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Pullorum disease (PD) is a bacterial infection caused by Salmonella pullorum (S.

pullorum) that a�ects poultry. It is highly infectious and often fatal. Antibiotics

are currently themainstay of prophylactic and therapeutic treatments for PD, but

their use can lead to the development of resistance in pathogenic bacteria and

disruption of the host’s intestinal flora. We added neomycin sulfate and di�erent

doses of tannic acid (TA) to the drinking water of chicks at 3 days of age and

infected themwith PD by intraperitoneal injection of S. pullorum at 9 days of age.

We analyzed intestinal histopathological changes and the expression of immune-

related genes and proteins by using the plate smearmethod, histological staining,

real-time fluorescence quantitative PCR, ELISA kits, and 16S rRNA Analysis of

intestinal flora. The results demonstrate that S. pullorum induces alterations

in the immune status and impairs the functionality of the liver and intestinal

barrier. We found that tannic acid significantly ameliorated S. pullorum-induced

liver and intestinal damage, protected the intestinal physical and chemical

barriers, restored the intestinal immune barrier function, and regulated the

intestinal flora. Our results showed that TA has good anti-diarrhoeal, growth-

promoting, immune-regulating, intestinal barrier-protecting and intestinal flora-

balancing e�ects, and the best e�ect was achieved at an additive dose

of 0.2%.
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1 Introduction

Pullorum disease (PD) is a septicaemia that affects chickens,
turkeys, and other poultry, caused by Salmonella pullorum

infection. Clinical manifestations in chicks include anorexia,
diarrhea, debilitation, reduced egg production, and increased
mortality rate (1, 2). PD outbreaks can cause significant financial
losses for the poultry farming industry in developing nations (3).
Research has shown that S. pullorum invasion initially causes
severe damage to chick intestinal function and microbiota and
subsequently spreads to host tissues and organs, weaken immunity,
causing septicaemia and compromising the immune responses (4–
6). Tetracycline and kanamycin are commonly used drugs in the
clinical treatment and prevention of PD. Nevertheless, prolonged
use of these antibiotics can lead to the development of resistance
in S. pullorum and disrupt the host’s intestinal flora, resulting in
serious residual problems (7–9). Therefore, it is essential to find a
safe and effective alternative to antibiotics.

Tannins are naturally occurring polyphenolic compounds
primarily known for their haemostatic, anti-infective, and anti-
diarrhoeal properties (10, 11). Tannic acid (TA), the most basic
form of hydrolyzed tannins, plays a crucial role in traditional
Chinese medicines like gallnut. Recent research has revealed
that tannic acid can significantly improve animal performance,
regulate immunological function, and enhance resistance against
disease (12–14). In addition, TA has been approved by regulatory
authorities, such as the US Food and Drug Administration (FDA)
(11) and the European Union (15), as a food additive and flavoring
agent due to its potential antimicrobial properties. The results
presented above demonstrate TA’s effective antimicrobial activity
and biosafety. Furthermore, TA has been shown to effectively
reduce damage to the intestinal mucosa caused by oxidative
stress and inflammatory responses (16, 17), improve gut microbial
composition, and enhance intestinal barrier function (18–20).
Therefore, TA may have a preventive effect against PD and could
alleviate the intestinal damage caused by S. pullorum.

Brus et al. (21) demonstrated that concentrations of TA
solutions ranging from 0.05 to 0.1% can promote the growth of
small intestinal epithelial cells in chickens. However, no studies
have investigated the use of tannic acid as a supplement in poultry
drinking water for the treatment of PD. Moreover, the exact
influence of TA on the function of the intestinal mucosal barrier
and the composition of the intestinal flora remains incompletely
comprehended. Thus, this study seeks to examine the consequences
of tannic acid on the gut’s morphological structure and barrier
function in broilers infected with S. pullorum, and to investigate
potential mechanisms associated with microbiota involvement.

2 Materials and methods

2.1 Materials

TA, extracted from gallnut, was purchased from Wufeng
Chicheng Biotech Co., Ltd (content ≥ 95%, 20220309), quality
requirements outlined in the FDA’s “Food Chemical Specification”
5th edition and the U.S. Food Chemical Codex standards.
Furthermore, it complied with the U.S. food FCC-IV standards.

