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The potential for senotherapy as
a novel approach to extend life
quality in veterinary medicine
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Cellular senescence, a condition where cells undergo arrest and can assume an

inflammatory phenotype, has been associated with initiation and perpetuation

of inflammation driving multiple disease processes in rodent models and

humans. Senescent cells secrete inflammatory cytokines, proteins, and matrix

metalloproteinases, termed the senescence associated secretory phenotype

(SASP), which accelerates the aging processes. In preclinical models, drug

interventions termed “senotherapeutics” selectively clear senescent cells and

represent a promising strategy to prevent or treatmultiple age-related conditions

in humans and veterinary species. In this review, we summarize the current

available literature describing in vitro evidence for senotheraputic activity,

preclinical models of disease, ongoing human clinical trials, and potential

clinical applications in veterinary medicine. These promising data to date

provide further justification for future studies identifying the most active

senotherapeutic combinations, dosages, and routes of administration for use in

veterinary medicine.
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Introduction

Cellular senescence refers to the physiological mechanism by which proliferating
cells undergo stable cell cycle arrest upon stress or damage and secrete an array of
factors, termed the senescence associated secretory phenotype (SASP) (1–5) (Figure 1).
Cellular senescence is a hallmark of aging (6, 7), first documented in 1961 by Hayflick
and Moorehead (8). In health, senescent cells (SC) are cleared from tissues by innate
immune and natural killer cells (9, 10). In disease, these cells can accumulate beyond the
capacity of immune surveillance mechanisms to fully clear. This massive expansion of
senescent cells is driven by paracrine and endocrine signaling mechanisms that induces
a senescence state in neighboring cells. A portion of senescent cells (between 30 and
70%) are termed deleterious senescent cells and can secrete inflammatory, pro-apoptotic,
insulin resistance-inducing cytokines (e.g., TNF-α, IL-6,) and chemokines (MCP-1, IL-
8) that attract and activate innate immune cells. Other effects include activation of
matrix metalloproteinases that cause tissue destruction, bioactive lipids that contribute to
inflammation (e.g., prostaglandins, bradykinins), microRNAs that contribute to stem and
progenitor cell dysfunction, and extracellular vesicles (EVs) carrying cytotoxic cargo to
neighboring cells (3, 11–13).
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FIGURE 1

Senescence is induced by factors such as DNA damage, oxidative stress, oncogene formation, telomere shortening and epigenetic modifications.

Deleterious senescent cells produce a senescence associated secretory phenotype (SASP) with paracrine or juxtacrine signaling of factors that

promote deleterious senescent states in adjacent cells. Created with BioRender.com.

Cellular senescence underlies numerous age-related diseases
(e.g., congestive heart failure, strokes, Alzheimer’s, cancer,
metabolic dysregulation, renal dysfunction, chronic lung diseases,
osteoporosis, osteoarthritis) (3, 14) as the SASP phenotype
initiates immune clearance driving chronic inflammation (15, 16).
Consequently, a popular rationale for senotherapy is to reduce
the overall senescent cell burden. This in turn would lead to
reduced inflammation, decreased macromolecular dysregulation
and improved function of stem and progenitor cells (2, 17, 18).
These approaches, including the various senotherapeutics under
development, their mechanisms of action, and early preclinical or
clinical evidence of activity are the subject of this review.

Detection and induction of cellular
senescence in vitro

While general hallmarks of cellular senescence have been
established, including structural, epigenetic and signaling
alterations, a universal set of sensitive and specific markers has yet
to be agreed upon, which complicates senescence studies (3, 4, 19).
Understanding the mechanisms leading to senescence allows for
the detection and experimental induction of cellular senescence.
SC exhibit a complex gene expression profile, marked by increased
levels of p16Ink4a and p21Cip1, along with the activation of
pathways that help them resist apoptosis, known as senescent cell
antiapoptotic pathways (1, 20). Detection of cellular senescence
may be performed through detection of primary markers of cell
cycle arrest. These markers are characterized by upregulated
expression of protein markers p16 (p16INK4a), p21 (p21Cip1), p53,
decreased phosphorylated Retinoblastoma protein (pRB), and

structural changes associated with increased lysosomal content
and senescence-associated ß-galactosidase (SA-ß-Gal) (21, 22).
Two separate, yet interconnected, pathways that drive cell cycle
arrest are p53/p21 and p16/pRb (16, 23, 24). The p53 regulated
gene product p21, plays a role in arresting the cell cycle through
inhibition of cyclin-dependent kinase-2 (CDK2) inactivation
retinoblastoma (Rb) protein necessary for cell cycle progression
(23). Through the inhibition of cyclin-dependent kinase 4 (CDK4)
and CDK6, p16INK4a prevents the phosphorylation of the Rb
protein (23, 24). The expression of markers such as p53, p16INK4a,
and p21Cip1 increase during senescence, making them commonly
used indicators for senescence (25, 26).

