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Clinical metrics of baseline health in sentinel seabird species can offer insight 
into marine ecosystem dynamics, individual and population health, and assist in 
wildlife rehabilitation and conservation efforts. Protein electrophoresis is useful 
for detecting changes in acute phase proteins and immunoglobulin levels that 
may indicate subtle inflammatory responses and/or infectious disease. Serum 
biochemistry can highlight nutritional status, metabolic derangements, and 
organ injury and function. However, baseline values for such health parameters 
are largely unknown for many seabird species. Therefore, the objective of 
this study is to establish baseline clinical health reference intervals for serum 
protein electrophoresis, acute phase proteins including serum amyloid A and 
haptoglobin, and biochemistry parameters in the rhinoceros auklet (Cerorhinca 
monocerata), a key sentinel species in the North Pacific. From 2013 to 2019, 
178 wild, apparently healthy breeding adult rhinoceros auklets were captured 
across four breeding colonies in British Columbia, Canada (Lucy Island, Pine 
Island, Triangle Islands, and SGang Gwaay) and from one colony in Washington, 
United  States (Protection Island). Reference intervals were calculated for 
protein electrophoresis fractions and acute phase proteins (n  =  163), and serum 
biochemistry (n  =  35) following established guidelines by the American Society 
of Veterinary Clinical Pathology. Animals were also assessed for the presence 
of antibodies to the influenza A virus. Approximately 48% (70/147) of sampled 
birds were seropositive for influenza A virus, with a prevalence of 50% (6/12) in 
2013, 75% (47/63) in 2014, and 24% (17/72) in 2019. This work provides clinical 
baseline health metrics of a key North Pacific sentinel species to help inform 
marine ecosystem monitoring, recovery, and rehabilitation efforts in the Pacific 
Northwest.
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1 Introduction

Serum baseline values can illustrate key features about wild 
seabird health at the individual and population levels. Serum 
biochemistry provides information about electrolyte balance, 
metabolism, and internal organ status (1). Acute phase proteins (APP) 
and protein electrophoresis (EPH) can be used to gauge inflammatory 
response and prognosis in avian species, and are becoming more 
widely used (2–4). Protein electrophoresis and APP allow researchers 
and clinicians to detect inflammatory changes earlier when compared 
to traditional hematology and serum biochemistry approaches (5). 
This is due to the rapid changes that occur in APP during acute disease 
and inflammation, such as the upregulation of serum amyloid A 
(SAA), haptoglobin (HP) (PIT54 is the homologous protein in birds) 
(6), and α- and β-globulins; and downregulation of albumin (7). 
Particularly in marine environments, APP such as HP provide 
valuable information in population health assessments of marine 
mammal species exposed to oil and other pollutants (8).

Maintaining established clinical baseline health parameters may 
serve as a pre-defined recovery goal for seabirds in the event of a 
marine environmental disruption (9–11). For example, oil 
contamination from both acute and chronic releases has long-term 
physiological and metabolic impacts on the health, reproduction, and 
survival of migratory seabirds (12–17). Baseline clinical health 
parameters of free-ranging seabirds can help distinguish between local 
or large-scale environmental impacts to marine systems, such as 
point-source anthropogenic stressors including oil spills and other 
marine pollutants (18–20). Furthermore, this information may 
facilitate wildlife rehabilitation and recovery efforts (21, 22). This 
becomes especially critical during environmental disasters such as oil 
spills, as it provides baseline metrics for recovery.

Climate change and severe weather are other significant 
contributors to global seabird species declines (23) due to decreased 
habitat suitability, prey abundance, and shifts in pathogen-host 
dynamics associated with ocean warming (24, 25). Seabirds may act 
as ecosystem sentinels for their pelagic and coastal habitats due to 
their responsiveness to environmental changes and their role as top 
predators in marine food webs (26). This is reflected through 
population health and ultimately, changes in breeding success and 
survival (27–29).

Seabirds can also potentially aid in disease surveillance across all 
flyways. Within the Pacific Flyway, influenza A virus (IAV) is of 
particular interest. While wild aquatic birds can act as disease 
reservoirs in the Pacific Flyway (30, 31), knowledge about the role of 
different seabird species in IAV ecology remains limited due to 
difficulties in sampling free-ranging seabirds (32, 33). Seabirds such 
as gulls are known to act as reservoirs for low pathogenic avian 
influenza H13 and H16 subtypes, and were able to spread highly 
pathogenic avian influenza (HPAI) H5 subtype rapidly due to large 
distances traveled (34). The ongoing H5N1 2.3.4.4b HPAI outbreak 
across North America further highlights the importance of IAV in 

seabirds (35), especially since there is a potential for catastrophic loss 
of species infected with H5N1 HPAI (36–38) (e.g., brown pelicans, 
Caspian terns). However, few studies have investigated baseline 
exposure levels to IAV in general.