2.2 Bacterial strains and growth conditions

The S. pullorum strain (CVCC1792) utilized in this study
was acquired from the National Center for Veterinary Culture
Collection (Beijing, China). The strain was activated in TSA
medium and incubated at 37◦C for 24 h. Following this, individual
colonies were cultured in TSB medium and incubated at 37◦C with
a shaking speed of 180 rpm for 24 h. The cultured bacteria were
then centrifuged (5,000 g/min, 5min), washed three times with
phosphate-buffered solution (PBS), and resuspended to achieve a
final concentration of 1× 109 CFU/ml.

2.3 Animal care and S. pullorum challenge

A total of 240 1-day-old B380 broilers were purchased from
Chengdu Tianxinli Poultry Co (Chengdu, China). The groups
included: (1) the negative control group (NC), which did not
receive TA treatment or S. pullorum infection; (2) the S. pullorum
challenged group (SP), which received S. pullorum infection and
0% gallnut TA; (3) the positive control group (PC), which received
S. pullorum infection and 0.04% Neomycin sulfate soluble powder
in drinking water; (4) the TA low dose group (TAL), which received
S. pullorum infection and 0.1% gallnut TA in drinking water; (5) the
TAmiddle dose group (TAM), which received S. pullorum infection
and 0.2% gallnut TA in drinking water; (6) the TA high dose group
(TAH), which received S. pullorum infection and 0.3% gallnut TA in
drinking water. In order to prevent cross-infection, various groups
were segregated and maintained at a distance from one another’s
enclosures. At 3 days old, the administration was started, and lasted
for a duration of 12 days.

At the age of 9 days, all groups, except for the NC group,
were intraperitoneal injected with 0.5ml of S. pullorum (1 × 109

CFU/ml). The NC group received an equivalent volume of PBS.
The diets and drinking water were kept consistent throughout the
experiment. Clinical signs were monitored daily, and changes in
weight and mortality rates were recorded for each group of chicks.

2.4 Sample collection

The mortality rate of chicks following the challenge was
recorded to determine the survival rate. At the age of 10 and
14 days, 20 chicks were chosen at random from each group
for weighing. Additionally, six chicks were randomly selected
to have blood samples collected from their jugular vein, which
were subsequently centrifuged to obtain serum. Following the
collection of blood, the chicks were administered anesthesia
andeuthanized. Subsequently, the organ lesions were dissected
and examined. Immune organs were weighed, and the organ-to-
body weight ratio was calculated. Liver samples were collected
for bacterial load determination, with a portion being immersed
in 4% paraformaldehyde. Two sections each of mid-jejunum and
mid-ileum (1 cm each) were collected; one section was fixed in
4% paraformaldehyde, while the other was frozen at −80◦C.
Cecal contents were collected and stored in liquid nitrogen for
subsequent 16S rRNA sequencing.
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2.5 Bacterial burden of the liver

On days 1 and 5 post-infection, a small amount of liver was
weighed and homogenized in 1ml of PBS. Serial dilutions of the
homogenate were then spread on XLD agar plates to determine the
quantity of S. pullorum.

2.6 Histopathological examination of the
liver and small intestine

The liver and 1 cm of the jejunum and ileum were collected,
rinsed with PBS at 4◦C, and fixed in 4% paraformaldehyde for 24 h
at room temperature. Liver, jejunum, and ileum samples were then
embedded in paraffin, sectioned at a thickness of 5µm, and stained
with hematoxylin-eosin (HE) for morphological analysis. Goblet
cells in the jejunum were then counted using periodic acid-Schiff
stain (PAS).

2.7 Determination of serum IL-4, IFN-γ,
IgG, LPS, DAO, and jejunal mucosal sIgA

The concentrations of interleukin-4 (IL-4), interferon-γ (IFN-
γ), immunoglobulin G (IgG), lipopolysaccharide (LPS), and
Diamine oxidase (DAO) in serum, as well as sIgA in the
jejunum, were determined using ELISA kits following the
manufacturer’s instructions (MlBio, Shanghai, China). The total
protein concentration was assessed using the BCA assay kit
(Beyotime, Shanghai, China).

