abundant in peripheral blood, 
immune organs, and bone marrow, and a CD8+ subset is often seen in 
the lung and spleen (137), as well as in the intestinal mucosa (153). In 
the intestine, γδ T cells are present both in the intraepithelial and the 
lamina propria areas, and interestingly, in addition to the CD4− CD8−, 
CD4− CD8αα+, and CD4− CD8αβ+ populations, the presence of an 
additional small CD4+ CD8− population has been suggested. The 
CD8+ population has received much attention and has been reported 
as being slightly larger in size and more prone to activation by 
mitogens (154). Interestingly, chB6-positive intraepithelial 
lymphocytes in the small intestine contain a population of TCR1+ 
cells, as shown in Figure 3.

Some molecules are differentially expressed between γδ T cells 
and αβ T cells but cannot be used as unique lineage identifiers. For 

example, CD5 was shown to be expressed on virtually all CD4+ αβ T 
cells and on the majority of γδ T cells, but the mean fluorescence 
intensities were low/intermediate on the γδ T cells isolated from 
spleen and peripheral blood (92). The CD5 antibody clone 2–191 
unfortunately appears to be discontinued. CD28 is another molecule 
expressed on virtually all CD4+ αβ1 T cells but is absent from the 
majority of γδ T cells; however, by using the clone MoAb 2–4, a small 
subset was found to be CD28+ (mostly CD8α+ but also a minor CD8− 
population) (155). The clone used by Koskela et al. may no longer 
be accessed, but clone AV7 recognises CD28 and is commercially 
available (156).

Data from scRNA-seq suggest the presence of multiple γδ T-cell 
subsets that may represent either phenotypic subsets or differentiation 
and activation states (18). A range of molecules may be differentially 
expressed by various γδ T subsets, but a comprehensive 
multiparameter immunophenotyping study has not yet been 
published. As the percentage of TCR1+, TCR2+, and TCR3+ cells does 
not completely add up to 100% of the CD3 population, there may be a 
small yet unidentified T-cell subpopulation. Hence, interesting surface 
marker antibodies for a future multiparameter staining panel may 
include TIM4 (ROS-JH9 (60)), SLAMF4 (8C7 (35)), CD25 (AbD13504 
(157)). Moreover, chicken γδ T cells have the ability to secrete a 
number of cytokines such as IFN-γ, IL-17A, IL-6, IL-10, and IL-13 
(151, 158, 159), and including cytokine staining in multiparameter 
staining is of value to characterize various γδ T-cell subsets.

8.5 T-cell activation and memory cell 
markers

Extensive knowledge about T-cell activation and memory cell 
markers is still lacking in the avian research field. In mammals, 
activated proliferating T cells express several molecules that are 
expressed to a lesser extent or even absent on resting cells, including 
various chemokine receptors, adhesion molecules, co-stimulatory 
molecules, and MHC antigens (160). The same appears to be the case 
for chicken lymphocytes, but most of the published data include 
observations made using in vitro polyclonal/mitogen-stimulated cells 
rather than in vivo activated cells from infected animals. For example, 
in vitro ConA-induced T-cell proliferation of PBMC confirmed CD25 
and MHC class II as T-cell activation markers for both CD4+ and 
CD8α+ cells and CD28 only for CD8α+ cells when looking at activation 
marker-positive frequencies of cells (6). Interestingly, most of the 
tested putative activation markers (e.g., CD44, CD45, CD25, and 
CD28) showed increased surface expression (mean fluorescent 
intensity, MFI) over time, whereas the MFI of MHC class II was 
upregulated only 24-h post-stimulation, followed by MFI 
downregulation, especially in CD8α+ T cells, where the MFI stayed 
below baseline from 48- to 96-h post-stimulation.

In mammals, constitutive expression of MHC class II is confined 
to professional antigen-presenting cells, including DCs, B cells, 
monocytes, and macrophages, and upon activation, MHC class II 
expression (all isotypes) is also seen on the surface of T cells in various 
species except in mice (161). The Naghizadeh chicken PBMC study 
mentioned above (160) showed virtually no MHC class II expression 
pre-stimulation, but 24-h post-stimulation, it was readily induced in 
20–25% of the CD4+ and CD8α+ cells. Although the CD8α+ antibody 
would have picked up a small subset of γδ T cells, the majority of γδ 
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T cells (CD8−) were excluded from the mentioned study. Interestingly, 
others have reported that the majority of γδ T cells in peripheral blood 
express MHC class II even in a resting state, and increased MFI was 
shown in an in vivo experiment where chickens were provided high 
doses of Ulvan in their drinking water (162). CD25 is constitutively 
expressed on a subset of γδ T cells but is also described as an activation 
marker because frequencies of CD25+ cells within the γδ T population 
are increased upon activation with, e.g., Salmonella and Eimeria (124, 
157). Furthermore, chickens immunized with the model antigen 
mycobacterial purified protein derivative or Mycobacterium 
tuberculosis sonicate showed increased frequencies of CD28+ γδ T-cell 
frequencies combined with increased surface expression of CD28, 
CD5, CD25, and MHC class II (155).