In the North Pacific, the rhinoceros auklet (Cerorhinca 
monocerata) from the Alcidae family is an important indicator species 
for ecosystem health (18, 39). Ocean warming can lead to long-term 
decreases in rhinoceros auklet abundance (40), as they are sensitive to 
oceanographic changes that shift trophic level interactions and diet 
composition. This can also affect reproductive success, as reproductive 
performance is correlated with diet quality and availability (41–43). 
Interestingly, adult survival rates remained relatively stable during 
extreme environmental variation (44). Alcids have been particularly 
vulnerable to large mortality events in recent years (45) with disease 
playing a major role in a rhinoceros auklet mortality event in the 
Salish Sea (39). Assessment of clinical parameters in rhinoceros 
auklets can potentially provide a more comprehensive view of marine 
ecosystem health, especially when integrated with other attributes 
such as demography, reproduction, and morphometrics.

Few studies provide baseline serum biochemistry, EPH, and 
APP parameters for seabirds due to challenges in obtaining samples 
and limited APP reagent validation in avian species (46). There is 
also a scarcity of clinical baseline seabird population health data 
based on the American Society of Veterinary Clinical Pathology 
guidelines in reference interval (RI) generation (47), which are 
founded on the use of significant sample sizes and recommended 
statistical methods. The objectives of this study were therefore to: 
(1) establish baseline clinical health serum biochemistry, EPH, and 
APP RIs for the rhinoceros auklet on multiple breeding colonies in 
the core of its breeding range; and (2) assess IAV antibody 
prevalence among these breeding colonies.

2 Materials and methods

2.1 Animal capture and blood collection at 
breeding colonies

Research protocols employed in this study were approved by 
Simon Fraser University Animal Care Services (#974B-94), the 
Western and Northern Animal Care Committee of Environment 
and Climate Change Canada’s Canadian Wildlife Service 
(14MH01, and 19MH01), ECCC Migratory Birds banding permit 
(10667F), and US Fish and Wildlife Federal Bird Banding Permit 
(22913).

Adult rhinoceros auklets were caught on land at breeding 
colonies at night, either by hand, with landing nets, or mist nets 
in July (2013, 2014, and 2019) across four colonies in British 
Columbia, Canada (Lucy, Pine, and Triangle Islands, plus SGang 
Gwaay) and one colony in Washington, United  States (2019, 
Protection Island) in the North Pacific (Figure  1). Birds were 
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weighed with a 1 kg (± 5 g) analog spring scale (Pesola AG, 
Switzerland), and the following morphometric measurements 
were collected: maximum flattened wing chord, tarsus, culmen 
length, bill depth at gonys, and horn height. Blood was taken from 
the brachial vein, using 27 g needles and 3 cc syringes. Whole 
blood was centrifuged at 10,000 rotations per minute for 5–10 min 
to separate erythrocytes from serum, within 4–6 h of collection. 
Serum was collected into tubes after the blood samples clotted, 
then subsequently frozen in liquid nitrogen dry shippers. Samples 
were stored at −20°C until shipping to the University of Miami 
Avian and Medicine Laboratory (Miami, FL, United  States), 
California Animal Health and Food Safety Laboratory (Davis, CA, 
United States), University of Georgia (Athens, GA, United States), 
and/or the University of Lethbridge (Lethbridge, AB, 
United States). Total elapsed time between sample collection and 
analysis from wild birds ranged from 160 to 598 days (median: 
173 days).

2.2 Preliminary serum amyloid A and 
haptoglobin evaluation in captive 
rhinoceros auklets

Five captive rhinoceros auklets at the Alaska SeaLife Center were 
selected for measurement of SAA and HP levels from May 2007 to 
September 2013, due to the presence of various clinical abnormalities 
associated with inflammation, in most cases involving their feet 
(Supplementary Tables S2–S4). Four of the five birds were originally 
collected as eggs from Middleton Island, AK in June of 2006 and 
participated in a nutritional research project prior to being placed at 
the Alaska SeaLife Center for long-term care in early 2007. The fifth 
bird selected was hatched at the Alaska SeaLife Center from a mated 
pair of the previously described individuals. One plasma or serum 
sample was collected from each bird during clinical disease and when 
clinically normal. Serum or plasma was collected from peripheral 
veins (brachial, metatarsal, or jugular vein) and processed as 
described previously.

2.3 Laboratory sample processing

Serum biochemistry, protein electrophoresis, and acute phase 
protein analysis was conducted at the University of Miami—Avian and 
Medicine Laboratory (Miami, FL). Routine biochemistry testing was 
performed using a Vitros 250 analyzer (Ortho, Rochester, NY). 
Protein electrophoresis was conducted using the SPIFE 3000 system 
and split beta gels (Helena Laboratories, Beaumont, TX, United States). 
A representative electrophoretogram from a rhinoceros auklet is 
presented in Figure 2. Fraction delimits were placed according to 
conventions established for other avian species (2) and included 
prealbumin, albumin, and α-1, α-2, β-, and γ-globulins. The albumin 
to globulin ratio was calculated as the sum of prealbumin and albumin 
divided by the sum of the globulins. The absolute values for the 
fractions were calculated by multiplying the fraction percent values by 
the total protein. Haptoglobin levels were determined using the phase 
colorimetric assay (Tridelta, Morris Plains, NJ), and SAA levels were 
determined using the SAA-LZ immunoturbidimetric assay (Eiken 
Chemical Co, Tokyo, Japan). Both assays were performed on a 

Daytona Rx analyzer (Kearneysville, WV). Assay reactivity, as 
determined by stepwise dilution of high abnormal samples (100, 90, 
80, …) was found to be linear under dilution. For SAA, the slope 
included 1 (0.89–1.21) and the y-intercept included 0 (−9.81–43.99). 