2.8 Quantitative real-time PCR

Jejunum and tissue samples were collected on days 10 and
14. The samples were snap-frozen in liquid nitrogen and then
transferred to −80◦C for storage. Total RNA was extracted
using TRIzol reagent (Biomed, Beijing, China) following the
manufacturer’s instructions. RNA (5µg/µl) was reverse transcribed
into cDNA using the M-MLV 4 First-Strand cDNA Synthesis
Kit (Biomed, Beijing, China) and further applied to qRT-PCR
in a step One plus System (Biosystems, Foster City, CA, USA)
with double-stranded DNA. qRT-PCR was performed using Hieff
UNICONR Universal Blue qPCR SYBR Green Master Mix (Yeasen
Biotechnology Co., Ltd, Shanghai, China). The predenaturation
procedure was 95◦C for 30 s, followed by 40 cycles of 95◦C
for 10 s, and annealing/extension at the optimal annealing
temperature for 30 s. All procedures were performed according
to the manufacturer’s instructions. The 2−11Ct method was used
to analyze the relative levels of gene expression. Gene expression
levels were normalized to the internal standard, β-actin. The primer
sequences (Tsingke Biotechnology Co., Ltd, China) used for gene
expression analysis in this study are listed in Table 1.

TABLE 1 Sequences of the oligonucleotide primers used for quantitative

real-time PCRa.

Gene name GenBank
accession No.

Primer (5
′
→ 3

′
)

Claudin 1 NM_001013611.2 F: GCCAAGATCACCATC
GTCTC

R: CACCAGCGGGTTGTA
GAAAT

Occluding NM_205128.1 F: CTGCTGTCTGTGGG
TTCCT

R: CCAGTAGATGTTGG
CTTTGC

ZO-1 NM_001301025.3 F:
CTTCAGGTGTTTCTCTT
CCTCCTC

R: CTGTGGTTTCATGG
CTGGATC

MUC-2 XM_040701656.2 F: CAAAAGCACCTAGCAC
AACGA

R: CTTAACAACTTCAC
GGCACT

IL-4 NM_001007079.2 F: CATCTGCCTCCT
ACCAC

R: TTCTGATCTCGCATT
ACGTT

IL-10 NM_001004414.4 F: ATGCTGCGCTTCT
ACACA

R: CCATGCTCTGCTG
ATGACT

IL-18 NM_204608.3 F: TCTGGCAGTGGAATG
TACTTCG

R:
CCATTTTCCCATGCTCT
TTCTC

IFN-γ NM_205149.2 F: CAAGTCAAAGCC
GCACA

R: TTTCACCTTCTTCAC
GCCAT

β-actin NM_205518.2 F: GTGACCTGACGGACT
ACCTC

R: TCTCCTGCTCGAAA
TCCAGT

aPrimers were designed and synthesized by Tsingke Biotechnology Co., Ltd. (China).

ZO-1, zonula occludens-1; MUC2, mucin 2; IL-4, interleukin-4; IL-10, interleukin-10; IL-18,

interleukin-18; IFN-γ, interferon− γ.

2.9 16S rRNA gene sequencing of the
cecum microbiome

The fresh digesta isolated from the cecum was quickly
frozen in liquid nitrogen and then rapidly sent to Novogene
Technology Co. (Beijing, China), Ltd. for intestinal microbiota
analysis under dry ice conditions. The DNAwas extracted using the
CTAB/SDS (cetyltrimethylammonium bromide/sodium dodecyl
sulfate) bromide method, and the concentration was detected by
agarose gel electrophoresis, and then diluted to 1 ng/µl with
sterile water. The V3–V4 region of 16S rRNA was amplified
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by PCR using specific primers: 341F(CCTAYGGGRBGCASCAG)
and 806R(GGACTACNNGGGTATCTAAT). The process was
followed by mixing and purification of PCR products, and
library construction using the TruSeq

R©
DNA PCR-Free Sample

Preparation Kit. The constructed libraries were quantified using
Qubit and Q-PCR, and then sequenced on the NovaSeq
6000 platform.

