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Hydrogen sulfide (H2S) is a gaseous signaling molecule produced in the body 
by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) 
and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S is crucial in various 
physiological processes associated with female mammalian reproduction. 
These include estrus cycle, oocyte maturation, oocyte aging, ovulation, embryo 
transport and early embryo development, the development of the placenta and 
fetal membranes, pregnancy, and the initiation of labor. Despite the confirmed 
presence of H2S-producing enzymes in all female reproductive tissues, as 
described in this review, the exact mechanisms of H2S action in these tissues 
remain in most cases unclear. Therefore, this review aims to summarize the 
knowledge about the presence and effects of H2S in these tissues and outline 
possible signaling pathways that mediate these effects. Understanding these 
pathways may lead to the development of new therapeutic strategies in the 
field of women’s health and perinatal medicine.
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1 Introduction

Several decades ago, hydrogen sulfide was considered only as a toxic gas. However, after 
the discovery of endogenous production of nitric oxide (NO) (1) and carbon monoxide (CO) 
(2) in the organism and their effects on various tissues, a third endogenously produced 
gasotransmitter, hydrogen sulfide (H2S), was demonstrated (3). H2S is now known to 
be involved in a wide range of physiological processes, including reducing cellular oxidative 
stress, regulating the cell cycle and apoptosis, participating in inflammatory processes, and 
vasodilating blood vessels (4). The regulation of the nervous and reproductive systems are 
among the other described functions of H2S (4, 5).

Three enzymes are responsible for the endogenous production of H2S, namely 
cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate 
sulfurtransferase (3-MST). In addition to these, cysteine aminotransferase (CAT) is sometimes 
mentioned as the fourth H2S-producing enzyme (Figure 1) (6, 7). The main substrate for the 
enzymatic production of H2S is L-cysteine (8) (Figure 1), although physiologically, H2S can 
also be  generated from D-cysteine (9). However, H2S can also be  produced through 
non-enzymatic processes, such as its production by microorganisms in the digestive tract that 
metabolize sulfur or the simple dissociation of sodium hydrosulfide (NaHS) into H2S. H2S can 
also be released from acid-labile sulfur, which serves as a reservoir of this molecule in the body 
(10, 11).
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One of the many organ systems affected by H2S is the reproductive 
tract. H2S has been detected in both male and female reproductive 
tracts of mammals, fish, and amphibians. In the male reproductive 
tract, one of the most fundamental roles of H2S is the facilitation of 
erection (12, 13). In the female reproductive system, H2S has been 
detected in oocytes (14), follicular cells at all stages (15), the uterus 
(16), and the placenta (17). In female reproduction, H2S is essential 
during gravidity and labor initiation (17, 18), in oocyte maturation 
and ovulation (19). It also influences the vasodilation of uterine and 
placental vessels, thereby affecting the nutrition of the growing 
embryo/fetus, in whose epigenetic regulation H2S also participates 
(20, 21). H2S production also occurs in the vagina and clitoral smooth 
muscle, where it supports smooth muscle relaxation, vaginal 
lubrication, and epithelial ion transport (22).

2 Molecular targets of H2S

The effects of H2S on various molecular targets are summarized in 
Figure 2. The first confirmed target of H2S was cytochrome c oxidase in 
mitochondria. In high H2S concentrations, mitochondrial activity can 
be  inhibited, and thus adenosine triphosphate (ATP) production is 
prevented. However, in lower concentrations, H2S can supply electrons 
to the mitochondrial respiratory chain through sulfide quinone 

oxidoreductase and cytochrome c oxidase (23, 24). In mitochondria, 
there has been detected the H2S-producing enzyme – 3-MST (25, 26). 
H2S is associated with cellular oxidative stress, as it interacts with 
glutathione, leading to an elevation in its concentration and the 
subsequent suppression of oxidative stress in mitochondria (27, 28).

Transcription factors are other H2S intracellular targets during 
inflammatory processes, as well as during embryonic development. H2S 
donors such as NaHS, S-diclofenac, or diallyl sulfide can inhibit nuclear 
factor kappa B (NF-κB) activation, thereby suppressing the production 
of pro-inflammatory cytokines (29). Conversely, under certain conditions 
(dose, exposure time), H2S may have pro-inflammatory effects in NF-κB 
in/dependent manner (30). Both results point to the influence of H2S on 
inflammatory processes and its tissue specificity. H2S likely impacts other 
transcription-mediated processes, such as proliferation (31) or 
angiogenesis (32), and it appears to play a crucial role in the epigenetic 
regulation of genes in early embryos (33).