FIGURE 1

Map of rhinoceros auklet (Cerorhinca monocerata) breeding 
colonies studied in British Columbia, Canada, and Washington, 
United States within the North Pacific from 2013 to 2019. The seabird 
breeding colonies were located on Lucy Island (54.294418°N, 
−130.621907°W), Pine Island (50.976062°N, −127.729909°W), 
Triangle Island (50.851023°N, −129.066292°W), SGang Gwaay 
(52.092634°N, −131.225633°W) in British Columbia, and Protection 
Island (48.126341°N, −122.930289°W) in Washington, United States. 
Adapted from Environmental Pollution, Volume 239, Hipfner et al., 
“Two forage fishes as potential conduits for the vertical transfer of 
microfibres in Northeastern Pacific Ocean food webs”, Pages 215-
222, Copyright Elsevier (2018).

FIGURE 2

Electrophoretogram of a free-ranging adult rhinoceros auklet 
(Cerorhinca monocerata) that was presumed healthy. Protein 
fractions are: (A) prealbumin; (B) albumin; (C) α-1; (D) α-2; (E) β-; and 
(F) γ-globulins.
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The runs test did indicate a significant deviation from linearity 
(p = 0.02). For HP, the slope included 1 (0.48–1.11) and the y-intercept 
included 0 (−0.11–0.62). The runs test did not indicate a significant 
deviation from linearity (p = 0.90). Coefficient of variation and 
diagnostic limits were consistent with that observed with other species 
(3); analysis was performed with GraphPad Prism 8.0 (GraphPad 
Software, San Diego, California, United States).

Sera were tested for antibodies to the IAV nucleoprotein using a 
commercial bELISA (IDEXX AI MultiS-Screen Ab test, IDEXX 
Laboratories, Westbrook, Maine, United  States) according to the 
manufacturer’s instructions either at the California Animal Health 
and Food Safety Laboratory (Davis, CA) or the University of Georgia 
(Athens, GA). Sera were considered positive for antibodies to IAV if 
the serum-sample-to-negative-control (S/N) absorbance value was 
<0.7, based on recommendations for evaluating wildlife species (48).

DNA was extracted from blood stored in Queen’s lysis buffer 
using a modified Chelex protocol (49, 50) at the University of 
Lethbridge (Lethbridge, AB). Individuals were sexed using the Z43BF/
Z43BR Primer Pair (51); the forward primer modified with M13 to 
allow incorporation of fluorescent marker to run on Licor gel. All PCR 
reactions were conducted in 10 μL reactions with 1 μL of genomic 
DNA. PCR cocktails contained 2.0 μL ClearFlexi Buffer 5x (Promega), 
2.5 mM MgCl₂, 200 μM dNTP, 1 μM each primer, 0.05 μM M13 primer, 
and 0.5 units GoTaq (Promega). The following Thermocycler 
Conditions were used: 1 cycle of 30 s at 94°C; 35 cycles of 30 s at 94°C, 
and 45 s at 55°C, and 45 s at 72°C, with a final extension for 5 min at 
72°C, and 5 s at 4°C. All PCR products were run on a 6% acrylamide 
gel. Two positive controls (one male and one female) and a negative 
control were included on each run.

2.4 Statistical analyses

Statistical analyses were conducted using RStudio (R Development 
Core Team, Vienna, Austria) and Stata (17.0, StataCorp LLC, College 
Station, TX, United States), with results deemed significant at p ≤ 0.05, 
unless otherwise stated. Sex was predicted based on the following 
morphometric measurements (52): A designation of female was 
assigned if bill depth was <16.5 mm, while males had a bill depth of 
>17.0 mm. Birds with ambiguous bill depths (i.e., 16.5–17.0 mm) were 
assigned female if they weighed <500 g, and assigned male if ≥500 g. 
The McNemar’s test was conducted to determine if there was a 
difference between genetic sex of rhinoceros auklets and when 
predicted by morphometric measurements.

Normality was first assessed for serum EPH, APP, and 
biochemistry measurands using the Shapiro–Wilk test. Measurands 
were considered to have a non-Gaussian distribution if p ≤ 0.3, as per 
guidelines from the American Society of Veterinary Clinical Pathology 
(53). As the majority of the parameters had a non-Gaussian 
distribution, the Kruskal-Wallis test was used to determine differences 
between colonies, years sampled, and morphometrically predicted sex. 
Pairwise comparisons were evaluated with Dunn’s test, with p-values 
adjusted with the Benjamini-Hochberg method to control the type 
I error rate. The distribution of IAV seropositivity status was analyzed 
using a multilevel mixed-effects logistic regression with colony, year, 
and morphometrically predicted sex, when clustering by colony. 
Variables were considered for multivariable model building if 
association with IAV seropositivity was at a threshold of p ≤ 0.20. 