2.10 Statistical analysis

Data represent the mean ± standard deviation (SD) or mean
± standard error of the mean (SEM). One-way ANOVA with
LSD post-hoc test was performed by using SPSS 27.0 software.
Significance was determined at P < 0.05.

3 Results

3.1 Survival rate and weight performance

The survival rate and body weight of broiler chickens infected
with S. pullorum improved with the addition of tannic acid to
their drinking water, as shown in Figure 1A. The SP group had a
survival rate of 70%, while the PC, TAL, TAM, and TAH groups
had survival rates of 92.5%, 82.5%, 90%, and 95%, respectively. On
day 5 post-infection, the body weight of chicks in the SP group
decreased by 18% to 110.71 g ± 13.18, compared to the NC group
(135.00 g ± 11.25, P < 0.0001). However, the chicks’ body weight
was normalized by treatment with TA, and the most significant
increase was observed in the TAM group (Figure 1B).

3.2 Organ index, liver bacterial load, and
liver histomorphology

Figure 2 shows the organ index, liver bacterial load, and
liver pathology findings. Chickens infected with S. pullorum

had a significantly higher liver/body weight ratio on the first
and fifth day of infection. In addition, there was a significant
increase in the spleen/body weight ratio on the fifth day
of infection. In contrast, the thymus/body weight ratios and
bursa/body weight ratios were significantly reduced (P < 0.05;
Figure 2A). On the first day of infection, supplementation of
tannic acid resulted in a decrease in the bacterial load in the
liver compared to the SP group, and returned the ratio of
organ/body weight to normal levels (Figures 2A–C). The group
treated with SP showed significant liver sinusoidal dilatation
and extensive necrosis on the first day of the experiment. In
contrast, the group treated with TA exhibited only mild hepatic
inflammation and congestion. On day 5, the TAM and TAH
groups showed almost normal liver morphology, except for the
localized inflammation observed in the TAL group (Figures 2D,
E). Nevertheless, the SP group still showed persistent liver damage
and congestion.

3.3 Serum immunological index

Figure 3A shows the levels of serum cytokines IFN-γ, IL-4
and immunoglobulin IgG. The results indicate that S. pullorum
infection significantly increased serum levels of IL-4, IFN-γ,
and IgG on day 5 compared to the NC group (Figures 3A–C).
Treatment with antibiotics and tannic acid reduced serum levels of
IL-4 and IFN-γ in infected chicks, with the lowest levels observed
in the TAH group (P < 0.05). Serum IgG levels remained high in
all groups with TA compared to the NC group (P < 0.05) and were
significantly higher than in the SP group (P < 0.05).

3.4 Intestinal histomorphology

Histopathological analysis showed that infection with S.

pullorum resulted in significant damage to the jejunal and ileal villi
in the SP group. The presence of broken villi, thickened crypts, and
a decrease in the number of villi in the SP group of chicks on days 1
and 5, when compared to the NC group (Figures 4A, B, D, E). The
chicks in the TAL, TAM, and TAH groups had a higher presence
of intact intestinal structures and villi when compared to the SP
group. The results of further analysis indicate that the heights of
both jejunal and ileal villi were significantly lower in the SP group
than in the NC group on days 1 and 5 (P < 0.05). Supplementation
with TA effectively restored the height of these villi to normal levels
(Figures 4C, F).

3.5 Jejunal goblet cell count

The PAS staining revealed that the goblet cells of the chick
jejunum were stained red (Figures 5A, B). The SP group had fewer
jejunal goblet cells than the NC group on both days 1 and 5 after
S. pullorum infection (P < 0.05). On day 1, all TA groups had
normal goblet cell numbers (P < 0.05). On day 5, all TA groups
had more goblet cells than the SP group (P < 0.05), and there was
no significant difference between the TAM group and the NC group
(Figures 5C, D).