A variety of kinases are also cellular targets of H2S. Examples are 
mitogen-activated protein kinases (MAPK), which H2S can both 
activate (19, 34) through S-sulfhydration (35) and inhibit (36, 37). H2S 
also activates protein kinase A (PKA) (38, 39), phosphoinositide 
3-kinase (PI3K)/protein kinase B (PKB) (40–42) or protein kinase C 
(PKC) (41). Additionally, to targeting kinases, H2S also inhibits 
phosphodiesterase, and consequently regulates the levels of cyclic 
guanosine monophosphate (cGMP) (43, 44).
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FIGURE 1

Anabolic pathways of H2S. H2S is enzymatically produced in the body by three enzymes: CBS, CSE, and 3-MST, which also requires CAT for H2S 
production. The main substrate for H2S formation is L-cysteine, which can, under the influence of H2S-producing enzymes, be produced from 
homocysteine (Hcy) supplied by the folate and methionine cycles. The image illustrates various pathways involved in the endogenous production of 
H2S in the body under the influence of CBS, CSE, and 3-MST, as well as the byproducts of these biochemical reactions.

FIGURE 2

Molecular targets of H2S. These targets can be divided into the following groups: (a) Influence of H2S on energy metabolism and cytochrome c oxidase 
activity; (b) activation and inactivation of various types of ion channels, likely through S-sulfhydration; (c) influence on cell signaling through 
transcription factors and kinases; (d) modification of a wide range of proteins through S-sulfhydration of cysteine thiol sites; (e) reduction of oxidative 
stress in mitochondria. ATP, adenosine triphosphate; SSH, S-sulfhydration; NF-κB, nuclear factor-kappa-B; Nrf-2, nuclear factor E2-related factor 2; 
STAT3, signal transducer and activator of transcription 3; MAPK, mitogen-activated protein kinase; PKA, protein kinase A; PKB, protein kinase B; PKC, 
protein kinase C; PI3K, phosphoinositide 3-kinase; PDE, phosphodiesterase; LDH, lactate dehydrogenase; GSH, glutathione; GSSG, glutathione 
disulfide.
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Molecular targets of H2S that should be  noticed are cellular 
proteins themselves. An important effect of H2S is the S-sulfhydration 
of proteins. This process involves the delivery of a sulfur atom derived 
from the H2S molecule to the thiol group of cysteine residues, leading 
to the formation of a hydropersulfide group (-SSH) (45, 46). These 
-SSH cysteines are more reactive than cysteines containing only a thiol 
group, and S-sulfhydration modifies these proteins (46). Interestingly, 
in cells, S-sulfhydration is considered a common post-translational 
modification. Among S-sulfhydrated proteins belong ATP synthase, 
lactate dehydrogenase, ion channels, phosphodiesterase, and many 
others (23, 44, 45, 47). In ion channels, H2S is capable of opening 
ATP-sensitive potassium channels (KATP) in the smooth muscle of 
arteries (48), myocytes (49), and smooth muscle of the intestine (50) 
or eye (51). However, H2S also regulates other channels such as large-
conductance calcium-activated potassium ion channels (BKCa) (52), 
L-type and T-type Ca2+ channels (53, 54), Cl− channels (55), and 
transient receptor potential vanilloid and ankyrin channels (TRPV 
and TRPA) (56, 57). S-sulfhydration can activate some channels while 
inhibiting others. Among activated channels belong KATP (58, 59), Cl− 
(55), TRPV/TRPA (56, 57), T-type Ca2+ (60) and BKCa channels (52, 
61). Inhibited ion channels via S-sulfhydration are L-type Ca2+ (45, 53, 
62), T-type Ca2+ (54) and BKCa channels (63).

3 Detection of H2S-producing 
enzymes and the role of H2S in female 
reproductive tissues

Over the last two decades, H2S-producing enzymes have been 
detected in various female reproductive tract tissues, spanning 
different animal models, including humans. Table 1 provide summary 
of the experiments conducted on this topic across diverse animal 
species and describe the potential significance of H2S-producing 
enzymes in these tissues.

Among the initial experiments investigating the function of H2S 
in the female reproductive system, knockout studies (CBS-KO; CSE-
KO) have been described (64–67). These studies demonstrate the 
importance of CBS in the maintenance of placental and uterine 
weight in females, as well as its indispensability in the maturation 
of growing follicles (64, 65) (Figure 3). Furthermore, the effect of 
CBS on the regularity and length of the estrus cycle was proven, 
which subsequently affects the fertility rate in females (64, 68). 
However, the absence of CBS does not cause morphological 
abnormalities on ovulated oocytes or the ovaries themselves (64). 
Interestingly, after transplanting CBS-KO ovaries into healthy 
recipients, the fertility of the females was not affected, indicating 
that the H2S production through CBS in other reproductive tissues 
is sufficient but probably not essential for maintaining female 
fertility (64). As for CSE, the absence of this H2S-producing enzyme 
in mice appears to have significantly less effect on the incidence of 
fertility-related defects, as CSE-KO females were fertile, and their 
pregnancies progressed normally (65, 67, 69). Recent research 
focused on the fertility of CSE-KO mice showed that CSE-KO leads 
to a reduced number of successful pregnancies and a higher 
pro-inflammatory status of fetuses. This suggests that CBS is not the 
sole key enzyme in H2S production in the context of female 
reproduction (70).

