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Flow cytometry of blood samples is a very valuable clinical and research 
tool to monitor the immune response in human patients. Furthermore, it has 
been successfully applied in cats, such as for infections with feline immune 
deficiency virus (FIV). However, if cells are not isolated and frozen, analysis of 
anticoagulated blood samples requires mostly prompt processing following 
blood collection, making later analysis of stored full blood samples obtained 
in clinical studies often impossible. The SMART Tube system (SMART TUBE 
Inc., California, United States; SMT) allows fixation and long-term preservation 
of whole blood samples at −80°C. However, this system has so far only been 
applied to human biological samples. In the present study, a new flow cytometry 
SMART Tube protocol adapted for feline whole blood samples was successfully 
established allowing quantification of T-helper cells, cytotoxic T-cells, B-cells, 
monocytes, and neutrophils up to 2  years post sampling. Results obtained 
from frozen stabilized and fresh blood samples were compared for validation 
purposes and correlated to differential blood counts from a conventional 
hematology analyzer. Clinical applicability of the new technique was verified 
by using samples from a treatment study for feline infectious peritonitis (FIP). 
Using the new SMT protocol on retained samples, it could be  demonstrated 
that long-term storage of these SMT tubes is also possible. In summary, the 
newly adapted SMT protocol proved suitable for performing flow cytometry 
analysis on stored feline whole blood samples, thus opening up new avenues 
for veterinary research on a variety of aspects of clinical interest.
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1 Introduction

Flow cytometry is a very sophisticated and highly developed technique for analyzing 
the qualitative and quantitative characteristics of individual whole cells and cellular 
components (1). The physical properties (e.g., size, complexity/granularity, membrane 
integrity) and the expression of specific molecules (e.g., antigens on or in the cell) can 
be  recorded quickly and simultaneously for each individual cell. Cells, therefore, can 
be divided into different populations and subpopulations. Flow cytometry is often used to 
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characterize diseases in clinical settings in order to monitor the 
immune response in human patients (2, 3). The multiparametric, 
quantitative analysis also makes flow cytometry a powerful tool in 
biological sciences. Peripheral blood, bone marrow and lymph node 
aspirates, and cerebrospinal fluid are among the multitude of 
specimens that can be analyzed. Clinical flow cytometry in cats is 
currently primarily used for diagnosis and prognosis of 
hematopoietic neoplasms (lymphoma and leukemia) (4). It also has 
been successfully applied for infections with feline immune 
deficiency virus (FIV), in order to analyze diagnostic approaches or 
to monitor the immune responses in these cats (5).

However, only viable cells should be  subjected to the initial 
staining process (6). For peripheral whole blood samples collected in 
ethylenediaminetetraacetic acid (EDTA)-anticoagulated tubes, cell 
stability has been demonstrated for a maximum of 48 h after 
collection (7) with only mild changes in leukocytes, lymphocytes and 
neutrophils, but in some cases significant changes in monocytes 
when measuring with automatic analyzers (8). This leaves only a very 
small time-window for analysis, especially for samples from clinical 
trials; this window is often too short, as in-house devices performing 
flow cytometry are rarely available, and samples from different sites 
often have to be shipped and stored before analysis. Although it is 
possible to isolate feline peripheral blood mononuclear cells (PBMC) 
using density gradient centrifugation and use traditional 
cryopreservation protocols to allow subsequent analysis by flow 
cytometry, a comparably large amount of blood is necessary to 
extract enough cells for conservation. In addition, isolation and 
freezing can alter cellular composition and impact the expression of 
certain markers.

The SMART Tube system (SMART TUBE Inc., California, 
United States; SMT) was developed for fixation and long-term storage 
of whole blood samples. This system has already been used in some 
mass and flow cytometry studies, but so far, only on human biological 
samples (9–12). An important benefit of whole blood storage and 
staining is the requirement for significantly smaller blood volumes 
compared to volumes needed for classical isolation techniques. This 
advantage is especially important in studies with longitudinal 
sampling in smaller animals such as cats, where the possible volume 
for blood withdrawal is severely restricted.

Therefore, the aim of this study was to establish a protocol for 
routine use of the SMT system with feline full blood samples and apply 
this protocol to samples of a clinical treatment study for cats with 
feline infectious peritonitis (FIP) after long-term storage.

2 Materials and methods

2.1 Sampling of feline blood

Spare EDTA-anticoagulated samples from peripheral whole 
blood of 20 healthy cats were collected at the LMU Small Animal 
Clinic in Munich. For fresh blood (FB) analysis, EDTA samples were 
stored at 4°C overnight and processed the next morning. For stored 
samples, 200 μL of EDTA whole blood was fixed and stabilized within 
a few hours after collection by mixing it with 270 μL of Proteomic 
Stabilizer Prot1 (SMART TUBE Inc., California, United States) in 
cryovials [micro screw-in tube 2 mL (Sarstedt AG & Co. KG, 
Nümbrecht, Germany)] according to the manufacturer’s instructions. 

After incubation for 10 min at room temperature (RT) the samples 
were immediately transferred to −80°C. The individual storage 
periods (at −80°C) for all SMT blood samples are shown in 
Supplementary Table S1.