CD57 (clone HNK-1) has been identified as a B-cell activation 
marker (44, 97, 163, 164). We have shown higher degranulation of 
CD57+ CTLs than of CD57− CTLs, which supports CD57 as chicken 
T-cell activation marker (165). Furthermore, frequencies of CD57+ 
cells increase within both αβ and γδ T-cell populations in PBMC 
stimulated with mitogens or anti-CD3 (T. Dalgaard, manuscript in 
preparation). Several additional potential activation markers are 
available, but their expression on activated chicken T cells is poorly 
characterized. Examples include CD276 (AV95/EH7), CD30 (AV37 
(166)), CRTAM (8A10 (167)), and GITR (9C5 (168)). In addition to 
activated T cells, chicken memory cells are also poorly defined in 
terms of phenotypes. Despite the fact that different CD45 isoforms 
exist (29), the equivalents of CD45RA and CD45RO have not been 
identified in chickens. CD127 is the α chain of the IL-7 receptor, and 
in mammals, it is differentially expressed depending on T-cell 
differentiation state (naïve, effector, memory) (169). A monoclonal 
antibody against chicken CD127 exists (clone 8F10E11) and was used 
to show that the majority of CD4+ cells in the peripheral blood and 
spleen of healthy animals expressed CD127. In contrast, only 10–60% 
of the CD8α+ cells expressed CD127, and the frequency declines with 
age (170). To establish the value of this marker for the discrimination 
of T-cell differentiation stages, CD127 staining must be  further 
investigated, e.g., on tetramer-positive cells and in conjunction with 
other activation or memory cell markers. In other species, CD44 
expression is higher on effector and memory T cells as compared to 
naive. This is not yet established for chicken cells, although some 
studies suggest increased CD44 expression in the memory stages of in 
vivo vaccine or challenge experiments (5, 171).

8.6 Antigen-specific T cells

To evaluate host–pathogen interaction and vaccine responses, it 
is important to understand the role of antigen-specific T cells. Few 
avian MHC multimer flow cytometry reports exist (172, 173) and the 
reagents are not commercially available in various MHC–peptide 
combinations as they are for human and mouse models. Hence, most 
analyses of avian T-cell biology have relied on proliferation, 
degranulation, or cytokine detection in PBMC or splenocytes after 
antigen re-stimulation in vitro/ex vivo for quantitative and qualitative 
studies of antigen-specific T-cell responses. Interestingly, a subset of 
activation markers in mammals are exclusively expressed by T cells 
activated via MHC–TCR interaction, like the commonly used marker 
CD154 (CD40L) for antigen-activated T cells in humans and mice 
(174, 175). Transient CD154 surface expression or intracellular 

expression stabilized with the secretion inhibitor Brefeldin can 
be exploited for enrichment of antigen-specific T cells before further 
analysis (176, 177). An avian orthologue of mammalian CD154 exists, 
and the gene was identified and a set of monoclonal antibodies named 
AV71-76 were generated (UK Immunological Toolbox). Initial 
analysis of splenocytes activated by PMA/IO showed binding of the 
antibodies and suggested CD154 expression on activated T cells. In 
this early study, it was evident that the IgG1 antibodies AV71 and 
AV74 bound weakly to CD154, whereas the IgG2a antibodies AV72, 
AV73, and AV75 showed slightly higher affinity; however, further 
in-depth analysis is warranted (36).

9 Pitfalls

In the current study, we  have focused on the spleen and 
peripheral blood; hence, this is not a comprehensive overview of 
cell subsets found in other tissues and organs. Moreover, it is 
important to note that both absolute numbers and relative 
frequencies of cellular subsets are influenced by, e.g., chicken breed 
and age (7). In addition, even the same tissue can give different 
results with different isolation techniques (choice of enzyme, slow 
speed/Ficoll gradient, etc.). Careful optimisation is therefore 
needed for each application, with a special focus on understanding 
potential epitope degradation by the digest or fixation protocol in 
question. Moreover, fixed samples may require different gating as 
compared to fresh samples, as fixation may compress FSC/SSC 
profiles and create problems with autofluorescence, which is, e.g., 
very pronounced in PFA-fixed thrombocytes. Biotinylated 
antibodies are often used in flow cytometric experiments with 
chickens due to the limited choice of directly conjugated antibodies. 
Since avidin is a biotin-binding protein with a possible 
antimicrobial effect and is upregulated after stress and infection 
(178), appropriate controls must be  included. To check for 
non-specific biotin binding, an irrelevant biotinylated antibody (a 
non-chicken target antigen) should be  included. Another well-
known technique that works well for mammalian samples is lysis 
of erythrocytes before flow cytometry acquisition. Several groups 
have published data where attempts to lyse erythrocytes were made, 
e.g., by prolonging exposure to commercial lysis buffers with 
suboptimal results. However, whereas this strategy may not 
be possible for peripheral blood, it may work for tissues such as the 
bone marrow, where erythrocyte content is lower. In any case, 
careful validation and assessment of any effect on the phenotype 
and function of the remaining leukocytes is necessary.

In-depth transcriptome analysis will certainly identify further 
subpopulations and potential markers, and flow cytometry and cell 
morphology will not necessarily match with them. Hence, carefully 
controlled cross-validation of all sources should be a prerequisite for 
a successful combination of all techniques.
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