3.6 Expression of mRNA for intestinal
barrier function genes and determination
of serum LPS and DAO concentrations

Figure 6 illustrates the impact of TA on intestinal tight junction
proteins, mucin and permeability in broilers challenged with
S. pullorum. On the day 1 of infection, the mRNA transcript
levels of tight junction proteins (Claudin-1 and Occludin) and
mucin (MUC-2) were significantly reduced in the jejunum and
ileum of chicks in the SP group compared to the NC group.
The expression of both tight junction proteins and mucins was
markedly diminished on the fifth day of infection (P < 0.05). On
the first and fifth days of infection, TA supplementation increased
the mRNA transcript levels of tight junction proteins and mucins
compared to the SP group. On the fifth day, the TAM group showed
significantly higher levels of jejunal Occludin, ZO-1, and MUC2,
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FIGURE 1

E�ects of tannic acid supplementation on survival and body weight of broiler chickens. (A) Survival of broiler chickens (n = 40) supplemented with

tannic acid. (B) Body weight of broiler chickens (n = 20) supplemented with tannic acid. NC, negative control. SP, Salmonella pullorum challenge; PC,

positive control; TAL, low-dose tannic acid; TAM, medium-dose tannic acid; TAH, high-dose tannic acid. Data are mean ± SD. Results are mean ±

SD. ****P < 0.0001 (one-way ANOVA); ns, not significant (compared with NC group).

as well as ileal ZO-1, compared to the NC group (P < 0.05).
The TAL group showed lower levels of Claudin-1 and Occludin
compared to the NC group. Figures 6A, B show that the PC and
TAH groups had lower levels of Claudin-1 and higher levels of ileal
ZO-1 and MUC2 compared to the NC group. Alterations in serum
lipopolysaccharide (LPS) and diamine oxidase (DAO) levels were
observed on the fifth day after infection. The SP group exhibited
considerably elevated levels of LPS and DAO in comparison to the
NC group (P < 0.05). TA can effectively reduce the blood levels of
LPS and DAO in chicks, with the most significant effect observed in
the TAM group. In the TAM group, serum levels of LPS and DAO
returned to normal (Figures 6C, D). During the initial infection
stage, IL-10 mRNA transcript levels significantly increased in the
jejunum, while IFN-γ markedly decreased in both the jejunum and
ileum of chicks in the SP group. The mRNA transcript levels of
the cytokines IL-4, IL-18 and IFN-γ were found to be significantly
higher in the TAM group than in the SP group (Figure 7A). On
the fifth day of infection, the SP group showed significantly lower
levels of IL-4, IL-10, IL-18, and IFN-γ in the jejunal and ileal
regions compared to the NC group (P < 0.05). The cytokine
levels in the PC, TAM, and TAH groups increased to varying
degrees, except for the TAL group. The group subjected to TAM
demonstrated the most significant promotion impact, as illustrated
in Figure 7B. Secretory IgA (sIgA) is crucial for establishing and
maintaining the immune barrier. On the fifth day after infection,
we observed a 28.29% decrease in the level of sIgA in the jejunal
tissue of the SP group compared to the NC group (P < 0.05).
After the addition of tannic acid, the levels of jejunal sIgA in
broilers were significantly higher than in the SP group. Only the
TAH group showed a significant decrease compared to the NC
group (Figure 7C).

3.7 Microbiological analysis of the cecum

The aim of this study was to investigate the impact of S.

pullorum infection and TA treatment on the cecal microbiota
of chicks. To achieve this, we sequenced the 16S rRNA gene

in samples from four groups: NC, SP, PC, and TAM. Figure 8A
shows the rarefaction curves of the samples, indicating adequate
sequencing depth and variations in species richness between the
groups. The results of the Venn diagram show that there were 689,
537, 707, and 234 unique Operational Taxonomic Units (OTUs)
in each respective group. The number of observed OTUs in each
group were 2,879, 2,572, 2,456, and 1,654, respectively (Figure 8B).
The microbiota’s richness and diversity were measured using the
Chao1 and Shannon indices. After infection with S. pullorum,
all groups showed a decrease in Chao1 indices compared to the
NC. But only the TAM treatment group showed a statistically
significant difference (P < 0.05; Figure 8C). The Shannon index
did not exhibit any significant differences among the groups
(Figure 8D). The UPGMA clustering analysis revealed that PC
formed a distinct cluster, whereas NC, SP, and TAM were grouped
together on a single branch. It is worth noting that NC and
TAM exhibited a closer relationship, as depicted in Figure 8E.
The cecal microbiota of chicks from four groups (NC, SP, PC,
and TAM) were analyzed at the phylum, genus, and species
levels. The main phyla observed in all groups were Firmicutes,
Bacteroidetes, Actinobacteria, and Proteobacteria (Figure 8F). The
Actinobacteria, though, were only abundant in NC (10.99%) and
decreased significantly in SP (2.09%, P < 0.05), PC (0.54%, P
< 0.05), and TAM (1.87%, P < 0.05). Additionally, SP had a
significantly higher abundance of Campylobacter (11.57%, P <