2.2 Automatic hematologic analyzer for 
feline blood

Hematology examination from all collected fresh-blood EDTA 
samples of the healthy cats was performed at the LMU Small 
Animal Clinic in Munich using the in-house automatic analyzer 
ProCyte Dx (IDEXX Laboratories, Inc., Maine, United  States). 
Hematology examination from samples of cats with FIP was 
performed using the automatic analyzer Cell-Dyn 3,500 (Abott 
Laboratories, IL, United  States). When an invalid separation of 
leukocyte populations was present, additional microscopical 
examination of blood smears (for the validation study and the 
clinical application) was performed.

2.3 Antibodies

For flow cytometry, seven commercially available monoclonal 
antibodies (mAbs) were tested: anti-cat CD4- Fluorescein 
isothiocyanate (FITC) (clone 3-4F4) (SouthernBiotech, 
Birmingham, United States), anti-cat CD4-FITC (clone vpg34) 
(BioRad Laboratories, Feldkirchen, Germany), anti-cat CD8-PE 
(clone fCD8) (SouthernBiotech), anti-dog CD21 (clone CA2.1D6) 
(BioRad Laboratories), anti-human CD21-APC (clone B-ly4) (BD 
PharmingenTM, Heidelberg, Germany), anti-human CD14-
PacificBlue (clone TÜK14) (BioRad Laboratories), and anti-cat 
MHCII (clone PF6J-6D) (BioRad Laboratories). Anti-cat MHCII 
was only available purified and was therefore conjugated to 
CF405M using the Mix-n-StainTM CFTM405M Antibody 
Labeling Kit (Sigma-Aldrich®, St. Louis, United States). Purified 
anti-dog CD21 was conjugated to PerCP-Cy5.5 using the Lynx 
Rapid Antibody Conjugation Kit (BioRad Laboratories) according 
to the manufacturer’s instructions. All mAbs were titrated prior 
to the start of the experiment for optimal working dilutions (see 
Table 1).

2.4 Sample processing for flow cytometry

For flow cytometric analysis of FB samples, 100 μL blood was 
mixed with 2 mL of 10X RBC Lysis Buffer (ThermoFisher Scientific, 
Massachusetts, United States) and incubated for 15 min at RT in the 
dark. After centrifugation at 550 × g for 5 min at 18°C, the supernatant 
was discarded and the cell pellet was resuspended in 500 μL of staining 
buffer (PBS pH 7.2, 1% BSA, 0.1% NaN3).

To thaw the stored tubes, the manufacturers protocol was 
modified as follows: the tubes were thawed in a cold-water bath (10°C 
to 15°C) for 5 min. Thawed content was transferred to a new tube, 
mixed with 2 mL of 1X Thaw-Lyse Buffer (SMART TUBE Inc.) and 
incubated for 10 min at RT under constant rotation. After this, 
leukocytes were pelleted at 560 × g for 5 min at RT. The pellet was 
resuspended with 3 mL of 1X Thaw-Lyse Buffer and incubated at RT 
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for 10 min under rotation. After another centrifugation at 560 × g for 
5 min at RT the cell pellet was resuspended with 500 μL of staining 
buffer (PBS pH 7.2, 1% BSA, 0.1% NaN3).

From both fresh and stored samples, 1 ×105 cells were transferred 
into a 96-well plate and incubated with 50 μL of the mAbs mixture 
(each antibody was titrated individually for optimal staining to 
generate a final panel in section 3.1; also, see Table 1) for 20 min in the 
dark on ice, followed by washing with 100 μL staining buffer and 
centrifugation at 725 × g for 1 min at 18°C. Pellets were resuspended 
in 400 μL staining buffer, transferred to a new tube and analyzed by 
flow cytometry. Due to the presence of a fixative in SMT tubes, which 
alters cell membrane integrity and precludes the use of viability dyes, 
we refrained from employing viability dyes for any of the samples to 
maintain consistency in treatment.

Flow cytometry was performed on a BD FACS Canto II Flow 
Cytometer (Becton Dickinson, Heidelberg, Germany). For each 
sample, 10,000 single cells were acquired. BD FACS DIVA and FlowJo 
(Tree Star Inc., OR, United States) software were used for data analysis.

The absolute numbers of each leukocyte subset were calculated as 
previously published (20): to obtain absolute cell numbers from flow 
cytometry samples, the determined percentage of the respective cell 
population was multiplied by the hematology analyzers leukocyte 
count. Lymphocyte numbers were calculated by adding up the 
numbers of CD4+, CD8+, CD21+, and marker negative/MHCII+/
small cells.

2.5 Analyzing intra-assay precision and 
accuracy of the feline SMT protocol

To determine intra-assay precision for the cell numbers obtained 
by the new feline SMT protocol, a blood sample of one healthy cat was 
split into five FB and five SMT samples, which were frozen afterwards 
and analyzed by flow cytometry processing. Coefficients of variation 
(CVs, in percent) were calculated as standard deviation (SD)/
mean × 100.

To test for accuracy of the newly established feline SMT protocol, 
blood samples of 20 cats were split into triplicates and subsequently 
analyzed with conventional automated hematology analyzer (Diff) 
and by flow cytometry on either FB or SMT-fixed samples to compare 
numbers of lymphocytes, monocytes, and neutrophils. The cell 
numbers were calculated as described above.

