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Introduction: Military working dogs (MWDs) are essential for military operations 
in a wide range of missions. With this pivotal role, MWDs can become casualties 
requiring specialized veterinary care that may not always be  available far 
forward on the battlefield. Some injuries such as pneumothorax, hemothorax, 
or abdominal hemorrhage can be  diagnosed using point of care ultrasound 
(POCUS) such as the Global FAST® exam. This presents a unique opportunity 
for artificial intelligence (AI) to aid in the interpretation of ultrasound images. 
In this article, deep learning classification neural networks were developed for 
POCUS assessment in MWDs.

Methods: Images were collected in five MWDs under general anesthesia or 
deep sedation for all scan points in the Global FAST® exam. For representative 
injuries, a cadaver model was used from which positive and negative injury images 
were captured. A total of 327 ultrasound clips were captured and split across 
scan points for training three different AI network architectures: MobileNetV2, 
DarkNet-19, and ShrapML. Gradient class activation mapping (GradCAM) overlays 
were generated for representative images to better explain AI predictions.

Results: Performance of AI models reached over 82% accuracy for all 
scan points. The model with the highest performance was trained with the 
MobileNetV2 network for the cystocolic scan point achieving 99.8% accuracy. 
Across all trained networks the diaphragmatic hepatorenal scan point had the 
best overall performance. However, GradCAM overlays showed that the models 
with highest accuracy, like MobileNetV2, were not always identifying relevant 
features. Conversely, the GradCAM heatmaps for ShrapML show general 
agreement with regions most indicative of fluid accumulation.

Discussion: Overall, the AI models developed can automate POCUS predictions 
in MWDs. Preliminarily, ShrapML had the strongest performance and prediction 
rate paired with accurately tracking fluid accumulation sites, making it the most 
suitable option for eventual real-time deployment with ultrasound systems. 
Further integration of this technology with imaging technologies will expand 
use of POCUS-based triage of MWDs.
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1 Introduction

Ultrasound is commonly used in canines with suspected 
abdominal or thoracic injuries following trauma, to identify free fluid 
which may require surgical intervention. Different standardized 
exams are used in veterinary medicine such as the abdominal focused 
assessment with sonography for trauma (AFAST®), thoracic FAST 
(TFAST®), or the Veterinary Bedside Lung Ultrasound Exam (Vet 
BLUE®) (1–3). These are often performed together and referred to as 
GlobalFAST® which can be used for civilian trauma cases, but also for 
working dog casualties (4). Working dogs cover a wide range of 
occupations including military working dogs (MWDs) which go 
anywhere soldiers are deployed and aid with a wide range of tasks (5). 
The ever increasing high risk mission that MWDs share with their 
handlers puts them at risk for similar injuries as their Service member 
counterparts (6, 7). Unfortunately, in the early roles of care, where 
MWD casualties are first managed, veterinary expertise may not 
be present to properly acquire ultrasound images and to interpret 
images making GlobalFAST® inaccessible for treatment of MWDs at 
these early stages of care (8).

This is further complicated on the future battlefield where medical 
evacuation will be limited and more medical care and triage will need 
to be provided in theater, at early roles of care (9). In fact, this is 
already being experienced with the Ukraine-Russia conflict, where 
limited medical evacuation opportunities arise due to challenged 
airspace, which is requiring far forward surgical teams to treat and 
manage a larger number of casualties for up to 72 h in theater (10). 
This is further complicated by precise long-range weaponry 
minimizing the relative safety of CASEVAC even at distances above 
500 km away from enemy lines. In addition, more than 70% of 
Ukraine casualties stem from more advanced rocket or artillery 
injuries, which often result in complex polytrauma to multiple organ 
systems (10). Thus, as we look towards the future battlefield, it is even 
more imperative to have accurate triage procedures for prioritizing 
injured warfighters for access to limited evacuation opportunities.