0.05) than NC (0.46%). The genus Bacteroides was dominant in
all groups (Figure 8G). Bifidobacterium was significantly lower
in SP (1.84%, P < 0.05), PC (0.19%, P < 0.05), and TAM
(1.40%, P < 0.05) compared to NC (10.40%). In contrast,
Campylobacter was significantly higher in SP (11.56%, P < 0.05)
than in NC (0.46%). Escherichia-Shigella was more abundant in
SP (12.50%) and PC (12.85%) than in TAM (3.00%, P < 0.05).
The abundance of Ruminococcus torques group was higher in
the PC (6.06%) and TAM (8.23%) compared to the NC (2.28%),
but the difference was not statistically significant. At the species
level (Figure 8H), Bacteroides fragilis (20.43%) and Bacteroides
uniformis (14.17%) were the most abundant species in NC, while
Bacteroides uniformis (22.14%) prevailed in SP, and Bacteroides
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FIGURE 2

Organ-specific gravity, liver bacterial load, and pathological changes in broilers. Liver/body weight ratio and immune organ/body weight ratio on

days 1 and 5 post-infection (A) (n = 6). Bacterial loads (log10 CFU per gram of Salmonella pullorum) in the liver on day 1 (B) and day 5 (C) post

infection (n = 6). Pathology of the liver of chicks in di�erent treatment groups on day 1 (D) and day 5 (E) post infection (scale bar = 100µm). Data are

expressed as mean ± SD. Results are presented as mean § SEM. Di�erent letters indicate significant di�erences between groups (P < 0.05). **P < 0.01

(One-way ANOVA). → : areas of liver necrosis; → : congested areas of liver.
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FIGURE 3

Levels of serum immunity indexes in broiler chickens at the 5th day of infection. (A) Serum levels of IL-4. (B) Serum levels of IFN-γ; (C) Serum levels of

IgG. All data are expressed as the mean ± SD. The results are presented as the mean ± SD. Di�erent letters indicate significant di�erences between

the groups (P < 0.05).

fragilis (35.43%) prevailed in TAM. At the genus level, there
was a significant increase in Campylobacter_jejuni (11.56%, P

< 0.05) in SP compared to NC (0.49%). Conversely, TAM had
significantly lower levels of both Campylobacter_jejuni (0.21%, P
< 0.05) and Escherichia coli (3.0%, P < 0.05) compared to NC.
Linear discriminant analysis (LDA) was used to identify cecal
microbial taxa that displays significant differences among the four
groups: NC, SP, PC, and TAM. Figure 8I shows the taxa with LDA
scores >4, indicating significant differences. All groups exhibited a
decrease in Bifidobacterium abundance at the genus level following
S. pullorum infection compared to NC. Additionally, the SP group
showed a higher abundance of Campylobacter. The abundance of
Erysipelatoclostridium, Butyricicoccus, and Lactobacillus was higher
in PC, while Bacteroides was more abundant in the TAM group.
To visualize the differences in taxa abundance, a heatmap was
generated using the top 20 genera by abundance. The SP group had
11 genera that differed from the NC group, the PC group had 18,
and the TAM group had 8 (Figure 8J).