2.6 Clinical application of the established 
protocol to cats from a FIP treatment study

In a recent clinical treatment study, five cats suffering from FIP 
received orally for 84 days the multi component drug Xraphconn® 
(Mutian Life Sciences Limited, Nantong, China) containing the 
nucleoside analogue GS-441524 as previously published (21). During 
this treatment study, EDTA samples were collected with the SMT 
system according to the manufacturer’s instructions at six different 
time points from day 0 (before treatment initiation) through days 7, 
14, 28, 56, and 83 (last day of treatment). In addition, EDTA samples 
of five healthy cats were collected with the SMT system. These cats 
were anti-feline coronavirus (FCoV) antibody-negative in serum and 
had no fecal FCoV shedding, both of which was determined as 
previously described (21–23).The SMTs of healthy and diseased cats 
were thawed and processed as described above. Storage times are 
given in Supplementary Table S1.

2.7 Statistical analysis

For a first comparison of Diff, FB, and SMT, Box plots were 
visualized for distribution of the data using MS Excel (version 2313). 
Data were analyzed using R statistical language (version 4.0.3; R Core 
Team, 2020). Pearson’s correlation coefficient [with the rules tiny to 
small correlation r < 0.2, medium correlation r < 0.3, large correlation 
r < 0.4, and very large correlation r ≥ 0.4 (24)], Bland–Altman plots 
depicting the mean bias ± 2 SD, and results of a Passing-Bablok 
regression analysis were reported.

3 Results

3.1 Antibody panel

Main objective of the used staining panel was to discriminate the 
different leukocyte subsets and, in addition to classical hematologic 
analysis, to address different lymphocyte subsets. Therefore, 
commercially available mAbs were tested for their functionality on 
SMT samples (see Table 1). Several mAbs resulted in a good staining 
pattern on FB. However, they did not work on SMT samples [anti-
CD4-FITC (clone 3-4F4), anti-CD21-PerCP-Cy5.5 (clone CA2.1D6)], 

TABLE 1 Commercially available antibodies for cats and cross-reactive antibodies from other species (dog and human) tested for functionality for 
Smart Tubes with flow cytometry.

Antibody Clone Fluorochrome Target cells Reference Dilution SMART Tube

Mouse anti-cat CD4-FITC 3-4F4 FITC T-helper cells Ackley et al. (13) 1:50 no

Mouse anti-cat CD4-FITC vpg34 FITC T-helper cells Callanan et al. (14) 1:40 yes

Mouse anti-feline CD8-PE fCD8 PE cytotoxic T-cells Klotz and Cooper (15) 1:100 yes

Mouse anti-human CD14-PacificBlue TÜK14 PacificBlue monocytes, granulocytes Jacobsen et al. (16) 1:50 no

Mouse anti-cat MHCII PF6J-6D CF405M* lymphocytes, monocytes Hunt et al. (17) 1:20 yes

Mouse anti-human CD21-APC B-ly4 APC B-cells Fischer et al. (18) 1:5 yes

Mouse anti-dog CD21 CA2.1D6 PerCP-Cy5.5# B-cells Cobbold and Metcalfe (19) 1:500 no

no, antibody did work on fresh blood cells but not on the SMT-fixed cells; yes, antibody did work on both, the fresh blood cells and the SMT-fixed cells. *This antibody is only available 
purified; so, it was conjugated to CF405M using the Mix-n-StainTM CFTM405M Antibody Labeling Kit (Sigma-Aldrich®, St. Louis, United States). #This antibody was obtained purified; so, it 
was conjugated to PerCP-Cy5.5 using the Lynx Rapid Antibody Conjugation Kit (BioRad Laboratories, Feldkirchen, Germany).
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most likely due to the fixation process of the SMT system (see 
Supplementary Figures S1A,B). The anti-CD14 mAb showed good 
results on both FB and SMT samples but stained monocytes and 
neutrophils equally, so the desired differentiation of monocytes within 
the population of large cells was not possible (see 
Supplementary Figure S1C).

Four of the tested mAbs, either cat-specific or described as cross-
reactive, gave good results likewise on FB and SMT samples and 
stained the intended cell populations (see Supplementary Figure S2). 
Hence, the final flow cytometry protocol included the following 
mAbs: anti-cat-CD4- FITC (vpg34) to stain T-helper cells, anti-cat-
CD8-PE (fCD8) for cytotoxic T cells, anti-human-CD21-APC (B-ly4) 
for B cells, and anti-cat-MHCII-PacificBlue (PF6J-6D) to discriminate 
monocytes from neutrophils.

Although for all mAbs, mean fluorescence intensity (MFI) was 
significantly lower on cells from SMT than FB samples (40–45% for 
CD4, CD21 and MHCII, 25% for CD8), clear discrimination of even 
the most affected dim target populations was still possible 
(Supplementary Figure S2).

3.2 Gating strategy for flow cytometry

Strikingly, flow cytometric analysis of SMT samples revealed FSC/
SSC scatter plots, which differed considerably from that of FB and 
between individual cats. While discrimination between neutrophils 
and lymphocytes became more difficult after fixation, visibility of the 
otherwise hardly distinguishable monocyte population was often 
improved (Figure 1).