The reason why CBS seems more important for female 
reproduction in most studies (64, 65, 67) when the final product of 
both enzymes is H2S, has yet to be investigated. Potential reasons may 
include variances in homocysteine (Hcy) and cysteine metabolic 
pathways or differences in the substrate essential for the H2S 
formation. CBS utilizes Hcy or L-cysteine for H2S production (71, 72), 
with L-cysteine also generated from Hcy by both CBS and CSE 
(Figure 1). In reproductive tissues, the prevalence of Hcy may favor 
CBS (18, 73). CSE primarily uses cystathionine/L-cysteine/cystine as 
a substrate, but it can also utilize Hcy (74–77). However, the direct 
production of H2S from Hcy by CSE suggests a potential advantage in 
following the CBS route, interrupting the reaction at the intermediate 
product, cystathionine, to regulate both Hcy and H2S levels in the 
body (Figure 1). This proposition is supported by the fact that 
hyperhomocysteinemia is a critical factor during pregnancy leading, 
for example, to preeclampsia, miscarriages, uterine artery blood flow 
resistance or congenital malformations (73, 76, 78). Furthermore, 
higher H2S levels can lead to the inhibition of cytochrome c oxidase 
in mitochondria (24, 79). It is possible that CBS was evolutionarily 
favored because it can effectively regulate both Hcy levels in tissues 
and the H2S levels. However, further experiments are necessary to 
understand CBS’s role in female reproduction precisely.

3.1 The role of H2S in oocytes

The influence of H2S on oocyte maturation (19, 80, 81), ovulation 
(15, 82), and embryo transport to the uterus (83) has been studied in 
mice and human oocytes, particularly in connection with luteinizing 
hormone (LH), which increases CSE production in granulosa cells 
(82). Inhibition of CSE leads to a reduced number of ovulating follicles 
and corpus luteum and a higher number of unovulated follicles with 
retained oocytes (64, 65, 82). LH likely stimulates H2S production in 
granulosa cells in the preovulatory period (82). Furthermore, the 
regulation of H2S through a donor increased the levels of proteins 
essential for cumulus-oophorus (CO) expansion and follicle rupture 
(82, 84, 85). These results highlight the connection between the 
hormonal regulation of female reproduction and H2S production (68).

Regarding the role of H2S in oocyte maturation, it has been 
hypothesized that CBS acts as a mediator between the oocyte and 
granulosa cells and it may contribute to the proper flow of Hcy in 
follicular cells, and subsequently support the stability of oocyte 
transmethylation (15, 80). H2S plays a role during oocyte maturation 
in the intracellular environment of the oocyte as well. H2S regulates 
signalling pathways during the cell cycle, likely through 
S-sulfhydration (35). As was mentioned above, H2S-mediated 
regulation has been described in the cAMP-PKA, PI3K-PKB, MAPK 
and maturation promoting factor (MPF) pathways (43, 46, 72, 84). 
Using H2S donor (Na2S), the supporting effect of the H2S on oocyte 
maturation has been proven, as the Na2S accelerated the porcine 
oocyte nuclear maturation and increased MPF activity during GVBD 
stage. Moreover, this donor increased the number of zygotes with 
formed pronuclei after the parthenogenetic activation of porcine 
oocytes (81, 84, 85). During the germinal vesicle stage (GV), CBS is 
distributed into the nucleus of oocytes, however, from germinal vesicle 
breakdown (GVBD) to metaphase II, it is localized around the mitotic 
spindle, where it is probably essential for acetylation of α-tubulin and 
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proper assembly of the mitotic spindle (Figure 3). Conversely, deletion 
of the CBS gene leads to meiosis arrest, abnormalities in both the 
meiotic spindle and chromosome structure and disruption of the 
kinetochore-microtubule attachment (14). Additionally, H2S is 
produced by cumulus cells, which likely promotes CO expansion (19, 
86). The importance of H2S during oocyte maturation is further 
supported by the findings of Gelaude et al. (72), who confirmed the 
effect of H2S on meiosis in amphibian oocytes.