Towards addressing this critical capability gap for canine and 
human casualties on the future battlefield, artificial intelligence (AI) 
can be utilized to automate medical triage image interpretation (11, 
12). AI for image interpretation often relies on deep convolutional 
neural network models containing millions of trainable parameters to 
extract features from images for making categorical predictions (13, 
14). For medical applications, AI has been widely used for tumor 
detection (15, 16), COVID-19 diagnosis (17, 18), and obstetric 
ultrasound applications (19, 20). In addition, AI has been applied to 
interpret radiographs in thoracic (21, 22), cardiac (23, 24), and 
orthopedic (25) settings. Our research team has previously developed 
an ultrasound image AI interpretation model for detecting shrapnel 
in tissue, termed ShrapML (26, 27). We have recently expanded this 
work to the enhanced FAST (eFAST) exam commonly used for human 
emergency triage applications (28). This application resulted in 
different AI models for detecting pneumothorax, hemothorax, and 
abdominal hemorrhage injuries in tissue phantom image sets. In this 
presented work, we hypothesize if AI image interpretation models are 
trained on canine image datasets, they will be able to automatically 
identify injuries at each POCUS scan point. By doing so, the skill 
threshold for POCUS interpretation will be  lowered so that this 
critical triage task can be available at early echelons of care where 
emergency intervention is most needed for MWDs.

2 Materials and methods

2.1 Imaging protocol

Research was conducted in compliance with the Animal Welfare 
Act, implementing Animal Welfare regulations, and the principles of 
the Guide for the Care and Use for Laboratory Animals. The 
Institutional Animal Care and Use Committee at the Department of 
Defense Military Working Dog Veterinary Services approved all 
research conducted in this study. The facility where this research was 
conducted is fully accredited by the AAALAC International. The 
POCUS protocol used mirrored the GlobalFAST® procedure in a total 
of five (1.5 to 10 years old) healthy canine subjects (20 to 55 kgs 
weight) under general anesthesia or deep sedation for other medical 
procedures, as prescribed by the attending veterinarian. Ultrasound 
(US) clips were collected in 8 scan points (Table  1) using a C11 
transducer (Fujifilm, Bothell, WA, United States) with a Sonosite Edge 
ultrasound system (Fujifilm, Bothell, WA, United States). The subject 
was positioned in right lateral, left lateral, sternal or dorsal recumbency 
for ease of access to each scan point. A minimum of three 15 s clips 
were collected at each scan point with the probe orientation held in 
the coronal plane for the first 6 s and then rotated to the transverse 
plane for the remainder of each clip. All clips collected from the live 
subjects were used as baseline (negative for injury) data. The same 
scanning protocol was used to obtain US imaging data from a cadaver 
canine model. A total of five frozen cadavers (Skulls Unlimited, 
Oklahoma City, OK, United States) were received and stored at −20°C 
until ready for use. Once thawed, an endotracheal tube (McKesson 
Medical-Surgical, Irving, TX, United  States) was placed into the 
trachea of each subject and secured to a bag valve mask (EMS Safety 
Services, Eugene, OR, United  States) for ventilation. At this time 

TABLE 1 Scan point description for the POCUS imaging protocol.

Scan point Abbreviation Description

Bilateral Chest 

Tube Site

CTS Longitudinal plane on both sides of 

the chest perpendicular to the ribs at 

the 7th to 9th intercostal space.

Bilateral 

Pericardial Site

PCS Longitudinal and transverse planes on 

each side of the chest between the 5th 

and 6th intercostal spaces over the 

heart.

Diaphragmatic 

Hepatic

DH Subxiphoid view for visualization of 

the pleural and pericardial spaces 

beyond the diaphragm to evaluate 

hepatodiaphragmatic interface, 

gallbladder region, and pericardial 

sac.