Model fit was evaluated with Aikake’s information criteria (AIC). 
Inclusion of variables was tested with a likelihood ratio for successive 
models with forward stepwise selection.

Data collected from individuals of all colonies were pooled 
together to generate RIs for serum biochemistry, EPH, and 
APP. Reference intervals containing the central 95% of the population 
were calculated using Reference Value Advisor v. 2.1 Microsoft Excel 
add-on (54), according to guidelines established by the American 
Society of Veterinary Clinical Pathology (47). A nonparametric 
method was used as most distributions were non-normal. Lower and 
upper bounds represent the 2.5 and 97.5th percentiles, respectively. 
Outliers were identified using Tukey’s interquartile fences and 
excluded from RI calculations following histogram and boxplot 
examination. For variables with n ≥ 120, a nonparametric method was 
used for generating the 95% RI, with 90% confidence intervals (CI) of 
the upper and lower limits of the RI. For non-normally distributed 
variables with n ≥ 20 and < 40, the robust method was used to calculate 
RI and 90% CI upper and lower limits of the RI (47).

3 Results

From 2013 to 2019, 178 adult rhinoceros auklets were captured 
from breeding colonies at the sampling sites (Figures 1, 3). On brief 
physical exam, no gross external abnormalities were noted and all 
individuals were presumed healthy. All animals had evidence of 
breeding present (i.e., presence of bill load for chick feeding) at time 
of capture. Descriptive statistics for mass and morphometric values 
are summarized in Table 1.

Of the captured birds, the sex of 38 animals was determined 
genetically, and was composed of 19 males (50%) and 19 females 
(50%). Bill depth was not recorded for 2/38 of the genetically sexed 
birds. Based on bill depth and weight measurements as described 
above, there were 93 females (52%), and 75 males (42%). Ten animals 
(6%) were of unknown sex, as morphometric data for these birds were 
not collected. Supplementary Table S1 shows the cross classification 
of genetic sex compared to morphometric predictions in 36 animals. 
The McNemar’s test indicated that the proportion determined as male 

FIGURE 3

Number of wild breeding rhinoceros auklets (Cerorhinca 
monocerata) captured by year and colony from Lucy, Pine, Triangle 
Islands, and SGang Gwaay, British Columbia, Canada and from 
Protection Island, Washington, United States, 2013–2019.
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and female by the two tests was not significantly different (p = 1). 
When comparing genetic versus morphometrically predicted sex, 
there was a weak level of agreement (kappa = 0.44).

Blood samples were collected from 163 individuals. Lipemia 
occurred in two samples with a lipemic index of 1 and 2, respectively 
(0–4 scale, with 4 graded as severe); these animals had total protein 
levels comparable to other animals in the study. Most serum samples 
had no evidence of hemolysis; however, four and five birds had 
hemolysis indexes of 1+ (mild) and 2+ (moderate), respectively. 
Serum protein electrophoresis and biochemistry values were assessed 
in 163 and 35 animals, respectively. Distributions of values were 
non-normal, so non-parametric techniques were used. Reference 
intervals containing the central 95% of the population, with 
corresponding 90% CI for the lower and upper limit of the RI, are 
presented for protein electrophoresis fractions and APP (Table 2) and 
biochemistry data (Table 3). For individual analyte values below the 
limit of detection, the RI was calculated using the limit of detection 
(e.g., <0.1 mg/L SAA was entered as 0.1 mg/L for RI calculation). 
Histograms showing the distribution of serum biochemistry values 
are provided in Supplementary Figures S1, S2 due to smaller sample 
sizes (n < 40) assessed. Gamma-glutamyl transferase was assayed but 
RI were not calculated as 80% (28/35) of samples were below the limit 
of detection (< 5 U/L). The remaining gamma-glutamyl values ranged 
from 5 to 9 U/L. For creatinine, 13/35 (37%) samples were below the 
limit of detection (< 0.2 mg/dL), so RI for the blood urea nitrogen to 
creatinine ratio was not calculated. Serum concentrations for SAA and 
HP for all birds assessed are shown in Supplementary Figure S3.

For comparison to birds with known illnesses, SAA and HP levels 
from five captive rhinoceros auklets at the Alaska SeaLife Center were 
assessed during clinical disease and when clinically healthy 
(Supplementary Tables S2–S4). Four of the five clinically ill rhinoceros 
auklets were diagnosed with pododermatitis with active abscessation, 
necrosis, cellulitis, or an active joint infection; one clinically ill 
rhinoceros auklet had an open diagnosis with nonspecific signs of 
illness that responded to supportive therapy. SAA ranged from 0.8 to 
385.1 mg/L (median 43.9 mg/L) and HP ranged from 0.35 to 2.45 mg/

mL (median 1.39 mg/mL). When considered clinically normal, SAA 
ranged from <0.1 to 15.52 mg/L (median 1.65 mg/L) and HP ranged 
from 0.35 to 0.87 mg/mL (median 0.5 mg/mL). EPH was also 
performed in three of the clinically ill birds (Supplementary Table S3).