Secondary senescence biomarkers include flattened or enlarged
cellular morphology and SASP expression (e.g., IL-6, IL-8, IL-
1a, GRO-a, MCP-1, and IFN-γ, among others) (4). Detecting
SASP markers does not verify senescent cell states outright, as
many factors other than senescence can trigger SASP cytokine
secretion such as infections, immune-mediated diseases, and
cancer. Profiling senescent cells with gene and protein expression
analyses has demonstrated upregulation of antiapoptotic pathways
in certain types of neoplastic processes such as lymphocytic
leukemia and B-cell lymphoma (27, 28). Efforts toward defining
the pleiotropic nature of senescent cells and SASP signatures are
ongoing and have recently been published for specific cell lines (29),
which warrants further investigation utilizing cell lines isolated
from veterinary species of interest.

In vitro studies evaluating senotherapeutics have integrated
various cell lines including WI-38, IMR-90, mouse embryonic
fibroblasts (MEFs), human preadipocytes, human umbilical
vein endothelial cells (HUEVCs), and bone marrow-derived
mesenchymal stem cells (BMD-MSCs) with artificially induced
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FIGURE 2

Workflow of in vitro senotherapeutic drug studies comprised of cell culture, induction of cell senescence, senotherapeutic treatment, and final

quantification with statistical analyses. Created with BioRender.com.

senescence (30–33). Fibroblasts, in particular, are commonly
used in studying overall aging mechanisms (34). Multiple
methods to induce senescence have been reported including a
single dose of gamma-radiation (e.g., 10 Gray), exposure to
bleomycin, chemotherapy drugs, hydrogen peroxide, TGF-β1,
oncogene induction, or replicative exhaustion (8, 33, 35, 36).
The optimal method to induce senescence depends on the cell
line evaluated (37). Specific considerations regarding in vitro

evaluation of senotherapeutics include concentration, duration of
exposure, and solubility. To identify and quantify senescent cells
(SCs), several techniques have been described, including SA-ß-Gal
staining, gamma-histone 2AX (γ-H2AX), senescence associated
heterochromatin foci markers, immunoblotting for senescence-
associated proteins, mRNA level analysis, CDKN2A/p16, and
detection of senescence-associated secretory phenotype proteins
(38, 39) (Figure 2). Of note, cells can adopt a senescent phenotype
simply under regular culture conditions, which is indicated by
elevated levels of SA-β-Gal, the DNA damage marker γ-H2AX in
the nucleus, and a rise in the expression of p21 mRNA (40).

Preluding gene expression, epigenetic regulators modulate
transcription senescent markers and SASP factors (41, 42). This
was shown in human stromal cells when histone H3-specific
demethylase KDM4 was found to potentiate senescent markers
such as p16INK4a, p21CIP1, and CXCL8 (43). Another study
evaluated the epigenetic modifications of preadipocytes in first
degree relatives of people with type 2 diabetes (44). When
compared with controls, those individuals had increased senescent

marker expression and hypomethylation of a gene called ZMAT3.
Increased protein expression due to hypomethylation, led to
premature senescence. This suggests an epigenetic influence on
development of senescence and potential predisposition to type
2 diabetes (44). In summary, while general indicators of cellular
senescence have been established, a complete set of sensitive and
specific markers has yet to be agreed upon, which complicates
detection of senescence and monitoring response to treatment with
senotherapeutics, representing an area for further investigation.

Preclinical evidence for
senotherapeutics

Multiple different therapeutic approaches to remove senescent
cells have been investigated following the initial reports that
caloric restriction or mutations that decreased growth hormone
signaling significantly extended lifespan, presumably in part
through reduction of the senescent cell burden (3, 45). Since then,
over 40 compounds have been identified that target senescent
cell associated anti-apoptotic pathways (SCAPs) with the potential
for use as senotherapeutics (30). From these screens, priority
was given to drugs that targeted multiple pathways, could be
administered orally, and were natural products with either known
safety profiles or already approved by the US Food and Drug
Administration (FDA) for use in humans (1). Three such drugs,
including the tyrosine kinase inhibitor dasatinib and the natural
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flavonoids quercetin and fisetin, were identified as promising (1).
These senotherapeutics have consequently been investigated in
multiple recent and ongoing human clinical trials for treatment
of diseases such as osteoarthritis, skeletal health, mobility, and
frailty, among others (1). Here we present a summary of the
currently described senotherapeutic drugs for potential application
in veterinary medicine.