It has been previously described that H2S has anti-aging effects 
and promotes the longevity, health, and condition of many organ 
systems, including the fetal membranes, probably through the 

mammalian target of rapamycin (mTOR) signaling pathway and its 
downstream factor S6 kinase beta-1 (S6K1) (87–89). For this reason, 
a series of experiments describing the role of H2S during oocyte aging 
have been reported. H2S-producing enzymes are active in porcine 
oocytes, and there is a statistically significant decrease in endogenous 
H2S production during the first day of aging. Inhibition of H2S-
producing enzymes induces signs of aging in oocytes and significantly 
increases the number of fragmented oocytes (Figure 3) (90). 
Conversely, an exogenous H2S donor (Na2S) can reverse these 
manifestations. Cultivation in the presence of the H2S donor can also 
positively affect subsequent embryonic development after 

TABLE 1 Detection of H2S-producing enzymes in female reproductive tissues.

Tissue Model Enzyme Findings Source

Oocytes and 

follicular cells

Human
CBS Expression in GV*, regulation of the assembly of the mitotic spindle (14)

CSE Expansion of cumulus-oophorus (CO), regulation of ovulation (82)

Mouse
CBS

Expression in superovulated COC**, granulosa cells, nucleus, GV*, regulation of the 

assembly of the mitotic spindle
(14, 80)

CSE Expansion of CO, regulation of ovulation (82)

Pig

CBS

CSE

3-MST

Influence of CO expansion, support of oocyte maturation (19, 81)

Xenopus laevis

CBS

CSE

3-MST

Modulation of oocyte meiosis (72)

Oviduct Human CBS Relaxation of smooth muscle cells, promotion of embryo transport to the uterus (83)

Uterus

Human
CBS

CSE
Decreased expression with the onset of labor (16, 18, 114)

Mouse
CBS

CSE
Increased expression during estrus and diestrus (64, 114, 130, 140, 142)

Rat CBS Decreased activity during gravidity (132)

Uterine vessels

Human

CBS Uterine artery vasodilatation regulated by E2 (98)

CSE

3-MST
Uterine artery vasodilatation (20)

Sheep
CBS

CSE
Uterine artery vasodilatation regulated by E2 (98)

Placenta
Human

CBS

CSE
Decreased expression during labor (17, 133, 140, 163)

Rat CBS Decreased activity during gravidity (132)

Fetal 

membranes

Human

CBS Regulation of early embryonic development (18, 33)

CSE
Regulation of early embryonic development, regulation of vasomotor tone in the 

fetoplacental vasculature
(18, 33, 163)

Rat
CBS

CSE
Regulation of early embryonic development (18)

Embryo
Human

CBS

CSE
Promotion of placental angiogenesis, regulation of early embryonic development (33, 140, 143)

Zebrafish CBS Influence on the development of the anteroposterior axis (158)

Umbilical 

vessels
Human

CBS

CSE
Vasodilatation (164)

Vaginal 

epithelium

Rabbit
CBS

CSE
Relaxation of vaginal and clitoral smooth muscle (120)

Rat CSE Regulation of production and composition of vaginal fluid (22)

*GV, germinal vesicle; **COC, umulus-oocyte complex.
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parthenogenetic activation (90). These results were supported by 
research confirming reduced CBS expression in oocytes and ovaries 
of old mice (14). The mechanism of H2S action on oocytes involves 
the regulation of KATP and L-type Ca2+ channels, which play a crucial 
role during oocyte aging through S-sulfhydration. H2S activates KATP 
channels, delaying cell death, and conversely inhibits L-type Ca2+ 
channels, which have the opposite effect on oocytes (45, 53, 62, 91). In 
conclusion, H2S is crucial in most processes occurring in oocytes 
(Figure 3) and their immediate environment.

3.2 The role of H2S in uterine tissues

3.2.1 Uterine vessels
Given the vasodilatory effects of H2S (58, 92, 93), this function has 

been investigated concerning the regulation of blood flow in uterine 
vessels, which affects the exchange of nutrients and respiratory gases 
between the mother and the fetus, consequently influencing fetal 
growth and health (94, 95). It appears that the activity of H2S-
producing enzymes and the subsequent effect of uterine blood vessel 
vasodilation are essential, as elevated levels of Hcy (and thus a 
probable deficiency in H2S-producing enzymes) lead to uterine artery 
blood flow resistance (96). Vasodilatory effects of H2S have been 
confirmed in human (97), sheep (98), and rat (99) uterine arteries, as 
well as in human umbilical arteries and veins, with this effect 
occurring primarily during the proliferative phase of the menstrual 
(estrus) cycle and in gravidity (Figure 4) (20). The mechanism of 
vasodilation in the vascular system generally occurs through KATP 
channels (62, 100, 101). The same mechanism is employed in uterine 
vessels, as was confirmed by subsequent studies describing an 

increased number of KATP channels in human and sheep smooth 
muscle cells of uterine arteries during pregnancy (20, 102). However, 
Li et al. (103) contributed to this topic by elucidating the regulation of 
BKCa channels by H2S in human uterine arteries, so it is conceivable 
that multiple types of ion channels contribute to the vasodilation of 
uterine arteries by H2S.