Seropositivity for IAV was determined by enzyme-linked 
immunosorbent assay in 147 individuals. Year, colony, and 
morphometrically predicted sex were assessed for association with 
IAV seropositivity. Sex was not associated (p = 0.74). Year and colony 
were considered for further multivariate model building as p values 
were below a threshold of p ≤ 0.2. After adjusting for colony clustering, 
the prevalence of IAV in 2014 (75%; 47/63) was significantly higher 
than in 2019 (24%; 17/72; p < 0.001), but not different compared to in 
2013 (50%; 6/12; p = 0.1). A subset analysis including only colonies 
with data for multiple years and only the last 2 years of sampling did 
not change estimates of effect (<5% difference; data not shown). The 
analysis of the full dataset is presented here. The model including year 
of sampling yielded a better fit than the base model (AIC = 173 vs. 
AIC = 205). Overall, including the year of sampling yielded a 
significantly better model (Likelihood ratio test, p < 0.0001).

4 Discussion

This study provides protein electrophoresis, APP, and serum 
biochemistry RIs and IAV seroprevalence among wild adult 
rhinoceros auklets from large breeding colonies in the North Pacific. 
While various studies have described protein electrophoresis fractions 
in avian species previously, sample sizes have generally been limited 
and reference ranges only compiled for a handful of species including 
Xantus’s murrelets (Synthliboramphus hypoleucus), common loons 
(Gavia immer), and captive American flamingos (Phoenicopterus 
ruber) (3, 4, 55). This study, to our knowledge, provides one of the 
largest samplings of a free-ranging seabird to assess baseline health by 
protein electrophoresis to date. It is important to note though, that 
reference intervals are both species and laboratory-specific, and that 
RI calculation method (e.g., whether outliers were removed) likely 
affects calculated intervals. We therefore followed current guidelines 
from the American Society of Veterinary Clinical Pathology for 
RI generation.

Analysis of acute phase response is a more recent advancement in 
avian medicine to complement disease diagnosis, such as in the 
diagnosis of aspergillosis or chlamydiosis (2, 5). Pododermatitis is 
negatively associated with albumin levels in captive American 
flamingos (3), which has potential implications for wildlife 
rehabilitation as this disease is a common negative consequence of 
captivity in waterbirds (56). Serum EPH and APP profiles of the 
rhinoceros auklets in this study were unremarkable when compared 
to other species, with some exceptions. Albumin concentrations and 
the associated albumin to globulin ratio range were slightly elevated 
in rhinoceros auklets compared to wild adult Xantus’s murrelets, 
common loons, brown pelicans (Pelecanus occidentalis), juvenile 
herring gulls (Larus argentatus), and Caspian terns (Sterna caspia) (4, 
55, 57, 58). By contrast, captive American flamingos exhibited a higher 
albumin to globulin ratio, in addition to prealbumin and HP 
concentrations (3).

Serum amyloid A (SAA) and HP are other biomarkers for 
monitoring inflammation in birds (59). Inflammation has been 
linked with elevations of SAA levels in peregrine falcons (Falco 

TABLE 1 Descriptive statistics for morphometric data of wild breeding 
adult rhinoceros auklets (Cerorhinca monocerata) from Lucy, Pine, 
Triangle, and SGang Gwaay Islands in British Columbia and Protection 
Island, Washington, 2013–2019.

n Mean Median
Standard 
deviation

Min Max

Mass (g) 178 502 500 32 405 570

Wing 

Cord 

(mm)

177 185 185 5 167 199

Tarsus 

(mm)

157 31.6 31.4 1.8 27.7 40.1

Culmen 

(mm)

168 32.1 32.6 3.0 20.5 36.1

Horn 

(mm)

168 26.5 26.6 2.1 20.8 32.6

Bill 

Depth 

(mm)

168 16.5 16.5 1.2 13.2 20.7
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TABLE 2 Serum protein electrophoresis fractions and acute phase protein reference intervals (RI) for wild breeding adult rhinoceros auklets (Cerorhinca monocerata) from Lucy, Pine, Triangle, and SGang Gwaay 
Islands in British Columbia and Protection Island, Washington, 2013–2019.