First generation senotherapeutic drugs

First-generation senotherapeutics and their activities are
summarized in Table 1 and described in further detail here.

Dasatinib

Dasatinib is an FDA approved tyrosine kinase inhibitor
used to treat chronic myeloid leukemia and acute lymphoblastic
leukemia, as well as refractory non-Hodgkin lymphoma, metastatic
gastrointestinal stromal tumors, and metastatic prostate cancer
in humans (64, 65). Dasatinib functions as a senotherapeutic
by interfering with ephrin ligand dependent suppression of
apoptosis (30–32). When administered, dasatinib decreases
viability of senescent human preadipocytes by 30–40% (30) at
concentrations of 50 nM andmurine embryonic fibroblasts (MEFs)
at concentrations of 250 nM (30). However, with an apparent cell
line specific effect, dasatinib has not demonstrated efficacy against
senescent human umbilical vein cells (HUVECs) nor senescent
bone marrow-derived mesenchymal cells (30–32), which prompted
evaluation of co-administration with other senotherapeutics, such
as quercetin, to enhance efficacy.

Quercetin

Quercetin is a naturally occurring flavonoid found in certain
fruits, vegetables, onions, and kale. Quercetin inhibits kinases and
serpines integral to modulating cell growth and arrest such as
phosphoinositide 3-kinases (PI3K) (46, 47). Clinically, quercetin
alone has cardioprotective effects (66, 67) by reducing obesity,
restoring plasma thyroid hormone levels, mitigating cardiac
oxidative stress (66, 68), and promoting angiogenesis (69). ApoE-
/- hypercholesterolemic mice that were treated with quercetin had
a significant reduction in left ventricular (LV) hypertrophy (70).
Quercetin enhanced antioxidant defenses and improved cardiac
bioenergetics in rats that were fed a high fat diet (67). Likewise,
quercetin attenuated oxidant-induced endothelial dysfunction in
high cholesterol mice fed a high fat diet by enhancing nitric oxide
bioavailability (71). Mouse atherosclerosis studies have shown
variable pro-inflammatory and non-specific systemic effects of
both genetic and pharmacological senolysis (72). While quercetin
has demonstrated efficacy to induce senolysis on senescent
HUVECs,MEFs, and BM-MSC in vitro, but with limited significant
therapeutic effect on preadipocytes (30, 46, 47), demonstrating an
efficacy profile opposite that of dasatinib. Therefore, quercetin has

been investigated further in combination with dasatinib (3, 14, 30,
73–80).

Dasatinib and quercetin

The combination of dasatinib and quercetin has proven
effective in mice at a dosage of 5 mg/kg of dasatinib and 50 mg/kg
for quercetin (30, 81), and clears from systemic circulation within
48 h after the last dose (82, 83).

Relevant to cardiovascular disease, dasatinib and quercetin
has demonstrated significant improvements in vascular smooth
muscle sensitivity to nitroprusside and an enhanced ventricular
left ejection fraction in mouse models of cardiac disease (84). This
senotherapeutic combination also activates cardiac progenitor cells
following treatment in a mouse model of cardiovascular disease
(85). Both aged mice and hypercholesterolemic mice treated with
dasatinib and quercetin had significant reductions in telomere
associated foci, staining of aortic calcification, and osteogenic gene
and protein expression (86). Another study demonstrated that
dasatinib and quercetin treatment not only reduced SC numbers,
but also promoted cardiomyocyte regeneration in aged mice (85).
In an arteriovenous fistula chronic kidney disease mouse model,
dasatinib and quercetin treatment significantly reduced p16Ink4a

venous expression, indicating reduction in SC (81). Pre-treatment
with this senotherapeutic combination has also been shown to
reduce the quantity of SC in arterial walls and lessened the severity
of abdominal aortic aneurysms in mice given angiotensin II (87).

Relevant to obesity, evaluation in mouse models have
indicated that the combination of dasatinib and quercetin reduces
inflammation, alleviates metabolic dysfunction pre-adiposity, and
facilitates the differentiation of adipose cells into mature, insulin-
responsive ones (88). Aged mice treated with dasatinib and
quercetin had decreased SA-ß-Gal, p16 and p21 expression in
white adipose tissue. Dasatinib and quercetin also suppressed
age-related increases in pro-inflammatory SASP genes (MCP-

1, TNA-α, IL-1α, IL-1β, IL-6, CXCL-2, and CXCL-10) (76).
That study also demonstrated improved fasting blood glucose,
glucose tolerance, reduced plasma triglycerides, and improved
systemic lipid tolerance in old mice treated with dasatinib
and quercetin (76). Human adipocytes treated with dasatinib
and quercetin demonstrated reduced insulin resistance following
xenotransplanation. Because insulin resistance is a risk factor
of type 2 diabetes, these findings indicate that senotherapeutics
may offer a new treatment avenue to target adipocytes expressing
elevated p21Cip (89).