To address the different subpopulations, the following gating 
strategy was applied: First, feline leukocytes were identified by their 
FSC/SSC scatter profiles (Figure 2A), followed by doublet exclusion 
(Figure 2B). CD4 and CD8 were used to address CD4+ helper T cells 
and CD8+ cytotoxic T cells. Double positive cells were not observed 
(Figure 2C, I and II).

From the CD4/CD8 double-negative population neutrophils were 
identified through high SSC and a negative MHCII staining 
(Figure 2D, III). B cells and monocytes were addressed in a CD21/
MHCII plot (Figure 2E) with CD21+/MHCII+ B cells and a CD21-/
MHCII+ cell population. When the latter was further examined 

according to its FSC/SSC scatter characteristics (Figure  2F), two 
distinct populations could be  identified: a more homogeneous 
population of large cells, which we regarded as monocytes (Figure 2F, 
V) and an additional population of smaller cells. Since these CD4-/
CD8-/CD21-/MHCII+ cells have a lymphocyte scatter profile 
(Figure 2F, VI), they were regarded as “marker-negative lymphocytes.” 
As no natural killer (NK) cell marker was included in the applied 
antibody panel, a proportion of those “unstained” lymphocytes were 
supposedly NK cells but other lymphocyte populations could 
equally contribute.

3.3 Validation of the protocol

In order to analyze intra-assay precision of the applied protocol, 
one blood sample of a healthy cat was split into five FB and five SMT 
samples and analyzed by flow cytometry. As shown in Table 2, SD for 
all cell populations was very low (0.01–0.02 ×109 c/L) and CV of intra-
assay precision was below 1% for all cell types (Table 2).

For accuracy of the newly established feline SMT protocol, the 
numbers of lymphocytes, monocytes, and neutrophils analyzed with 
Diff, FB and SMT were compared to each other.

In general, a first juxtaposition of cell numbers revealed similar 
mean cell counts for all cell populations although flow cytometry-
based analysis resulted in slightly lower cell counts, which was most 
pronounced for lymphocytes [mean Diff 3.6 ×109 c/L vs. 3.2 ×109 c/L 
(FB and SMT) (Figure 3A; Supplementary Table S2)]. The correlation 
between the different methods was very large for all cell populations 
with Pearson’s r ranging from 0.979 to 0.997. Results of Passing–
Bablok regression showed slopes for all comparisons between 0.80–
1.11. All 95% coefficients of variation (CIs) included 1.00 indicating 
that there was no proportional bias between the methods for any of 
the cell populations tested. All intercepts included 0.0 within the 95% 
CIs (ranging from −0.91–0.23) indicating that there was no 
significant constant error between the methods for any cell count 
(Figures 4A–C and Table 3). The Bland–Altman plots showed that all 
but a few values were within the limits of agreement (LoA), and only 
a single value when comparing neutrophil counts between SMT and 
FB, was outside the 95% CI of the upper LoA 
(Supplementary Figures S3A–C).

FIGURE 1

Scatter profiles: Forward scatter/Side scatter (FSC /SSC) profiles of lyzed fresh blood (A) and lyzed SMART Tube (SMT)-fixed blood samples from three 
different cats (B) were determined by flow cytometry. The different leukocyte populations were gated according to their FSC/SSC scatter profiles: 
neutrophils (I), monocytes (II), and lymphocytes (III).
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FIGURE 2

Gating strategy: A lyzed SMART Tube (SMT) blood sample was stained with anti-cat-CD4- FITC (vpg34), anti-cat-CD8-PE (fCD8), anti-huCD21-APC 
(B-ly4), and anti-cat-MHCII-PacificBlue (PF6J-6D) and analyzed by flow cytometry. First, feline leukocytes were identified by their Forward scatter/Side 
scatter (FSC /SSC) profiles (A), followed by doublet exclusion (B). CD4 and CD8 were used to address CD4+ helper T cells and CD8+ cytotoxic T cells. 

(Continued)
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In detail, comparison of neutrophil and monocyte counts revealed 
Pearson’s r 0.985 ≥ r ≤ 0.994 (neutrophils) and 0.982 ≥ r ≤ 0.990 
(monocytes) showing no significant biases between all methods 
(Figures 4A,B and Supplementary Figures S3A,B). As already assumed 
from the mean cell counts, the comparison between lymphocyte 
counts from the different methods revealed the lowest correlation 
coefficient with r = 0.979 (Diff vs. FB/SMT), which, however, still 
indicates a very large correlation; the biases were significant at 0.33 
and 0.43 ×109 c/L (differences ranging from −0.32–1.58 ×109 c/L), and 
with the values plotted particularly above the 0 line, it is again 
indicated that Diff values tended to be higher than FB/SMT. For FB 
vs. SMT we found r = 0.997 with a bias of only −0.1 ×109 c/L and 
differences ranging from −0.58–0.19 ×109 c/L (Figure  4C and 
Supplementary Figure S3C). Since discrimination of lymphocyte 
subpopulations is not possible using Diffs, CD4+, CD8+ and CD21+ 
cell counts were only compared between FB and SMT samples 
(Figure 3B). Here, too, the 95% CI of all slopes and intercepts included 
1.00 and 0.00 indicating no proportional bias or constant error. For 
the three lymphocyte subpopulations, the direct comparison between 
FB and SMT cells revealed a very large correlation with r ≥ 0.983. With 
a few exceptions, the values were within the upper and lower LoA; 
comparing SMT vs. FB for CD4+, one value was without the 95% CI 
of the lower LoA. Biases were between −0.08 and − 0.01 ×109 c/L 
(differences ranging from −0.63–0.42 ×109 c/L), with minimal 
significance for CD4+ (Figure 4D; Supplementary Figure S3D and 
Table  3). Overall, with the anticipated exception of lymphocyte 
numbers, comparison between Diff counts and flow cytometry of both 
FB and fixed, frozen SMT samples revealed high correlation and 
agreement between methods. Comparison of lymphocyte 
subpopulations between FB and SMT samples showed only minimal 
differences, demonstrating that fixation and storage of blood samples 
in SMT tubes is possible.