Measurand Units n Mean SD Median Min Max p-valuea Distributiona Methodb LRL of 
RIb

URL of 
RIb

CI 90% 
of LRLb

CI 90% 
of URLb

Total protein g/dL 161 4.48 1.38 4 1.4 9.8 <0.001 NG NP 2.4 7.4 1.4–2.6 7.0–9.8

Albumin to globulin 

ratio

163 1.2 0.33 1.2 0.45 1.98 0.29 NG NP 0.6 1.8 0.5–0.7 1.7–2.0

Prealbumin % 159 7.6 4.3 6.8 0.3 22.4 <0.001 NG NP 0.4 18.3 0.3–0.5 16.2–22.4

g/dL 159 0.34 0.22 0.29 0.01 1.1 <0.001 NG NP 0.02 0.9 0.01–0.02 0.82–1.10

Albumin % 163 44 7.1 45.1 25.4 59.1 0.004 NG NP 28.5 55.9 25.4–31.5 53.7–59.1

g/dL 162 2 0.6 1.9 0.6 4.2 <0.001 NG NP 0.8 3.7 0.6–1.1 3.3–4.2

α-1 globulins % 161 6.5 1.9 6.2 3 12.7 <0.001 NG NP 3.4 11.9 3.0–4.0 10.7–12.7

g/dL 162 0.3 0.14 0.26 0.07 0.89 <0.001 NG NP 0.1 0.7 0.07–0.15 0.56–0.89

α-2 globulins % 157 15.6 2.9 15.2 11.1 25.9 <0.001 NG NP 11.5 24.9 11.1–12.3 23.4–25.9

g/dL 161 0.74 0.3 0.64 0.21 1.95 <0.001 NG NP 0.35 1.6 0.21–0.40 1.30–1.95

β-globulins % 163 15.8 4.1 15 8.7 30.6 <0.001 NG NP 9.7 26.6 8.7–10.2 23.6–30.6

g/dL 157 0.69 0.27 0.64 0.23 1.73 <0.001 NG NP 0.3 1.5 0.23–0.34 1.11–1.73

γ-globulins % 163 7.9 2.2 7.8 3.1 14.9 0.08 NG NP 3.8 13.3 3.1–4.4 12.0–14.9

g/dL 161 0.36 0.16 0.34 0.1 0.99 <0.001 NG NP 0.1 0.8 0.10–0.16 0.67–0.99

Serum amyloid A 

(SAA)

mg/L 143 1.24 1.99 0.1 <0.1 10.08 <0.001 NG NP <0.1 6.7 0.1–0.1 5.9–10.1

Haptoglobin (HP) mg/mL 141 0.07 0.15 0.01 <0.01 0.27 <0.001 NG NP <0.01 0.23 0.01–0.01 0.19–0.27

aThe Shapiro–Wilk test was used to assess normality of the distributions at a threshold of p < 0.3. NG, Non-Gaussian. bOutliers were identified by Tukey interquartile fences and removed. The nonparametric (NP) method was used to generate reference intervals (RI), 
containing the central 95%. LRL, Lower reference limit; URL, Upper reference limit; CI, Confidence interval; SD, Standard deviation.
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TABLE 3 Serum biochemistry reference intervals (RI) of wild breeding adult rhinoceros auklets (Cerorhinca monocerata) from Lucy, Pine, Triangle Islands, and SGang Gwaay in British Columbia, 2013–2019.

Measurand Units n Mean SD Median Min Max p-valuea Distributiona Methodb LRL of 
RIb

URL of 
RIb

CI 90% 
of LRLb

CI 90% 
of URLb

Sodium mmol/L 35 137.5 3.2 137 133 145 0.08 NG R 130.4 143.6 128.6–

131.8

141.8–145.6

Potassium mmol/L 35 3.03 0.47 2.9 2.2 4.1 0.31 G R 1.98 3.99 1.76–2.22 3.67–4.23

Chloride mmol/L 35 117.7 3.2 117 113 126 0.02 NG R 110.5 123.9 109.0–

112.4

122.1–125.8

CO2 mmol/L 35 19.6 5.1 20 <5 29 0.02 NG R 9.8 31 7.1–13.0 27.7–33.6

Calcium mg/dL 34 9.38 0.84 9.4 7.1 10.7 0.001 NG R 7.76 11.21 7.31–8.24 10.68–11.64

Phosphorus mg/dL 33 3.02 1.58 3 0.8 7.3 <0.001 NG R 0 5.87 0–0.49 4.89–6.84

Magnesium mg/dL 35 2.01 0.31 2 1.3 2.7 0.99 G R 1.36 2.65 1.23–1.57 2.50–2.81

Uric acid mg/dL 34 15.06 7.77 14.6 1.2 37.9 <0.001 NG R 0 30.1 0–2.94 25.38–34.98

Urea nitrogen mg/dL 34 5.3 2.4 5 1 12 0.002 NG R 0 9.5 0–1.3 8.1–11.4

Creatinine mg/dL 32 0.25 0.08 0.2 <0.2 0.4 <0.001 NG R n/a n/a n/a n/a

AST U/L 35 349.2 239.8 296 49 1,275 <0.001 NG R 0 804.4 n/a 609.1–

1005.7

CK U/L 33 253.7 159.4 208 39 752 <0.001 NG R 0 539.7 n/a 416.9–665.6

Glucose mg/dL 32 383.7 62.9 399 231 488 <0.001 NG R 256.2 525 222.4–

297.5

490.3–556.6

Amylase U/L 35 2082 805 2,286 856 3,519 0.005 NG R 410.4 3847.5 48.2–987.4 3575.7–