With respect to neurologic disease, mouse models of
Alzheimer’s disease have found that Tau-containing neurofibrillary
tangles display senescent phenotypes with increased CDKN2A
expression and brain atrophy (90). When 23-month-old tau
transgenic mice were treated with dasatinib and quercetin,
neurofibrillary tangle burden, ventricular enlargement, and
neurodegeneration was significantly reduced (90). Furthermore,
treatment with dasatinib and quercetin in a mouse model of
Alzheimer’s showed reduction of SC in amyloid-β plaques, reduced
neuroinflammation (IL1-β, IFN-γ and TNFα), and significantly
improved cognitive function (91). Another study investigating
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TABLE 1 Summary of available first and second generation senotherapeutic drugs.

1st generation

Senotherapeutic Mode of action E�cacy In vitro dose Notes References

Dasatinib (D) 1. SRC/tyrosine kinase inhibitor
2. Interferes with EFNB-dependent
suppression of apoptosis

1.↓ viability+ cell death of senescent human
preadipocytes
2. Less effective on human umbilical vein cells
(HUVECs) compared to preadipocytes

50 nM: ↓preadipocyte viability by 30–40%
250 nM: ↓ Ercc1-deficient murine embryonic
fibroblasts (MEFs)
500 nM: not efficacious in ↓ bone marrow-derived
mesenchymal senescent cells (BM-MSCs) from
progeroid Ercc1–/1 mice

(30–32)

Quercetin (Q) 1. Inhibits PI3K
2. Inhibition of mTOR Signaling
3. Represses plasminogen activator
inhibitor-1 4. Inhibits serpines

1. ↓ viability+ caused cell death of senescent HUVECs
2. Less effective on preadipocytes compared to
HUVECs

10 µM: ↓HUVEC SC by 50% 50 µM:
↓Ercc1-deficient MEFs 100 µM: ↓sc of BM-MSCs
from progeroid Ercc1–/1 mice

(30, 46, 47)

D+ Q ∗See above∗ Selective killing of both senescent preadipocytes
(↓65%) and endothelial cells

D: 200 nM
Q: 20 µm

(30)

Fisetin (F) 1. BCL-2/BCL-xL inhibitor
2. HIF-1α inhibitor

1. Effective at reducing senescent markers in MEFs,
human adipocytes
2. Induces apoptosis in HUVECs
3. NOT senolytic in IMR90 cells or primary human
preadipocytes

0.5 µM: caspase activity ↑ 5 µM: ↓cell viability
(Best supported) 10 µM: ↓ cell numbers

Low toxicity (48, 49)

Navitoclax (ABT263) BCL-2/BCL-xL inhibitor Depletes senescent bone marrow hematopoietic stem
cells & senescent muscle stem cells

0.313 µM: ↓cell viability of SC 5µM: ↓cell viability
of non-SC 1.25 µM: in vitro and vivo ↓ ∼50%
viability after 5 h exposure

Hematological toxicity
(platelets and immune
cells)

(50)

Luteolin Modulation of SIRT1 and p53 1. Weak activity on MEFs SCs (5µM)
2. Rescues 50% of H2O2 induced SC in House Ear
Institute-Organ of Corti 1 (2µM)

2 µM−5µM (49, 51, 52)

Curcumin Targets NF-kB, MAP-kinase, p53, NRF2,
AKT, COX-2 and EGFR

1. Weak activity on murine embryonic fibroblast SCs
(5µM)
2. No significant senolytic activity at sublethal doses
(<10µM)

5 µM−10µM ↓Bioavailability,
water-insoluble, significant
cytotoxic+ genotoxic
effects at ≥ 10µM

(49, 53, 54)

Curcumin Analog
EF24

1. Induces apoptosis
2. Reactive oxygen species (ROS) production
3. Proteasome degradation of the Bcl-2
family proteins

1. EC50of 1.62µM in SC induced by radiation
2. EC50 of 4.69µM in non-SC

EF24 had minimal effect on the cell viability of
WI-38 NCs < 4µM

(55)

A1331852 BCL-2 family member inhibitors 1. Induces apoptosis in senescent HUVECs & IMR90
cells
2. Not senolytic against human preadipocytes

1 nM Appears less toxic than
navitoclax

(48)