3.4 Application to long-term stored clinical 
samples

Finally, we tested the applicability of our protocol for clinical 
samples using samples from an earlier FIP treatment study. Feline 

infectious peritonitis (FIP) is a fatal feline coronavirus (FCoV)-
induced and immunologically mediated disease characterized by 
systemic granulomatous vasculitis and perivasculitis (25). 
Treatment of FIP diseased cats with oral GS-441524 led to a 
complete recovery of cats with a significant improvement of most 
clinicopathological parameters [hematological and clinical 
chemistry parameters including the acute phase protein serum 
amyloid A (SAA)], which can be highly elevated in cats with FIP 
during the initial 14 days of treatment (21). Throughout the study, 
SMT blood samples were obtained and stored at −80°C. The mean 
sample storage time was 2 years (plus/minus a few weeks, depending 
on when the cats were included into the study, see 
Supplementary Table S1 for detailed information). We analyzed 
SMT samples from five healthy cats (not infected with FCoV) and 
five cats with FIP on days 0, 7, 14, 28, 56, and 83 after treatment 
initiation and compared the obtained results with Diff performed 
on the day of sampling.

Strikingly, the thawing process of SMT samples from the 
FIP-diseased cats did not work successfully for any sample from days 
0 and 7. Samples appeared visibly clotted and, after thawing and lysis, 
contained large amounts of debris from which no intact cells could 
be isolated (see Figure 5A, D0 + D7 for representative scatter plots). 
Accordingly, no comparison between Diff and flow cytometry could 
be made for D0 and D7 (Figure 5B).

In contrast, control samples and samples from days 28, 56, and 83 
could be  thawed and processed without any problems, including 
samples with even longer storage times than D0 and D7 (see 
Figure  5A, D14–D83 and Supplementary Table S1). On day 14, 
samples of three cats showed minor signs of clotting, which, however, 
did not affect further processing.

Owing to the limited sample size, a comprehensive statistical 
analysis was not conducted. Mean and distribution for neutrophils 
and monocytes was similar between Diff and SMT, while values for 
lymphocyte numbers obtained for SMT samples were consistently 
lower than those from the initial Diff (Figure  5B and 
Supplementary Table S3).

Importantly, it was possible to determine the number of 
lymphocyte subpopulations in all non-clotted samples, which revealed 
a largely identical number of CD8+ cells between control cats and the 

Double-positive cells were not observed (C, I and II). From the CD4/CD8 double-negative population neutrophils were identified through high SSC and 
a negative MHCII staining (D, III). B cells and monocytes were addressed in a CD21/MHCII plot (E) with CD21+/MHCII+ B cells and a CD21-/MHCII+ 
cell population. When the latter was further examined according to its FSC/SSC scatter characteristics (F), two distinct populations could be identified: 
a more homogeneous population of large cells, which we regard as monocytes (V) and an additional population of smaller cells. Since these CD4-/
CD8-/CD21-/MHCII+ cells have a lymphocyte scatter profile (VI), they were regarded as “marker negative lymphocytes.”

FIGURE 2 (Continued)

TABLE 2 Intra-assay precision estimated from 5 fresh blood and 5 fixed aliquots from a blood sample of a single cat analyzed by flow cytometry.

Neutrophils Monocytes CD4+ CD8+ CD21+

Samples
Mean  ±  SD  
(CV in %)

Mean  ±  SD  
(CV in %)

Mean  ±  SD  
(CV in %)

Mean  ±  SD  
(CV in %)

Mean  ±  SD 
 (CV in %)

Fresh blood 2.93 ± 0.02 (0.62) 0.29 ± 0.00 (0.84) 0.91 ± 0.01 (0.61) 1.03 ± 0.01 (0.73) 0.92 ± 0.01 (0.60)

Smart tube 3.34 ± 0.01 (0.26) 0.25 ± 0.00 (0.75) 0.73 ± 0.00 (0.65) 0.84 ± 0.00 (0.43) 0.75 ± 0.00 (0.48)

SD, standard deviation; CV, coefficient of variation. The absolute leukocyte counts determined by routine hematologic procedures using the in-house automatic analyzer ProCyte Dx (IDEXX 
Laboratories, Inc., Maine, United States) were multiplied by the percentage of the respected subpopulations from total single cells determined by flow cytometry; all means of the cell counts of 
each subpopulation are given in x109/l.
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treatment group and considerable differences for CD4+ and CD21+ 
cells (Figure 5C).