4 Discussion

The gut mucosa serves as the primary defensive barrier against
pathogenic microorganisms (22, 23), playing a crucial role in
preventing bacterial infections. Infections caused by S. pullorum to
significantly disturb the structure and function of gut morphology,
leading to considerable mortality rates in poultry (24–26). This
issue has caused significant economic losses in the poultry farming
industry in developing countries. The study aims to evaluate
the protective effects of TA on the integrity and functionality
of the intestinal barrier after S. pullorum infection in broiler
chickens, given the well-documented antimicrobial properties of
TA and their potential to modulate the composition of the
intestinal microbiota. The immune response of broiler chickens
relies on the thymus, spleen, and bursa (27, 28) and the relative
weights of these organs can indicate immune function in chickens
(29). The study found that infection with S. pullorum resulted in
a decrease in the weight of the thymus and bursa. In contrast,
treatment with TA, preserved the normal development of these
organs and also resulted in an increase in spleen weight. These
findings are consistent with the results reported by Chen et al.

(26), suggesting that TA can enhance the immune function and
disease resistance of chicks. Previous studies have also reported a
protective effect of TA on the liver (30). The study found that the
administration of TA significantly reduced the colonization of S.
pullorum and mitigated liver damage (31).

The integrity and height of the intestinal villus reflect gut
integrity and are fundamental to the gut’s barrier function (5, 32).
Previous studies have reported that the invasion of S. pullorum
into chick intestines disrupts the intestinal barrier function (26,
33). Our study confirms these findings, as the intestinal villi
of chicks in the SP group were fragmented and shortened. By
contrast, the three TA-supplemented groups showed a marked
improvement in the morphological structure of the intestine,
with the TAM group showing the most improvement. Serum
concentrations of lipopolysaccharide (LPS) and diamine oxidase
(DAO) are important indicators of intestinal permeability. As
previously found, TA significantly reduced serum LPS and DAO
levels, indicating its potential to reduce intestinal permeability
in chicks. These results suggest that TA helps to preserve the
structural integrity of the intestines and mitigate damage caused
by S. pullorum. The intestinal epithelium is composed of different
cell types with different functions: goblet cells, for example, secrete
mucus and form a barrier to pathogenic microorganisms; these
cells are connected by tight junctions (34–36). The invasion of
S. pullorum disrupts the mucus layer and facilitates the spread
of harmful substances (37–39). The protective effect of TA on
the intestinal barrier function of broiler chickens infected with S.

pullorum was evaluated in this study based on the antimicrobial
properties of TA and the regulation of tight junction proteins
(13, 20). The gene expression of intestinal claudin-1, occludin, ZO-
1, and MUC2, as well as the number of goblet cells, were found
to be significantly reduced as a result of S. pullorum infection.
TA supplementation improved the goblet cell count and increased
the expression of tight junction proteins and MUC2, with the
most significant effect observed in the TAM group. S. pullorum
is a facultative intracellular parasitic bacterium that primarily
induces Th2-type immune responses, which may contribute to
its persistence and infection (40–42). Secretory immunoglobulin
A (sIgA) is a crucial marker of intestinal immunity (43, 44).
Supplementation with TA enhanced the mRNA expression of Th1
and Th2 cytokines and increased jejunal sIgA secretion. These
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FIGURE 4

Pathologic sections of the jejunum and ileum of broiler chickens. (A, B) Representative images of H.E staining shows pathology of the jejunum and

ileum in di�erent treatment groups on day 1 post infection. (C) Statistics of villus height and crypt depth contents on day 1 post infection. (D, E)

Representative images of H.E staining shows pathology of the jejunum and ileum in di�erent treatment groups on day 5 post infection (scale bar

=100µ m). (F) Statistics of villus height and crypt depth contents on day 5 post infection. All data are expressed as the mean ± SD. The results are

presented as the mean § SEM. Di�erent letters indicate significant di�erences between the groups (P < 0.05).
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FIGURE 5

PAS staining of the jejunum. (A, C) PAS staining of the jejunum on days 1 and 5 post-infection (scale bar =100µ m). (B, D) Statistics of goblet cells

numbers of the jejunum in di�erent groups on day 1 and day 5 post infection. All data are expressed as the mean ± SD. The results are presented as

the mean ± SD. Di�erent letters indicate significant di�erences between the groups (P < 0.05).