A1155463 BCL-2 family member inhibitors 1. Induces apoptosis in senescent HUVECs & IMR90
cells
2. Not senolytic against human preadipocytes

1 nM Appears less toxic than
navitoclax

(48)

Geldanamycin/
Alvespimycin
(17-DMAG)

HSP90 inhibitors ↓ Viability of SC ME (1µM) without significantly
affecting non-SC

1µM (EC50 for SC 7 nM; EC50 for non-SC
73 nM)

Alvespimycin is more
water soluble

(53)

Tanespimycin
(17-AAG)

HSP90 inhibitors ↓ Viability of SC ME (1µM) without significantly
affecting non-SC

1µM (53)

(Continued)

Fro
n
tie

rs
in

V
e
te
rin

ary
Sc

ie
n
c
e

0
5

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fvets.2024.1369153
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Williams et al. 10.3389/fvets.2024.1369153

T
A
B
L
E
1

(C
o
n
ti
n
u
e
d
)

1
st

g
e
n
e
ra
ti
o
n

Se
n
o
th
e
ra
p
e
u
ti
c

M
o
d
e
o
f
ac

ti
o
n

E
�
c
ac

y
In

v
it
r
o
d
o
se

N
o
te
s

R
e
fe
re
n
c
e
s

P
ip
er
lo
n
gu
m
in
e

In
du

ce
s
ap
op

to
si
s,
m
ec
ha
n
is
m

un
kn

ow
n

K
ill
s
se
n
es
ce
n
th

um
an

W
I-
38

fib
ro
bl
as
ts
&
IL
1β

in
du

ce
d
se
n
es
ce
n
tg

oa
tc
ho

n
dr
oc
yt
es

10
µ
M

fo
r
48

h
(E
C
50

fo
r
SC

6.
24
–7

.9
7
µ
M
;

E
C
50

fo
r
n
on

-S
C
20
.2
8

µ
M
)
5
µ
M
:

m
ild

ch
on

dr
oc
yt
e
de
at
h
af
te
r
3
da
ys

10
µ
M

:
cy
to
to
xi
ci
ty
3–

7
da
ys

N
-a
ce
ty
lc
ys
te
in
e
in
hi
bi
ts

pi
pe
rl
on

gu
m
in
e

(5
6,
57
)

FO
X
O
4-
re
la
te
d

pe
pt
id
e

Ta
rg
et
ed

ap
op

to
si
s
of

se
n
es
ce
n
tc
el
ls
by

p5
3

n
uc
le
ar

ex
cl
us
io
n

K
ill
s
se
n
es
ce
n
tp

ri
m
ar
y
hu

m
an

IM
R
90

fib
ro
bl
as
ts

25
µ
M

fo
r
3
da
ys

(5
8)

N
ut
lin

3a
M
D
M
2
in
hi
bi
to
r

K
ill
s
se
n
es
ce
n
tm

el
an
om

a
ce
lls

an
d
re
ti
n
al
pi
gm

en
t

ep
it
he
lia
lc
el
ls

2.
5–

10
µ
M

D
os
e
de
pe
n
de
n
t

cy
to
to
xi
ci
ty

C
an

IN
D
U
C
E
se
n
es
ce
n
ce

(5
9,
60
)

C
ar
di
ac

G
ly
co
si
de
s

N
a+

/K
+
A
T
Pa
se

pu
m
p
in
hi
bi
to
rs

K
ill
s
se
n
es
ce
n
th

um
an

fib
ro
bl
as
ts
IM

R
90
,o
st
eo
ar
th
ri
ti
c

ch
on

dr
oc
yt
es
,

∼
0.
1
µ
M

(6
1,
62
)

A
sp
ir
in

C
O
X
2
in
hi
bi
to
r

K
ill
s
do

xo
ru
bi
ci
n
in
du

ce
d
se
n
es
ce
n
th

um
an

fib
ro
bl
as
ts
,

m
ur
in
e
em

br
yo
n
ic
fib

ro
bl
as
ts
,a
n
d
am

yl
oi
d
in
du

ce
d

hu
m
an

n
eu
ro
n
al
ce
lls

10
0
µ
M

(6
3)