4181.3

Lipase U/L 33 11.5 10.6 8 <1 41 <0.001 NG R 0 29.9 n/a 22.9–38.5

Triglyceride mg/dL 33 171.6 59.3 163 72 371 <0.001 NG R 35.1 280.8 0–83.3 230.8–323.5

Cholesterol mg/dL 35 303.4 58.3 305 184 440 0.8 G R 183.6 424.7 158.7–

213.8

396.6–453.4

aThe Shapiro–Wilk test was used to assess normality of the distributions at a threshold of p < 0.3. NG, Non-Gaussian; G, Gaussian. bOutliers were identified by Tukey interquartile fences and removed. The robust (R) method was used to generate reference intervals (RI), 
containing the central 95%. LRL, Lower reference limit; URL, Upper reference limit; CI, Confidence interval; SD, Standard deviation; AST, Aspartate aminotransferase; and CK, Creatine kinase.
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peregrinus) with fungal pneumonia and pododermatitis (46). 
Rhinoceros auklets in this study had a comparable SAA RI to healthy 
peregrine falcon individuals, although some rhinoceros auklets had 
highly elevated SAA concentrations (> 20 mg/L) subsequently 
identified as statistical outliers. This could represent inflammatory 
disease, and potentially subclinical illness. As birds were presumed 
healthy based on brief external examination and breeding status, this 
represents a limitation within the baseline health parameters 
generated in this study.

Haptoglobin values in this study were often below the limit of 
detection of the analyzer. In general, HP is considered a minor acute 
phase protein; HP binds free hemoglobin, minimizing oxidative 
damage caused during inflammation (6, 60). Plasma HP concentration 
has been previously associated with herpesvirus infection in 
frigatebird nestlings and was predictive of short-term survival (61). 
Haptoglobin concentrations also increased in adult mallard ducks 
(Anas platyrhyncos) experimentally injected with bacterial 
lipopolysaccharide (62). By contrast, these mallard ducks exhibited no 
change in HP when experimentally exposed to fuel oil (62). Wild 
common guillemots (Uria aalge) had plasma HP concentrations 
negatively correlated with exposure to polycyclic aromatic 
hydrocarbons in crude oil, thought to be  related to Heinz body 
hemolytic anemia (63). Further investigation is required to understand 
the contextual implications of HP concentration alterations in 
seabirds, particularly related to oiling and infection by 
different pathogens.

Since there is limited information about SAA and HP values in 
clinically normal compared to abnormal seabirds, serum or plasma 
concentrations were assessed for five captive rhinoceros auklets. For 
SAA, all individuals with a definitive diagnosis of an acute infection 
had much greater SAA levels compared to the RI calculated in this 
study. One clinically abnormal bird with nonspecific clinical signs of 
illness and no definitive diagnosis had a corresponding minimal 
increase in SAA, potentially corresponding to a minor illness. For HP, 
even when all captive birds were considered clinically normal, all 
surprisingly had values above the RI calculated. Full medical histories 
are provided in Supplementary Tables S2–S4, as minor elevations in 
HP may correlate to subclinical low-grade pododermatitis common 
in managed captive flocks or to other subclinical disease not diagnosed 
at the time of sampling. For SAA and HP levels from the same 
individual, both were higher in clinically abnormal compared to 
normal states. This suggests possible value in comparing SAA and HP 
levels over time in individual animals to monitor disease state in 
captivity or during rehabilitation efforts. An important limitation, 
however, is that a very small number of rehabilitated animals were 
assessed here; future studies should aim to investigate the utility of 
monitoring serum amyloid A and HP among captive flocks and 
rehabilitated animals, using a larger sample size and variety of 
disease states.

Serum biochemistry parameters are previously described in 
seabirds, including Xantus’s murrelets, waved albatrosses 
(Phoebastria irrorata), and a few tropical seabirds (4, 55, 64, 65). 
Reference intervals in this study were comparable to previous 
waterbird studies, although amylase was notably higher in the 
sampled rhinoceros auklets compared to common loons and brown 
pelicans (4, 58). Scarce information exists regarding amylase 
concentrations in seabirds, and differences may be  attributed to 

genetic variability within the species and are not necessarily diet-
specific (66). Uric acid RI were also higher in rhinoceros auklets than 
previously reported in common loons, waved albatrosses, dark-
rumped petrels (Pterodroma phaeopygia), and wedge-tailed 
shearwaters (Ardenna pacifica) (4, 64, 65). Rhinoceros auklets in this 
study were sampled at night, as they flew back from their burrows 
after foraging all day. Elevated uric acid could therefore be attributed 
to postprandial blood sampling as has been observed in captive 
black-footed penguins (Spheniscus demersus) and peregrine falcons 
(67, 68) or potentially due to dietary differences between those 
species. Uric acid differences could also reflect variation due to 
sampling at different times of days. Higher serum triglyceride 
concentrations in rhinoceros auklets compared to common loons 
may be reflective of the high lipid content during egg laying and 
brooding season, as demonstrated in the blue-footed booby (Sula 
nebouxii); alternatively, this may instead, reflect dietary differences 
between rhinoceros auklets and common loons (4, 69). Subclinical 
plastic ingestion has also been linked with increased uric acid, 
amylase, and cholesterol levels in flesh-footed shearwaters (Ardenna 
carneipes) (70). It is unknown whether plastic pollution similarly 
affects these parameters in rhinoceros auklets, though plastic fibers 
have been found in the rhinoceros auklet diet (71).