In the past decade, studies have emerged reporting the regulation of 
uterine vessel vasodilation by estrogens through their influence on 
promoting H2S synthesis via CBS and CSE (104). For example, it has been 
described that during estrogen-dominant phases of the female cycle (i.e., 
proliferation, pregnancy), CBS production is higher than the secretory 
phase. Specifically, CBS seems to be the primary H2S-producing enzyme 
responding to elevated estrogen levels, as the expression of CSE and 
3-MST does not change in gravid tissue compared to non-gravid tissue 
(20, 105). Interestingly, Zeigler et al. (106) found a decrease in plasma H2S 
levels in the later stages of pregnancy compared to postpartum. This could 
be explained more likely as an increase in H2S consumption, as it is 
essential for S-sulfhydration of proteins necessary for the growth of 
maternal and fetal tissues. S-sulfhydrated proteins are extensively involved 
in processes such as the contraction and relaxation of smooth muscle in 
blood vessels (107, 108). Additionally, during pregnancy, the H2S dilution 
is more significant as the volume of maternal blood plasma can increase 
by up to 50% (106, 109). This hypothesis is supported by the increased 
production of H2S in intrauterine tissues during pregnancy, which leads 
to a higher rate of S-sulfhydration of proteins compared to non-pregnant 
tissue. These results support the finding that the expression of CBS is 
greater in estrogen-dominant phases, as the consumption of H2S is also 
higher (110).

While the precise mechanism describing estrogen-induced 
stimulation of H2S biosynthesis in uterine arteries is unknown, a 

FIGURE 3

Effects of H2S on oocytes. H2S produced in the ovaries and surrounding reproductive tissues has the following effects: (a) H2S promotes ovulation of a 
more significant number of follicles and the development of a greater number of corpora lutea compared to inhibiting its production (b); (c) H2S 
supports CO expansion; (d) H2S promotes oocyte maturation through the regulation of oocyte signaling pathways. Additionally, its production 
regulates Hcy levels, supports oocyte transmethylation, and ensures proper spindle assembly; (e) H2S promotes follicle rupture and, therefore, oocyte 
ovulation itself; (f) H2S delays oocyte aging and reduces the number of fragmented oocytes; its inhibition, on the other hand, leads to an increase in 
the number of fragmented oocytes; (g) H2S supports embryo transport to the uterus; (h) LH stimulates H2S production in granulosa cells of follicles, 
likely through CSE, contributing to the processes mentioned above.
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hypothesis suggests estrogen receptors’ important role in this signaling 
pathway (104). This hypothesis has been recently confirmed, as it was 
found that estrogen receptors activate CBS promoters, thereby 
stimulating its production. In contrast, the activity of the CSE 
promoter remains unchanged (110). When it comes to vascular 
dilation, it is worth noting the previously established influence of 
another gasotransmitter – NO, which is also a potent vasodilator in 
the bloodstream and interacts with H2S in many organ systems (111–
113). It is presumable that H2S, NO, and estrogens, which interact with 
both H2S and NO, synergistically contribute to the vasodilation of 
uterine vessels and that these systems behave towards each other as 
backup mechanisms because pathology occurs only after the 
inhibition of both signaling pathways (111, 113).

3.2.2 Uterus and pregnancy
One of the most referred impacts of H2S on the human (114) and rat 

(115) uterus is its tocolytic effects, which can be caused by H2S itself, as 
well as its precursor (L-cysteine) (116) or donor (NaHS) (117). These 
effects, promoting uterine relaxation, are significant for gravidity 
maintenance. Therefore, it is not surprising that the expression of CBS and 
CSE and production of H2S increases during gravidity and, conversely, 
abruptly decreases with the onset of labor (110, 114, 118). H2S also 
effectively prolongs the duration of labor and reduces the frequency of 
uterine contractions, which can contribute to a smooth delivery process 
(Figure 4) (119). It is assumed that the mechanism of the tocolytic effects 
of H2S lies in the opening of channels, as the body utilizes the exact 
mechanism in the bloodstream and other smooth muscle tissues (18, 
120). Additionally, it has been demonstrated that the inhibition of KATP 
channels leads to the absence of relaxation effects of H2S donors (45, 92). 