dasatinib and quercetin to treat age-related cognitive decline
in male Wistar rats found that this therapeutic combination
alleviated learning deficits, memory impairment, and markers of
peripheral inflammation (IL-1α, IL-β, IL-4, IL-2, IL-10, MCP-1
and TNF-α) (92). Furthermore, these differences were associated
with cellular changes to dendritic spine morphology, specifically
hippocampal CA1 neurons and molecular alterations of histone
H3 trimethylation at lysine 9 and 27 (92). While quercetin alone
was found to ameliorate the progression of intervertebral disc
disease in mice via the Nrf2/NF-κB axis (93), the combination of
dasatinib and quercetin have shown decreases in p16INK4a, p19ARF,
IL-6, and MMP13 expression while preserving cell viability (94).
The neuroprotective effects of dasatinib and quercetin have
also been demonstrated in a controlled cortical impact mouse
model of traumatic brain injury over the time of 4 months (95).
Treatment with dasatinib and quercetin significantly reduced
SASP pro-inflammatory factors, IL-1β, IL-6, and attenuated
neurodegeneration in mice with cortical impact traumatic brain
injury (95). Furthermore, clinical behavior testing of treated
mice revealed significantly improved spatial reference memory
and improvement in depression-like behavior (95). Following
treatment with dasatinib and quercetin, obese mice showed
improved neurogenesis and a significant decrease in anxiety-like
behavior (96). Specifically, dasatinib and quercetin treatment
increased Nestin-positive neuronal precursor cells, double-courtin
positive immature neurons, and CD133 positive ependymal
cells (96).

Relevant to pulmonary disease, in a mouse model of idiopathic
pulmonary fibrosis, dasatinib and quercetin treatment significantly
improved lung compliance (97). This was further supported
by a study evaluating dasatinib, quercetin, or dasatinib and
quercetin in a mouse model of hyperoxia induced airway smooth
muscle senescence (98). Mice treated with quercetin (25 mg/kg)
had improved pulmonary compliance but not resistance, while
dasatinib (1 mg/kg dasatinib) improved both compliance and
resistance (98). To model premature neonatal pulmonary disease,
fetal smooth muscle explants exposed to moderate hyperoxia
(40% O2) for 7 days display significant increases in senescent
markers such as SA-ß-Gal, p16, p21, p53, and the DNA damage
marker gamma-H2AX (99). Following treatment with dasatinib
and quercetin, there was a reduction in cells expressing SA-ß-Gal,
p21, p16, and phosphorylated γ-histone family member X (99).

With respect to renal disease, treatment with dasatinib and/or
quercetin reduced renal tubular senescence and ameliorated renal
fibrosis in multiple mouse models of acute kidney injury (100).
In models involving a high-fat diet and renal fibrosis, treatment
quercetin alone decreased SC burden, reduced protein secretome
markers (p16, p19, and p53), and improved renal function shown
by a decreased plasma creatinine (101).

Relevant to orthopedic disease, one study found that treatment
with dasatinib and quercetin decreased osteoclastic activity
while promoting osteoblastic differentiation in mouse models
of osteoporosis (102). Conversely, in another mouse model
(accelerated aging Z24–/– model) dasatinib and quercetin
treatment did not mitigate trabecular bone loss (103) while
another study indicated dasatinib and quercetin treated mice may
actually improve bone production of aged bone marrow derived
mesenchymal stem cells (104). Dasatinib and quercetin treatment
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have facilitated growth of aged muscles through SC clearance and
altered Igf1, Ddit4, Mmp14 gene expression in a mouse model of
blunted muscle hypertrophy (105).

Finally, dasatinib and quercetin have been investigated in
several other unrelated disease processes in rodent models. In
a murine model of sclerodermatous graft vs. host disease, the
administration of a combination of dasatinib and quercetin led to a
reduction in peripheral senescence-associated secretory phenotype
(SASP) cytokines, specifically IL-4, IL-6, and IL-8Rα (106). In
a mouse model of doxorubicin-induced ovarian injury, both
dasatinib and quercetin and fisetin treatments reduced SC presence,
however treatment was unable to restore normal ovarian function
(107). A study conducted in aged mice revealed that dasatinib and
quercetin treatment significantly decreased SC markers p16 and
p21 expression, as well as the expression of inflammatory markers
Cxcl1, Il1β, Il6, Mcp1, and Tnfα in the small and large intestine
(108). Notably, dasatinib and quercetin treatment also induced
alterations in specific microbial signatures across ileal, cecal, and
colonic regions, and within feces.

Fisetin

Fisetin is a natural flavonoid with several reported modes
of action that target the anti-apoptotic pathways of senescent
cells, including BCL-2/BCL-xL inhibition (48, 109) and induction
of hypoxia–inducible factor−1α (HIF-1α) (3, 110). Promoting
apoptosis through increased caspase activity (48, 49), fisetin
successfully targeted senescent HUVECs (48). Studies have shown
that treatment with 500 nM fisetin induces apoptosis in senescent
cells derived from subcutaneous adipose tissue (48) and that the
effect is larger in adipose cells expressing p16Ink4a and lower in
p21CIP1-expressing cells (49).