Splenorenal SR Left flank view to assess the 

splenorenal interface and areas 

between the spleen and body wall

Cystocolic CC Midline view to assess the apex of the 

bladder

Hepatorenal HR Right flank view to assess the 

hepatorenal interface and areas 

between the spleen and body wall
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thoracic and abdominal CT scans (Toshiba Aquilion CT Scanner, 
Cannon Medical Systems, Tustin, CA, United States) were collected to 
identify any pre-existing injuries. Then, data was collected at each scan 
point, using the same protocol as the live subjects. After collecting the 
first round of data, if the subject was positive for any injury, e.g., a 
pneumothorax, a needle decompression was performed to remove air 
and obtain a negative scan. Another round of data was collected with 
the scan points that were negative for injury. Next, controlled injuries 
were performed by adding blood or saline to the pleural space (up to 
300 mL) or the abdomen (up to 400 mL) for a final round of positive 
injury image collection in the cadaver subjects.

2.2 Preprocessing images

All clips were exported from the US machine as MP4 format and 
then renamed to reflect the scan point, subject ID, and recumbency of 
each subject. Frames were extracted from each clip using ffmpeg tool, 
via a Ruby script, and then sorted by positive or negative for injury by 
scan point. Each frame was then cropped to remove the user interface 
information from the US system and the images were resized to 
512 × 512 pixels. Additional steps were taken with images collected at 
the chest tube site, to recreate M-mode images. Briefly, clips were 
processed to extract a pixel-wide image over time for visualizing the 
lung-pleura interface movement. These custom-M-mode images were 
then cropped and resized to 512 × 512 as well.

Before images were ready for training, they were augmented to 
prevent model overfitting and improve performance. While data 
augmentation is useful to prevent overfitting, it can result in poor 
model performance and more computationally intensive training if 
not setup optimally for the application (29). A representative image 
was chosen from each scan point, including M-mode reconstructions, 
to match histogram values across all the other images using 
“imhistmatch” function by MATLAB (MathWorks, Natick, MA, 
United States). Then, contrast and brightness were randomly adjusted 
by ±20% to add training noise using the “jitterColorHSV” function 
by MATLAB. Both MATLAB functions were applied to all images  
for every scan point using Image Batch Processor on 
MATLAB. Augmented US images were imported at a 512 × 512 × 3 
image size and were randomly assigned to training, validation or 
testing datasets at a 70:15:15 ratio. Image sets were set up so that an 
even number of positive or negative images were selected in each 
dataset for each split. Next, training images were augmented 
randomly by affine transformations: random scaling, random X and 
Y reflections, random rotation, random X and Y shear, and random 
X and Y translation. However, for the CTS M-mode scan point only 
X reflection and translation affine transformations were applied given 
how these images were constructed. Due to DH scan point images 
being unable to train with all augmentations (data not shown), only 
reflection and translation augmentations were applied for both the X 
and Y direction.

2.3 Training AI models

Three different AI models were evaluated for this application that 
have previously been used for ultrasound image interpretation 

successfully – MobileNetV2 (30), DarkNet-19 (31), and ShrapML 
(26). MobileNetV2 has 53 convolutional layers, 3.5 million 
parameters, and was optimized for use on mobile devices. We have 
previously shown this architecture to perform at the highest accuracy 
for identifying shrapnel in a custom tissue phantom. The second-best 
performing architecture, DarkNet-19, has 19 convolutional layers, 
20.8 million parameters, and utilizes global average pooling for 
making predictions. The last model used, ShrapML, was purpose 
built and Bayesian optimized for identifying shrapnel in ultrasound 
images at a high accuracy and much more rapid than conventional 
models. In addition, we have shown it to be successful at identifying 
pneumothorax, hemothorax, and abdominal hemorrhage injuries in 
eFAST images captured in human tissue phantom models (28). 
ShrapML consists of 8 convolutional layers with only 430,000 
trainable parameters.