4 Discussion

On-site sample processing during clinical trials is challenging. 
However, until now, EDTA samples from cats and other species had 
to be processed within a maximum of 48 h (7). The SMT system for 
whole blood was developed to allow for fixation and conservation at 
−80°C for a long period, but this technique had so far been only 
applied to human biological samples. In this study, the SMT protocol 
was successfully adapted for feline blood samples. A new flow 
cytometry protocol to address leukocytes, monocytes, neutrophils, 
and lymphocytes was established accurately separating lymphocytes 
into CD4+ T-helper cells, CD8+ cytotoxic T cells and CD21+ B cells 
even after prolonged storage of samples.

Only commercially available mAbs were used in the staining panel 
aiming for a wide availability. As the range of cat-specific and cross-
reactive commercially available mAbs is currently very limited, while 
highly desirable to identify all T cells, no surface anti-CD3 or 
anti-TCR staining could be included. Though a feline CD3 monoclonal 
antibody recognizing a surface epitope has been described (26) this 
antibody is not commercially available and has so far rarely been used 
due to difficulties with conjugation. The anti-human CD3 monoclonal 
antibody clone CD3-12, targeting an intracytoplasmic epitope of 
CD3e and cross-reactive with CD3 molecules of multiple species, has 
been used and reported with success for the detection of feline T cells, 
and is commercially available conjugated to several different 
fluorochromes (27). However, this antibody requires permeabilization 
for intracytoplasmic staining, a step which we did not want to include 
in our initial protocol. But that could be an option for its further 
refinement. As potential alternative, staining for CD5 expression was 
reported as option to address all feline T cells (28) and several mAbs 
(f43; FE1.1B11) are commercially available. Both should be tested in 
future for their suitability in staining SMT-fixed cells.

From the tested mAbs, the potential monocyte marker anti-CD14 
had to be omitted eventually as it did not show the desired staining 
specificity but instead resulted in an undistinguishable staining of 
monocytes and neutrophils. Some mAbs (an anti-CD4 and an anti-
CD21 clone) worked well on FB but staining patterns were altered by 
fixation to a great extent, a well-known phenomenon, as fixation can 
affect cell membrane permeability leading to unspecific staining or 
disrupts the antibody’s epitopes leading to loss of staining (29, 30).

Finally, four mAbs specific for CD4, CD8, CD21 and MHC class 
II were identified showing excellent performance on both FB and SMT 
samples. Staining for CD4 and CD8 to address T-helper cells and 
cytotoxic T cells is common practice in cats (31–33). CD4 and CD8 
expression on feline PBMC CD3+ cells are mutually exclusive and 
hardly any double positive cells were found in the present study as well 
as in previous studies (34). Still, it must be considered that in many 
species, e.g., dogs and pigs (35, 36), CD8 is also expressed on a subset 
of γδ T cells and in some species additional CD8 is found on NK cells 
(37–40). Due to the lack of feline TCR-specific mAbs to discriminate 
between αβ and γδ T cells and commercially available surface markers 
for NK cells, we could not address these cells. However, in dogs, a 
related species, with more available markers, only 0.5–3% of peripheral 
blood lymphocytes are CD8 expressing γδ T cells CD8 (41). Assuming 
that cats are also a γδ-low species and considering that about 15% of 
lymphocytes were CD8+, the content of CD8+ γδ T cells is probably 
only marginal. In addition, Vermeulen and colleagues showed, that 
feline NK cells represent only about 1–5% of PBL and only 10% of 
these cells express CD8, resulting in only 0.1–0.5% of CD8 expressing 
non-T cells (42). Thus, despite some limitations it seems justified to 
refer to the gated CD8+ cells as cytotoxic T cells. Unfortunately, the 
lack of CD3 staining prevents the identification of a potential small 
CD4-/CD8- double negative T cell population which was reported in 
other species (35).

CD21 is an established B cell marker in many species (19, 43, 44) 
and although the cat-specific anti-CD21 mAb did not work on SMT, 
the cross-reactive human clone with identical staining on FB could 
be included into the antibody panel. Nevertheless, as in other species, 

FIGURE 3

Validation – absolute counts: Blood of 20 healthy cats was split in three and objected to automated hematology analysis (Diff), analyzed by flow 
cytometry within 24  h (FB) or fixed/frozen in a SMART Tube (SMT) before flow cytometric analysis. For FB and SMT samples, the absolute numbers of 
each leukocyte subset were calculated by multiplication of Diff. Absolute blood cell counts from all three techniques for monocytes, lymphocytes, and 
neutrophils are presented in (A); lymphocyte subpopulations obtained by flow cytometry are shown in (B). Box plots include the second and the third 
quantile, whiskers include all values within the 1.5 interquartile range, dots outside the box represent outliers, dots inside the box the values; the 
horizontal line represents the median, the mean is presented as a cross.
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anti-CD21 staining probably does not address all stages of feline B 
cell differentiation. In other species like humans, B cells lose CD21 
expression when they differentiate into plasmablasts (45) and the 
presence of some CD21−/immunoglobulin+ B cells, which is larger 
in cell size (FSC) and probably resembles plasmablasts was reported 
in feline blood (46). Activated memory B cells in humans and 
non-human primates also lose CD21 expression (47). It is therefore 
quite possible that CD21+ cells represent not all differentiation states 

of feline B cells and staining for the B cell receptor complex (e.g., with 
anti-CD79) might be  an option to address further B cell 
subpopulations in the future.