In vivo, fisetin has been studied at dosages ranging from
60 to 100 mg/kg, administered orally for up to five consecutive
days, exhibiting efficacy in reducing the number of senescent
cells in white adipose tissue. One study evaluated the impact of
fisetin on neuronal cellular senescence in a randomized controlled
trial using aged sheep (111). There was a significant decrease
in senescent neurons, astrocytes, and microglia in the neural
tissue of sheep treated with fisetin (111). The treatment group
also exhibited decreased senescent mRNA expression of SA-ß-
Gal in the lung, heart, and spleen. Furthermore, the senescent
marker p21 was also decreased in the liver and lung, and
inflammatory markers in the lung, liver, heart and spleen following
treatment (111).

A mouse model of systemic lupus erythematosus found
that senescent neural cells accumulate in a hippocampal region
of the brains of mice with depressive behavior (112). Oral
administration of fisetin successfully reduced the number of
senescent neural cells, reduced depressive behavior and limited
SASP factors in the hippocampal region (112). Mouse models
of chronic wounds also support a potential benefit to the
senotherapeutic fisetin in chronic wound management and
elimination of dermal SC (113). Targeting SC, treatment with
fisetin improved muscle function and myogenic phenotypes in a
mouse model of muscular dystrophy (114). Conversely, in a mouse
model of chronic inflammatory myopathy, a benefit to senescent

fibro-adipogenic-progenitor cells was demonstrated in mitigating
exercise-induced muscle degeneration through pro-inflammatory
regenerative mediators while mice without senescent adipogenic-
progenitor cells exhibited muscle degeneration, which warrants
further investigation (115).

Navitoclax

Navitoclax (ABT263) is a BCL-2 inhibitor with demonstrated
efficacy to reduce the number of senescent bone marrow
hematopoietic stem cells and muscle stem cells (50). Navitoclax
reduced the senescent cell burden in HUVECs, IMR90 human lung
fibroblasts, and MEFs by targeting BCL-2 proteins (116). However,
navitoclax has reported side effects of neutrophil toxicity and
thrombocytopenia (50, 117, 118). To mitigate these adverse effects,
galacto-conjugation of navitoclax has shown a significant reduction
in platelet toxicity and increased senotherapeutic specificity in both
human blood samples and a murine lung cancer model (119).
Explant studies have also shown that human pulmonary endothelial
cells from patients with pulmonary arterial hypertension have a
significant increase in SC burden and these cells undergo apoptosis
when exposed to navitoclax in vitro (120).

Relevant to cardiovascular disease, mice with angiotensin
II or doxorubicin induced heart failure had decreased cardiac
fibrosis, hypertrophy, improved cardiac function and decreased
inflammation following treatment with navitoclax (121, 122). Aged
mice treated with navitoclax had a significantly reduced number
of telomere associated foci, fibrosis and reduced SC, but there
was no difference in cardiac ejection fraction or left ventricle
mass compared with controls (123). These findings were also
supported in a mouse model of ischemia-reperfusion cardiac
injury, wheremice treated with navitoclax had significant reduction
in pro-inflammatory, profibrotic, and anti-angiogenic cytokines
(interferon gamma-induced protein-10, TGF-β3, interleukin-11,
interleukin-16, and fractalkine) (124). Senotherapeutic clearance of
β-cells in obese metabolically dysregulated transgenic mice treated
with navitoclax had decreased SASP factors, increased glucose
tolerance and increased β-cell metabolism. This study suggests that
pancreatic β-cell senescence may also play a role in peripheral
insulin intolerance and predisposition to type 2 diabetes (125).

With relation to age related neurodegenerative disorders,
navitoclax treated mice had increases in neurogenesis of
hippocampal neuronal precursors and increases spatial memory
(126). Cellular senescence also plays a role in chronic skin
diseases like scleroderma (127–130) and psoriasis (131, 132) by
promoting inflammation, fibrosis, and tissue dysfunction. One
study used young and old hairless mice treated with navitoclax
showed selective clearance of senescent dermal fibroblasts (133).
Furthermore, aged mouse skin treated with navitoclax had
increased collagen density, epidermal thickness, proliferation of
keratinocytes, and decreased SASP factors such as MMP-1 and
IL-6 (133).