Training for all scan points consisted of a learning rate of 
0.001 with a batch size of 32 images and RMSprop (root mean 
squared propagation) as the optimizer. A maximum of 100 epochs 
was allowed for training with a validation patience of 5 epochs if 
the overall validation loss did not improve. The model with the 
lowest validation loss was selected for use with blind predictions. 
All training was performed using MATLAB R2022b run on a 
Microsoft Windows workstation with a NVIDIA GeForce RTX 
3090 Ti 24Gb VRAM graphics card, Intel i9-12900k and 
64 GB RAM.

2.4 Performance metrics

Testing image sets were used to assess blind performance in 
multiple ways. First, confusion matrices were generated to categorize 
prediction as either true positive (TP), true negative (TN), false 
positive (FP), or false negative (FN) results. These results were used to 
generate performance metrics for accuracy Eq. 1, precision Eq. 2, 
recall Eq. 3, specificity Eq. 4, and F1 scores Eq. 5 using commonly used 
formulas for each.
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Then, we  constructed receiver operating characteristic (ROC) 
plots to further classify performance for a number of confidence 
thresholds for the predictions. ROC plots were used to calculate the 
area under the ROC curve or AUROC, which tells you how well the 
model differentiates between categories. Next, inference time for test 
image predictions were quantified for each trained model to assess 
differences in computational efficiency of the three different AI 
models used. Lastly, Gradient-weighted Class Activation Mapping 
(GradCAM) overlays were generated for test predictions to highlight 
the regions of images where the AI predictions were focused (32). 
These were used as an explainable-AI methodology to verify the AI 
models were accurately tracking the image regions where injury 
differences were present (16, 33, 34).

3 Results

3.1 MobileNetV2

MobileNetV2 was successfully trained for each POCUS scan 
point, with an average accuracy across all locations of 98.8% (Table 2). 
In addition, strong performance was evident for other conventional 
metrics across each POCUS scan point. However, upon closer 
inspection using GradCAM mask overlays, the MobileNetV2 trained 
model was not always properly tracking the injury site, but instead was 
focused on image artifacts that will likely not be  consistent for 
additional canine subjects not included in the current datasets 
(Figure 1). CTS scan sites for both M- and B-mode were accurately 
tracking injuries, other scan sites such as HR, DH, and SR were not 
tracking correctly. Average inference times across all MobileNetV2 
scan site models was 6.21 ms per prediction.

3.2 DarkNet-19

The DarkNet-19 models had similar inference speeds compared 
to MobileNetV2 at 5.93 ms per prediction, but overall performance 
was reduced for a number of the scan sites, resulting in an average 
accuracy across all scan points of 86.4% (Table 3). Certain scan points 
like chest-tube M-mode images resulted only in predictions of 
negative (TN or FN) and the GradCAM overlays identified no obvious 
tracked features in the image (Figure 2). While this was the worst 
performing dataset trained against, the Cystocolic scan site was also 
only at 69.2% accuracy. While performance was reduced compared to 
MobileNetV2 across nearly all metrics, the GradCAM overlays were 

more accurately tracking image features consistent with locations 
where free fluid was or could be identified. These results indicated that 
while performance was overall reduced for DarkNet-19, the 
predictions were more often tracking the proper image features. More 
images and subject variability may improve on training performance.

3.3 ShrapML

The last model evaluated was ShrapML, which resulted in an 
accuracy across all scan sites of 93.4% (Table 4). Unlike DarkNet-19, 
no trained model resulted in an instance of 100% positive or negative 
guesses. However, performance metrics were consistently worse than 
MobileNetV2. Given the smaller model size of ShrapML, the inference 
times were much quicker compared to the other models with 
prediction rates at an average of 3.43 ms per image. GradCAM 
overlays more closely resembled DarkNet-19 in that many of the heat 
map intensity points were focused on regions where free fluid was 
likely to be  found or near organs present in the ultrasound scan 
(Figure 3), except for the HR site. Overall, ShrapML was successful at 
performing similarly well to these large network structures for this 
GlobalFAST application, model overfitting was less evident in the 
results, and overall prediction speed outperformed the other 
models tested.