No sex differences in serum biochemical parameters were noted 
in this study, similar to black-browed albatrosses (Thalassarche 
melanophris) (72). By contrast, sex-related differences have been 
previously found in waterbirds including higher calcium and 
triglycerides in adult female Alaskan seabirds and brown pelicans (22, 
58), which may potentially indicate species differences or reproductive 
status differences from rhinoceros auklets.

As IAV is an important pathogen for surveillance in wild birds 
within the Pacific Flyway, rhinoceros auklets were surveyed for 
antibodies. We  detected seropositivity to IAV antibodies across 
rhinoceros auklets in all sampling years, indicating viral exposure. 
This highlights the utility of continued surveillance, especially in light 
of the H5N1 HPAI outbreak in wild birds across North America and 
Europe. IAV serology has previously been assessed in free-ranging 
adult waved albatrosses and southern giant petrels, with no animals 
testing positive (64, 73). Among different seabird species on the 
Canadian East coast, Atlantic puffins (Fratercula arctica) and common 
murres (Uria aalge) exhibited 22 and 44% antibody prevalence, 
respectively, while several other species were seronegative (33). It is 
unclear what the source of IAV exposure is to these rhinoceros auklets. 
One possibility is that sympatric species such as gulls, known to act as 
reservoirs for low pathogenic H13 and H16 subtypes of IAV (34), 
could be a potential source. Additional work is required to understand 
cross-species transmission and other modes of exposure to IAV.

It is important to note that while many sampled birds had 
antibodies against IAV, they were all clinically healthy on external 
examination. Therefore, while it is possible that previous IAV infection 
could have affected the serum EPH, APP, and biochemical analytes 
assessed (e.g., increased SAA with acute infection), it is probably less 
likely unless birds were infected at the time of sampling. Understanding 
the viral subtypes that rhinoceros auklets are exposed to is particularly 
important, as it has been experimentally shown in wood ducks that 
previous exposure to IAV could infer some degree of homosubtypic 
(homologous hemagglutinin) and heterosubtypic (heterologous 
hemagglutinin) protective immunity if birds are exposed to H5N1 

https://doi.org/10.3389/fvets.2024.1379980
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Lee et al. 10.3389/fvets.2024.1379980

Frontiers in Veterinary Science 09 frontiersin.org

HPAI (74). Continued serological surveillance is required to 
understand the role of rhinoceros auklets in IAV epidemiology, and 
their potential as a reservoir species.

There were several limitations to this study. This study was 
conducted over multiple years and colonies, and a variety of small 
inter-colony and inter-annual differences for parameters were 
observed. Notably, inter-annual differences have also previously been 
observed in clinical metrics for other seabird species (75, 76). Given 
the minor variations in these parameters that were not suggestive of 
biological significance, RI were compiled with inclusion of all 
individuals to provide a broader representation of rhinoceros auklet 
populations across multiple years and colonies. There was prolonged 
storage of some samples prior to testing, which could have affected 
protein presence and metabolism. However, the impact of sample 
storage duration is not well described in the literature and therefore 
was not a variable investigated in this study. Finally, only brief external 
exams were conducted upon animal capture and so subclinical disease 
may have been missed. As such, since the EPH RI generated here are 
broad, there may have been some ill birds within the group sampled. 
To counteract this limitation in potentially missing animals with 
subclinical disease, we utilized Tukey’s interquartile fences to identify 
statistical outliers as per the American Society of Veterinary Clinical 
Pathology guidelines. Further research is required to compare health 
parameters between diseased and healthy rhinoceros auklets. For 
example, the serum EPH, APP, and biochemistry profiles of birds from 
rehabilitation centers with known injuries should be  further 
characterized to help correlate parameters with clinical disease or 
injuries. Future research can assess how these health parameters may 
vary with increased stress in birds, as a proxy for subclinical illness; 
this can be done by conducting hormone analysis.

In conclusion, this study provides serum EPH, APP, and 
biochemistry RI for rhinoceros auklets, an important alcid sentinel 
species of the North Pacific, following recommended guidelines by the 
American Society of Veterinary Clinical Pathology. Overall, 
rhinoceros auklet RIs are comparable to other aquatic bird species, 
although rhinoceros auklets appeared to have higher upper RIs for 
serum amylase, uric acid, and triglyceride concentrations. This work 
is critical for wildlife conservation and management in the North 
Pacific, as it facilitates the monitoring of marine ecosystem health in 
the face of stressors such as pandemic illness, infectious disease, 
climate change, plastic ingestion, pollution, increased marine vessel 
traffic, and large-scale environmental catastrophes such as oil spills. 
Furthermore, the clinical nature of these data will provide a useful 
basis for assessment during the rehabilitation of seabirds, especially 
during climatic or anthropogenic events.
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