It is possible that H2S also regulates activity of BKCa channels and L-type 
Ca2+ channels, as they also influence the relaxation of myometrium (52, 
73, 118). Furthermore, the tocolytic effects of H2S may lie in inhibition of 
contraction-associated proteins (CAPs) and suppressing the toll-like 
receptor 4 (TLR4)/NF-κB signaling pathway (Figure 5) (16, 29, 42). 
Besides its tocolytic effects, H2S may also impact uterine immune 
response and placental vessel remodeling through the modulation of the 
uterine natural killer (uNK) cells (121–123). H2S signaling is also essential 
for maintaining early pregnancy, and its deficiency can lead to reduced 
litter size due to early embryo loss or placental inflammation (70, 124). 
H2S may further facilitate the physiological implantation of the embryo 
by regulating ion transport activity in the endometrial epithelium and 
supporting DNA synthesis (125–127).

The relationship between H2S and estradiol (E2) is intriguing 
because both contribute to uterine quiescence during pregnancy by 
regulating the expression of CAPs (128, 129). Estrogens, in general, 
appear to regulate H2S-producing enzymes, consequently affecting 
the levels of H2S itself (98). The increased production of CBS and 
H2S in the uterine arteries during pregnancy is influenced by 
endogenous estrogens acting through specific estrogen receptors 
(ER) in pregnant rats. This indicates that the physiological changes 
associated with pregnancy, such as elevated levels of endogenous 
estrogens, play a role in stimulating the expression of CBS and 
subsequent H2S production in the uterine arteries. The specific 
ER-mediated mechanism implies that ER are involved in regulating 
this process, highlighting the importance of endogenous estrogen 
signaling in mediating vascular adaptations during pregnancy (110). 
Specifically, E2 modulates gene expression and redox balance in the 
uterus by inducing transsulfuration via CBA and CSE, for which this 

FIGURE 4

Comparison of H2S levels and their functions during pregnancy and labor. In estrogen-dominant phases, such as pregnancy or the proliferative phase 
of the estrus/menstrual cycle, there is an increased production of H2S. In uterine tissues, H2S promotes dilation of uterine blood vessels, contributing to 
tissue perfusion and proper development of the placenta, fetus, and nutrient supply to the fetus. It also maintains the integrity of fetal membranes and 
has tocolytic effects on the uterus, thereby delaying labor. Before and during labor, there is a significant reduction in H2S in uterine tissues, leading to 
constriction of uterine blood vessels, rupture of fetal membranes, and increased uterine contractions.
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metabolic pathway is unique (20, 130). The effects of E2 may also 
influence the metabolism of myometrial cysteine, which is utilized 
by H2S-producing enzymes to generate H2S, particularly during 
periods of elevated E2 levels such as estrus and gravidity. This 
pathway is mediated through sulfur amino acids and myometrial 
cysteine sulfinic acid decarboxylase (CSAD), the activity of which is 
reduced by E2. Estrogen-mediated regulation of H2S-producing 
enzymes and H2S itself occurs not only in uterine tissue but also in 
uterine vessels, where E2 activates CBS promotors leading to 
increased production of H2S in estrogen-dominant phases, leaving 
no doubt about the connection between H2S and estrogens (20, 105).

H2S-producing enzymes plays a vital role in intrauterine tissues 
by regulating Hcy levels and thus preventing pathological conditions. 
Uncontrolled Hcy levels can lead to hyperhomocysteinemia (73, 77) 
associated with various adverse outcomes in pregnancy, including 
impaired implantation (131), reduced litter size (124, 131), neural tube 
defects (132), miscarriages (5, 64), preeclampsia (5, 133, 134), 
hypertension (76, 134), and fetal growth restrictions (135). However, 
CSE is not a secondary enzyme in this matter. Is it also capable of 
generating H2S from Hcy and effectively regulating its levels (Figure 1) 
(74, 76, 77, 136, 137). Interestingly, CBS-KO in the uterus itself is not 
a direct cause of infertility in these individuals. Infertility in CBS-KO 
individuals occurs due to the resulting hyperhomocysteinemia or due 
to the action of another factor in the uterine environment of CBS-KO 
homozygotes. This indicates that the prominent role of H2S-producing 
enzymes during pregnancy is regulating Hcy levels around the 
growing fetus (64). It is worth noting that although CBS-KO may lead 
to reduced fertility or even infertility in female offspring, this is not 
the case for male offspring (64, 122, 131). It is possible that the effect 
is related to the pathways of female sex hormones, such as LH and E2, 
as described in previous sections, and may not necessarily affect male 
fertility. However, further research would be  needed to confirm 
these assumptions.