findings suggest that TA improves the intestinal mucosal barrier
function and antimicrobial capacity. The composition of intestinal
flora is closely linked to the function of the intestinal barrier
and plays a crucial role in the host’s defense against pathogenic
microorganisms and energy provision (45, 46). Previous studies
have indicated that S. pullorum invasion disrupts gut flora, although
the exact effects remain to be elucidated (33, 47, 48). Our study
confirms these findings, demonstrating a significant decrease
in gut microbial diversity in chicks infected with S. pullorum.
Notably, the addition of TA supplementation did not significantly
increase microbial diversity, but it did align more closely with
the NC group in terms of evolutionary levels. This may be due

to the selective bacteriostatic effect of TA. To further analyze
the dominant flora at different levels, changes at the phylum
level were investigated. The study found a significant increase
in the relative abundance of Proteobacteria in the SP group of
chicks, which is often associated with many diseases (49, 50).
Furthermore, the pathogen Campylobacter, a which is known to
harm the gut mucosa and increase gut permeability, was identified
as particularly harmful to humans (51, 52). The study conducted
on SP group broilers revealed a significant increase in the relative
abundance of both Campylobacter and Escherichia–Shigella, which
is consistent with the findings of Huang et al. (47). These results
suggest that S. pullorum disrupts the gut flora and promotes the
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FIGURE 6

Relative expression levels from qRT-PCR and serum ELISA. (A) Expression of mRNA for Claudin-1, Occluding, ZO-1 and MUC-2 in the jejunum and

ileum of chicks on day 1 post-infection (n = 4). (B) Expression of mRNA for Claudin-1, Occludin, ZO-1 and MUC-2 in the jejunum and ileum of chicks

on day 1 post-infection (n = 4). (C) LPS levels in serum on the day 5 of infection. (D) DAO levels in serum on the day 5 of infection. All data are

expressed as the mean ± SD. The results are presented as the mean § SEM. Di�erent letters indicate significant di�erences between the groups (P

< 0.05).
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FIGURE 7

Relative expression levels from qRT-PCR and jejunum ELISA. (A) Expression of mRNA for IL-4, IL-10, IL-18 and IFN-γ in the jejunum and ileum of

chicks on day 1 post-infection (n = 4). (B) Expression of mRNA for IL-4, IL-10, IL-18 and IFN-γ in the jejunum and ileum of chicks on day 5

post-infection (n = 4). (C) Levels of sIgA in jejunum on day 5 of infection (n = 5). All data are expressed as the mean ± SD. The results are presented

as the mean ± SD. Di�erent letters indicate significant di�erences between the groups (P < 0.05).
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FIGURE 8

Microbiota of broiler cecum on the 5th day of infection. (A) Rarefaction curves of OTUs. (B) Venn diagram. (C, D) Alpha diversity comparison ( Chao1

index and Shannon index). (E) UPGMA clustering tree based on weighted Unifrac distances at the phylum level. Relative abundance of species in the

top 10 of the intestinal flora at the phylum (F), genus (G) and species level (H). (I) The histogram of the distribution of LDA values (LDA scores >4). (J)

Heatmap depicting the relative abundance of 35 dominant microbiota genera at the genus level. All data are expressed as the mean ± SD. The results

are presented as the mean ± SD. “*” stands for the comparison with NC; *P < 0.05 by one-way ANOVA.
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growth of harmful bacteria. Supplementation with TA, resulted in
a significant decrease in the relative abundance of Campylobacter
and a significant increase in Bacteroides fragilis. Bacteroides
fragilis has potential as a probiotic, as it enhances macrophage
phagocytosis and promotes a Th1-type immune response (53).
This may further inhibit S. pullorum enterica colonization in
chickens with dysentery. The results of the heat map indicate that
Lactobacillus (54), Ligilactobacillus (55), and Limosilactobacillus
(56), which are closely related to gut homeostasis, were enriched
in the TAM group. This suggests that TA can effectively prevent
the colonization of harmful bacteria in the intestine, promote
the growth of beneficial microorganisms, enhance immune
function, and maintain the structural and functional integrity of
the intestine.

5 Conclusion

In conclusion, our study provides evidence that TA
supplementation can effectively mitigate S. pullorum colonization,
reduce chick mortality and improve body weight. These effects
are mainly mediated by upregulation of genes associated with
gut barrier function and modulation of the gut microbiota. Our
findings provide a novel approach for the clinical management
of PD.
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