A summary table of average performance metrics for each scan 
site across all three model architectures is shown in Table 5.

4 Discussion

Medical imaging-based triage is critical for both human and 
veterinary emergency medicine to identify issues early on and 
ensure resources are properly distributed. In remote or military 
medicine situations, the lack of skilled personnel makes imaging 
based-triage less relied upon, but AI prediction models can simplify 
this for the end user. Here, we  focus on the POCUS procedure 
GlobalFAST®, a widely used triage exam to look for abdominal or 
thoracic free fluid in injured dogs. The AI models shown in this 
work can automate predictions for ultrasound results if properly 
tuned for the application.

Three different AI architectures were evaluated to see which was 
capable of being trained to distinguish positive injury cases from 
baseline images. While all models were generally successful at being 
trained for these applications, strong test performance may not 
indicate properly trained models. For instance, MobileNetV2 had 

TABLE 2 Summary of performance metrics for MobileNetV2.

Metric CTS CTS M-mode PCS DH SR CC HR Average

Accuracy 0.987 0.997 0.985 0.986 0.979 0.998 0.987 0.988

Precision 0.986 0.994 0.995 0.998 0.999 1.000 0.982 0.995

Recall 0.987 1.000 0.976 0.973 0.960 0.996 0.992 0.980

Specificity 0.986 0.994 0.995 0.998 0.999 1.000 0.982 0.995

F1 Score 0.987 0.997 0.985 0.985 0.979 0.998 0.987 0.987

AUROC 0.999 1.000 1.000 1.000 0.999 1.000 0.999 1.000

Inference Time (ms/image) 6.22 7.67 5.59 5.58 6.64 6.06 6.57 6.21
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FIGURE 1

Prediction results by scan point for MobileNetV2. Results for each scan site showing (column 1) confusion matrix test prediction results, (column 2–3) 
negative and (column 4–5) positive representative images without and with the GradCAM overlay. Regions in the images with high relevance to model 
predictions have red-yellow overlays, while those of lower relevance have blue-green overlays.

https://doi.org/10.3389/fvets.2024.1374890
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Hernandez Torres et al. 10.3389/fvets.2024.1374890

Frontiers in Veterinary Science 06 frontiersin.org

the highest accuracy, but heat map overlays indicating where the AI 
was focused were not tracking proper image locations. Model 
overfit was combatted with the various image augmentation 
techniques used for the training, but this was insufficient to mimic 
proper subject variability to create a more robust model for this 
architecture. This issue was less evident for the other two model 
architectures, highlighting the importance of AI model selection 
and validation on ultrasound image applications such as this. 
However, without more subjects and the variability that those bring, 
it is hard to fully verify if the developed DarkNet-19 or ShrapML 
models are suitable. Preliminarily, ShrapML had the strongest 
performance and prediction rate, making it the most suitable going 
forward as well as eventual integration for real-time deployment 
with ultrasound machines.

Focusing on the various scan points in the used POCUS exam, 
there were obvious differences in the AI model training. Training 
image sets were not equally sized, but that did not correlate to what 
scan sites performed the best. The DH site was the overall strongest 
performing site across all performance metrics. However, this could 
be due to this scan site having the largest difference between live and 

cadaveric tissue resulting in a well-trained model. In addition, less 
augmentation steps were used for this site due to training issues using 
all affine transformations. More images are needed to address this 
issue from a wider range of subjects. CTS and HR views also 
performed well across the three models trained. Worst performing 
was the M-mode reconstructed chest tube images which could 
be influenced by the minimal training data used for this model, and 
thus may be improved with more training data. The CC site was also 
a lower performing scan site even though more than 10,000 images 
were used in the training dataset. However, this is mostly influenced 
by DarkNet-19 having lower performance for this scan site while the 
other two models had accuracies greater than 96%. Overall, each scan 
site for this POCUS application was successful as an input for an 
injury prediction model.