Given that H2S-producing enzymes play a specific role during 
pregnancy, it can be assumed that the gas they produce also plays a 
role. In the context of previously mentioned pathogenic states, H2S 
likely inhibits the soluble fms-like tyrosine kinase-1 (sFlt1), a vascular 
endothelial growth factor (VEGF) antagonist associated with 

hypertension and preeclampsia (138). Because elevated Hcy levels are 
a risk factor for preeclampsia, H2S may also prevent the onset of 
preeclampsia through this pathway (18, 73, 133, 139).

3.2.3 The role of H2S in placenta
Like the uterus, a reduced CBS expression towards the end of 

gestation has been described in placental and decidual tissues. H2S likely 
serves to maintain the integrity of the chorion/amnion before birth by 
slowing down the aging of the fetal membranes’ cells, so it is not surprising 
that its expression in these tissues decreases with the onset of labor 
(Figure 4) (18, 89). It is also interesting to note that both CBS and CSE 
expression in fetal membranes decreases much more during physiological 
labor than in infants delivered by cesarean section (17, 140). This shows 
that H2S is necessary for maintaining pregnancy, and a decrease in its 
expression appears to be  one of the critical factors leading to the 
physiological onset of labor (16, 140). However, it should be noted that 
the role of H2S in the placenta may vary between species. For example, 
hypoxic conditions in the human placenta lead to increased H2S 
production, which is not observed in rat placenta (18). H2, S also 
contributes to proper placental development by promoting angiogenesis 
through placental growth factor (PIGF), VEGF, and signaling pathways 
PKB, nitric oxide synthases (NOS)/NO, and MAPK3/1 (141–143). VEGF 
is a key factor in regulating placental angiogenesis and this process is 
stimulated by activation of MAPK pathway in placental endothelial cells 
(144). However, in contrast to these positive effects of H2S, an association 
has been described between increased CBS expression in placentas and 
infants with Down syndrome, indicating that proper regulation of H2S 
expression in intrauterine tissues is crucial for physiologically ongoing 
gravidity (145–147).

The relationship between H2S and two other gasotransmitters in 
fetal membranes is intriguing. While the CO donor (hemin) in fetal 
membranes does not affect H2S production, the NO donor (sodium 
nitroprusside) leads to a significant increase in H2S production in this 
tissue (18). It is, therefore, possible that both H2S and NO 
synergistically contribute to maintaining the integrity of fetal 
membranes and pregnancy. This would imply that intrauterine tissues 
can be included among many other tissues where a mutual relationship 
between H2S and NO has been observed (112, 148–151).

FIGURE 5

Mechanisms leading to the tocolytic effect of H2S. The tocolytic effects of H2S can be mediated by the opening of ion channels (KATP, BKCa, L-type Ca2+), 
as well as through the cGMP pathway or a reduction in intracellular pH. H2S achieves these effects by inhibiting CAPs, pro-inflammatory cytokines, and 
the TLR4/NF-κB signaling pathway.
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4 The role of H2S during embryo 
development

For several years, it has been known that the human trophoblast 
produces H2S through the expression of CBS and CSE, with some 
studies indicating that CSE is the primary

H2S-producing enzyme in the first trimester of pregnancy (33, 143). 
Generally, supplementing the culture medium with H2S and NO donors 
supports embryo development in vitro. Once again, the synergy between 
these two gasotransmitters was described in this tissue, as H2S produced by 
the trophoblast, like VEGF, stimulates endothelial nitric oxide synthase 
(eNOS) activation (143). However, the precise role of these gasotransmitters 
in embryogenesis remains unclear. One of the main roles of H2S during 
embryo development is likely epigenetic regulation of embryogenesis, cell 
cycle, support of DNA formation, and proliferation (152, 153). Based on 
previous research confirming the regulation of specific promoters by H2S, 
for example, in vascular smooth muscle cells (154), it can be hypothesized 
that this regulation is also functional in mammalian embryo cells. This 
hypothesis is supported by research confirming that H2S modulates genes 
encoding proteins involved in early embryo epigenetic regulation (152). 
Even though the precise mechanism of embryonic epigenetic regulation by 
H2S is unknown, it can be assumed that H2S has a positive effect on early 
embryonic development, and it may even be  essential for enhancing 
transcription and modification of specific embryonic genes related primarily 
to metabolism (33). Conversely, reduced expression of H2S-producing 
enzymes may lead, for example, to reduced PIGF production causing fetal 
growth restriction (FGR) or recurrent spontaneous miscarriages (124, 155).