However, it is highly likely that these CD21−B cell stages cells 
express MHCII and hence could be part of the MHCII+/marker-
negative small cell population in the gating strategy.

In addition to B cells and monocytes, almost all other feline 
lymphocytes express MHC class II without prior activation, but 

FIGURE 4

Correlation Diff/FB/SMT: Correlation and agreement between the absolute cell numbers (x109/l) for neutrophils (A), monocytes (B), and lymphocytes 
(C) of 20 healthy cats obtained with an automated hematology analyzer (Diff), by flow cytometry within 24  h (FB) and with fixed/frozen Smart Tubes 
(SMTs). Side scatter diagrams with the red dots represent measured values. The solid blue line represents the regression line, the dashed red line 
represents the line of identity, and 95% confidence intervals (CI) are represented by the blue shaded area. Comparison for lymphocyte subpopulations 
obtained by flow cytometry with FB and SMT are shown in (D). Pearson’s correlation coefficient (r) is given in each diagram.
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neutrophils are MHC class II-negative (17). Hence, anti-MHCII 
staining were used to discriminate neutrophils and monocytes in the 
present study. Though comparison of monocyte numbers from an 
automated analyzer and the gating strategy of the SMT protocol showed 
a very large correlation, it must be mentioned that in many species 
monocytes express to a different extent CD4 (48). For example, in dogs 
next to the majority of MHCII+/CD4− monocytes two minor subsets 
of MHCII+/CD4+ and even MHCII−/CD4+ monocytes were identified 
(49). Hence, the small subset of larger cells in our CD4+ gate, instead 
being activated T helper cells, could also be monocytes. If antibodies are 
available, a possible solution to overcome this problem in the future 
studies would be the inclusion of a specific T cell or monocyte marker.

For validation of the used staining protocol with blood samples 
obtained from healthy cats, flow cytometry derived numbers of FB 
and SMT samples were compared to cell counts obtained by an 
automatic hematology analyzer. It is known that accuracy of 
automated leukocyte differentials particularly for animal species and 
especially the quantification of monocytes and basophils does not 
reach the accuracy of microscopic review. Though microscopic 
review of blood smears in this study was only performed when the 
automated differential was inconclusive, we have put up with this 
limitation as automated leukocyte counts were only used to verify 
agreement between methods and not accuracy of the real values.

The comparison revealed a very good agreement for the 
quantification of monocytes and neutrophils. Flow cytometry-based 
lymphocyte counts were generally lower than the automated counts, 
but still showed a very large correlation. A possible explanation for 
the reduced numbers could be  that lymphocyte numbers were 
calculated as the sum of CD4+, CD8+, CD21+ and MHCII+/marker-
negative/small cells, which does not include potential additional 
MHCII− lymphocytes, such as CD4−/CD8− T cells, NK cells and 
CD21− B cell subsets. In future studies, addition of an anti-CD18 
mAb, which is reported as panleukocyte marker with good 
lymphocyte discrimination (50), might help to solve this issue, 
provided it works on fixed cells. However, considering a study 
evaluating the ProCyte Dx, one of the automated analyzers used in 
this study, the results showed good to excellent correlations for most 
different leukocyte counts, but deviations of up to 30% for lymphocyte 
counts (51). Therefore, results of the used flow cytometry protocol 
without anti-CD18 were satisfactory.

Comparison of lymphocyte subpopulations between FB and SMT 
samples showed a very large correlation and agreement with only 
minimal biases, demonstrating that fixation, freezing, and thawing 
and a second lysis step in the SMT protocol did not affect the number 
of T and B cells. Thus, the SMT technology can be successfully applied 
to feline blood samples. Though the validation was carried out on 
samples that had only been frozen for an average time of 2 days, the 
comparable results of the FB samples and the paired long-term 
SMT-fixed and frozen samples from FIP diseased (at the later study 
timepoints) and healthy control cats suggests that long-term 
preservation and processing is also possible with reliable results.

Availability of the SMT technology is of paramount importance 
for trial purposes, allowing for collection of biological samples during 
routine business and analysis of respective samples at a later time 
point. In addition, collection of samples can now be performed at 
various study site with sample analysis taking place in a different site 
or laboratory.

To assess applicability of the new feline SMT protocol in practice, 
SMT samples from cats in a FIP treatment study were investigated. 
Strikingly, in contrast to samples from healthy cats, not a single sample 
from a cat with FIP from day 0 to day 7 after treatment initiation could 
be  analyzed. Regular thawing of SMTs was not possible, as the 
stabilized samples were visibly clotted and contained only large 
amounts of debris following lysis, and no intact cells could be isolated. 
Interestingly, one human study using SMTs for hospitalized 
COVID-19 patients reported similar results. The SMTs worked very 
well with healthy donor samples, but performance was poor with 
samples of a large number of acute COVID-19 patients. This was 
discussed to be related to polymerized fibrin or other plasma factors 
associated with COVID-19-associated coagulopathy (9). Cats with 
FIP can also develop disseminated intravascular coagulopathy due to 
activation of complement and clotting factors and marked vasculitis 
during the inflammatory process (52). Indeed, it is already known that 
inflammatory markers, such as SAA and alpha-1-acid glycoprotein 
(53), can be highly elevated in cats with FIP, which indicates a severe 
inflammatory response (54–57). Cats in the treatment study had very 
high SAA concentrations before and up to 7 days of treatment, which 
then decreased rapidly and were in the reference range by day 14 (21). 
The marked decrease of inflammatory markers in response to 
treatment indicates a strong attenuation of the hyperinflammatory 

TABLE 3 Passing-Bablok [with 95% confidence intervals (CI)] regression analysis between the different methods for neutrophils, monocytes, and 
lymphocytes and Pearson’s correlation coefficient (r).