5 Conclusion

Artificial intelligence has the potential to simplify triage and 
injury diagnosis for emergency veterinary medicine. The results 

TABLE 3 Summary of performance metrics for DarkNet-19.

Metric CTS CTS M-mode PCS DH SR CC HR Average

Accuracy 0.933 0.500 0.930 0.967 0.878 0.692 0.919 0.864

Precision 0.954 0.993 1.000 0.865 0.636 0.873 0.844

Recall 0.911 0.000 0.867 0.933 0.896 0.895 0.979 0.926

Specificity 0.956 1.000 0.994 1.000 0.860 0.488 0.858 0.801

F1 Score 0.932 0.926 0.966 0.880 0.744 0.923 0.878

AUROC 0.984 0.575 0.992 0.999 0.953 0.737 0.988 0.92

Inference Time (ms/image) 6.32 8.73 5.53 5.61 5.86 6.17 6.07 5.93

TABLE 4 Summary of performance metrics for ShrapML.

Metric CTS CTS M-mode PCS DH SR CC HR Average

Accuracy 0.900 0.966 0.908 0.989 0.861 0.965 0.950 0.934

Precision 0.901 0.994 0.917 0.993 0.806 0.967 0.977 0.936

Recall 0.898 0.938 0.897 0.984 0.950 0.963 0.921 0.936

Specificity 0.901 0.994 0.919 0.993 0.772 0.967 0.978 0.932

F1 Score 0.900 0.965 0.907 0.988 0.872 0.965 0.948 0.935

AUROC 0.961 0.998 0.97 0.999 0.928 0.995 0.988 0.977

Inference Time (ms/image) 5.72 3.78 2.63 2.68 3.31 2.83 3.05 3.43

TABLE 5 Summary of performance metrics for each POCUS site.

CTS CTS M-Mode PCS DH SR CC HR

Accuracy 93.98% 82.11% 94.12% 98.02% 90.61% 88.49% 95.18%

Precision 94.69% 99.42% 96.83% 99.69% 89.00% 86.76% 94.42%

Recall 93.19% 64.60% 91.32% 96.35% 93.52% 95.15% 96.41%

Specificity 94.77% 99.62% 96.92% 99.70% 87.69% 81.82% 93.95%

F1 Score 93.92% 98.11% 93.93% 97.98% 91.04% 90.22% 95.29%

Number of Training Images 23,305 1,652 16,380 11,340 9,455 10,080 9,455
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FIGURE 2

Prediction results by scan point for DarkNet-19. Results for each scan site showing (column 1) confusion matrix test prediction results, (column 2–3) 
negative and (column 4–5) positive representative images without and with the GradCAM overlay. Regions in the images with high relevance to model 
predictions have red-yellow overlays, while those of lower relevance have blue-green overlays.
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FIGURE 3

Prediction results by scan point for ShrapML. Results for each scan site showing (column 1) confusion matrix test prediction results, (column 2–3) 
negative and (column 4–5) positive representative images without and with the GradCAM overlay. Regions in the images with high relevance to model 
predictions have red-yellow overlays, while those of lower relevance have blue-green overlays.
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shown in this work highlight how AI can be used for automating US 
detection of intrabdominal and intrathoracic injury detection for 
veterinary applications. Each scan point reached greater than 80% 
injury detection accuracy, with most surpassing 90% accuracy. 
However, more data is still needed to be able to ensure that the AI 
models are not overfitting the training data and can accurately predict 
for new subject data. Next steps for this work will expand training 
datasets so that blind subject testing is possible for confirming 
generalized models are developed. With more data, these models can 
be set up for real-time integration with ultrasound devices allowing 
for early detection of thoracic and abdominal injuries for military 
working dogs and other canine trauma situations. This will lower the 
skill threshold for medical imaging-based triage so that these 
techniques can be more widely used.
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