Furthermore, H2S appears to be an important factor in transporting 
the morula from the oviduct to the uterus, as inhibition of CBS 
expression leads to embryo retention or prolongs its transport. H2S 
likely acts against contractile endothelins, facilitating oviduct peristalsis 
and, consequently, the transit of the embryo itself (83). H2S also 
promotes proliferation, migration, cytoskeleton remodeling, and 
invasion of trophoblast cells, where it activates various types of kinases 
(e.g., FAK, Src, ERK), Rho GTPases, and upregulates metalloproteinases 
2 and 9 (89). On the other hand, excessive expression of CBS and CSE 
in the oviducts may be  a sign of ectopic gravidity or embryonal 
carcinoma, so it cannot be conclusively stated that higher levels of CBS 
and CSE expression in this tissue indicate physiological embryo 
transport (83). Proper regulation of H2S expression is also essential in 
preventing the development of intrauterine growth restriction (IUGR) 
and preeclampsia (155). Additionally, H2S protects the heart of chicken 
embryos by regulating myocardial KATP channels (156).

H2S-producing enzymes have been identified even in zebrafish 
embryos, where there were described 2 cbs orthologs – cbsa and cbsb 
(157). Cbsb is crucial for ion homeostasis, while cbsa appears 
redundant (158, 159). These results indicate that H2S is essential in 
embryonic development across various taxa.

5 Conclusion

The production of H2S has been demonstrated in all female 
reproductive tissues, primarily through the enzymes CBS and CSE and, 
to a lesser extent, through 3-MST (Table 1). We can assume that H2S 
plays a crucial role in various physiological processes associated with 
female reproduction, given its ability to vasodilate uterine and umbilical 
vessels, as well as maintain pregnancy through both the tocolytic effects 
of H2S and its capability to preserve the integrity of fetal membranes. 

Additionally, H2S has anti-aging effects on mammalian oocytes, 
supporting their maturation and ovulation, aiding in the transport of 
early embryos into the uterus, and epigenetic regulation of their genes. 
Further on, an important characteristic of H2S-producing enzymes, CBS 
and CSE, is their ability to regulate homocysteine levels in the vicinity of 
cells through the production of H2S. This mechanism within the female 
reproductive tract serves to prevent pathological conditions such as 
hyperhomocysteinemia, which can lead to preeclampsia, miscarriages, 
congenital fetal abnormalities, and others.

Conversely, dysregulation of H2S signaling may be associated with 
various pathological conditions. It has been reported that aberrant H2S 
metabolism results in impaired oviductal transport of embryos and 
developmental delay of preimplantation embryos in mice (83). It has also 
been shown that dysregulated placental CBS/H2S signaling significantly 
contributes to increased embryonic resorption in mice (124). Notably, 
H2S production was found to be upregulated in the human oviduct in 
ectopic pregnancy, suggesting the involvement of dysregulation of H2S 
homeostasis (83). Dysregulation of H2S signaling has been also linked to 
the pathogenesis of preeclampsia (5, 140). Abnormal H2S signaling has 
recently been reported to be  involved in diabetes-related uterine 
dysfunction as it was found that in non-obese diabetic mice, uterine H2S 
production is 2-fold higher than in the control group. This increase in H2S 
associated with 3-MST has been shown to cause a reduction in 
spontaneous endogenous uterine contractions (160). In addition, CBS has 
been proposed to promote ovarian cancer progression, tumor growth, 
and drug resistance (161), while CSE has been associated with breast 
cancer metastasis promotion (162).

The effects of H2S and subsequent signaling pathways in the 
aforementioned tissues are well-described. These effects are mediated 
by kinases (PKA, PKB, MAPKs), ion channels (T and L-type Ca2+, 
KATP, BKCa), transcription factors (NF-κB), and other cellular 
messengers (NO, E2, PIGF, cytokines). A particularly interesting 
function of H2S is its epigenetic effects, involving chromatin 
modification and activation of specific promoters, as well as its 
interaction with female sex hormones (LH, E2). Yet, these effects are 
not sufficiently elucidated, although clarifying their precise molecular 
aspects might result in the development of new methods and drugs, 
particularly in the field of women’s health and perinatal medicine.

In conclusion, a comprehensive understanding of H2S function could 
lead to its therapeutic use in disorders related to reproduction. For 
instance, its tocolytic and vasodilatory effects could be utilized to maintain 
pregnancy, support embryo implantation, and prevent miscarriages. The 
interaction of H2S with LH and E2 could also be used in the development 
of new drugs regulating the menstrual cycle or supporting superovulation 
in women undergoing oocyte aspiration prior to in vitro fertilization. H2S 
could also enhance the culture media of oocytes and embryos in IVF 
clinics, promoting their proper development and increasing the chances 
of successful pregnancy. Additionally, it may serve as an effective 
treatment for conditions like hyperhomocysteinemia, preeclampsia, or 
irregular estrus/menstrual cycles.
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