Neutrophils  
r  

Slope (CI)/ 
Intercept (CI)

Monocytes  
r  

Slope (CI)/ 
Intercept (CI)

Lymphocytes*  
r  

Slope (CI)/ 
Intercept (CI)

CD4+  
r  

Slope (CI)/ 
Intercept (CI)

CD8+  
r  

Slope (CI)/ 
Intercept (CI)

CD21+  
r  

Slope (CI)/ 
Intercept (CI)

FB/ Diff 0.985

1.03 (0.94–1.11)/

−0.36 (−0.91–0.23)

0.982

0.96 (0.81–1.10)/

0.00 (−0.04–0.05)

0.979

0.93 (0.84–1.04)/

−0.11 (−0.47–0.08)

– – –

SMT/Diff 0.994

1.02 (0.97–1.09)/

−0.19 (−0.72–0.11)

0.987

1.01 (0.85–1.08)/

−0.01 (−0.05–0.04)

0.979

0.95 (0.80–1.01)/

−0.14 (−0.41–0.12)

– – –

SMT/

FB

0.992

1.02 (0.95–1.08)/

−0.21 (−0.66–0.18)

0.990

1.00 (0.84–1.05)/

0.00 (−0.02–0.05)

0.997

1.04 (1.01–1.11)/

−0.04 (−0.16–0.01)

0.990

1.11 (0.99–1.25)/

−0.01 (−0.09–0.03)

0.983

1.01 (0.88–1.23)/

−0.00 (−0.05–0.02)

0.986

1.11 (0.91–1.20)/

0.00 (−0.04–0.08)

r, Pearson’s correlation coefficient; CI, 95% confidence intervals; SMT, fixed cells with Smart Tube System; Diff, differential blood count with automatic hemocytometer, FB, fresh blood. 
*Lymphocyte numbers were calculated by adding up the numbers of CD4+, CD8+, CD21+ and “marker-negative” lymphocytes.
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FIGURE 5

Measurement of clinical SMT samples after long time storage (A) FSC/SSC profiles of SMT blood samples from one representative cat suffering from 
feline infectious peritonitis (FIP) before (D0), and during (D7, 14, 28, 56, and 83) antiviral treatment. (B) Absolute counts of all cell populations 

(Continued)
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FIP-mediated stage, and from the day of normalization of 
inflammatory markers on, SMT samples could be analyzed without 
problems. Although COVID-19 can also cause a strong inflammatory 
response in humans, affected SMT samples in the above-mentioned 
study were still processable with protocol modifications, which 
however, did not work with affected cat SMT samples of the present 
study. This might be  explained by an even more pronounced 
inflammatory status in cats with FIP or an amplification of the effect 
by feline platelets, which, even in healthy cats, generally have a high 
tendency to clump after blood collection regardless of the collection 
technique (58).

Taken together, this first application of the newly established feline 
SMT flow cytometry protocol demonstrates a general possibility for 
flow cytometric analysis after long-term storage of full blood samples, 
and that in its current form can probably not be used for samples 
taken during a highly inflammatory state of a patient. Future 
experiments will need to address whether this phenomenon also 
occurs in other acute diseases such as septic conditions and severe 
bacterial infections or whether this is FIP-specific. In a next step it 
should be evaluated whether the sampling procedure can be modified 
for samples from such conditions.

In conclusion, in the present study we demonstrate for the first 
time that the SMT system is successfully applicable for feline full 
blood samples. Using our newly established protocol, samples can 
be  collected, stabilized, sent to a laboratory for flow cytometric 
analysis, or stored to address later arising questions. In addition, the 
successful technology transfer from human to veterinary medicine 
will likely pave the way to its, albeit slightly modified, application in 
other animal species. This holds the potential to significantly improve 
and simplify workflows, subsequently enhancing the amount of 
knowledge that can be obtained from animal studies.
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(neutrophils, monocytes, and lymphocytes) from five healthy control cats collected at a single timepoint and from five FIP cats at the indicated 
timepoints, analyzed with an automated hematology analysis at the day of sampling (Diff; blue Box plots) or by flow cytometry with fixed/frozen 
SMART Tubes (SMT; orange Box plots) up to 2  years post sampling. (C) Lymphocyte subpopulations (CD4+, CD8+, and CD21+) of indicated SMT 
samples after long time storage. Box plots include the second and the third quantile, whiskers include all values within the 1.5 interquartile range, dots 
outside the box represent outliers, dots inside the box the values; the horizontal line represents the median, the mean is presented as a cross.
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