Relevant to pulmonary disease, a mouse model of idiopathic
pulmonary fibrosis found that radiation induced pulmonary
fibrosis could be reversed by the clearance of senescent type II
pneumocytes with Navitoclax treatment (134). However, secondary
effects following clearance of heavy SC burden in chronic disease
have been described, such as vessel remodeling, increased right
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ventricular systolic pressure, and increased cardiac hypertrophy
index in rodents following navitoclax treatment (24). These
findings indicate that consideration should be given to the
disease severity and potential for systemic reaction following
senotherapeutic treatment, particularly in more chronic disease
processes. With respect to renal disease, navitoclax has been shown
to specifically target senescent proximal tubular epithelial cells and
resulted in improved renal function with decreased renal fibrosis
demonstrated in mice (135).

The effects of navitoclax on clinical bone health are mixed
when it comes to osteoporosis and bone loss with age. One study
indicated that navitoclax decreased the senescent cell burden and
decreased the trabecular bone in aged mice by up 60.1% in females
(136). With increased cytotoxicity, use of navitoclax in vivo should
be carefully considered.

Luteolin

Luteolin is a flavonoid found in celery, broccoli, dandelion,
carrots, and olive oil (137) that exerts senotherapeutic properties
through modulation of sirtuin 1 (SIRT1) and p53. Luteolin
has largely been studied in mouse auditory cells (House Ear
Institute-Organ of Corti 1) with 50 % efficacy in reversing
senescence induced with hydrogen peroxide, although it appears
less effective in reducing senescence in MEF (49, 51, 52). Through
the upregulation of SIRT1, luteolin effectively protects against
senescence induced by hydrogen peroxide (52). This mode of
action was confirmed when the knockout of SIRT1 resulted in
induced senescence. Luteolin also protected cells from peroxide
induced senescence by decreasing p53 phosphorylation and p21
expression (52).

Curcumin

Curcumin is a senotherapeutic that selectively targets apoptotic
pathways such as nuclear factor NF-kB, mitogen-activated protein
kinases (MAP-kinase), p53, nuclear factor erythroid 2-related
factor 2 (NRF2), AKT, COX-2 and EGFR (49, 53, 54), although its
effect is relatively weak relative to other senotherapeutics due to
limited bioavailability (54, 138). When attempting to concentrate
curcumin above 10µM, it exhibits genotoxic and cytotoxic effects.
Tomitigate these toxicity risks, a curcumin analog EF24 has shown
promise against SC through the proteasomal degradation of Bcl-2
family proteins and production of reactive oxygen species (ROS),
although further investigation is indicated (55).

A1331852 and A1155463

The compounds A1331852 and A1155463 are both BCL-XL
inhibitors, but with a lower relative risk of BCL-2 mediated
neutrophil toxicity compared to navitoclax (48, 117). Treatment
with A1331852 andA1155463 resulted in apoptosis, shown through
enhanced caspase3/7 activity, of senescent HUVECs and IMR90
cells, but not preadipocytes (48). Further mechanistic insights of
A1331852 have shown caspase-dependent apoptosis of senescent

chondrocytes and increased expression of a pro-apoptotic Bcl-2
family member called BAK (139). Utilizing live cell fluorescence
resonance imaging, A1331852 was shown to interfere with binding
of BCL-XL (139). In vivo, treatment of genetically modified
mice with A1331852 resulted in clearance of 80% of senescent
cholangiocytes, reduced expression of fibrosis-inducing growth
factors, and subsequent reduction in liver fibrosis (140).

Heat shock protein 90 inhibitors

Heat shock protein 90 (HSP90) inhibitors influence protein
stability and function, impacting p53′s ability to regulate apoptosis
and DNA repair (141). Geldanamycin and tanespimycin (17-

AAG) reduce SC viability, although geldanamycin in not
particularly water soluble, while alvespimycin (17-DMAG) is
(53). The targeted effects of geldanamycin and Tanespimycin are
specific to HSP90. All HSP90 inhibitors have a dose-dependent
senotherapeutic effect that is not cell type-specific (53). The in vivo

effect of alvespimycin treatment in age related symptoms in mice,
resulted in a significant reduction in kyphosis, dystonia, tremor, loss
of forelimb grip strength, coat condition, ataxia, gait disorder, and
overall body condition when compared to sex matched untreated
mice (53). Similarly, azythromycin has been briefly studied for
its ability to reduce senescent human fibroblasts by 97% (142).
However, many of the senotheraputics in the HSP90 inhibitor class
were initially developed and FDA approved for their antimicrobial
action. Therefore, selection of these senotherapeutics must be made
with antimicrobial stewardship in mind.

Piperlongumine

Piperlongumine is a therapeutic agent often paired with
chemotherapeutics because of its established pro-apoptotic
properties (143). The precise mechanism of piperlongumine in
unknown (56). It was previously thought that piperlongumine
promoted the production of reactive oxygen species; however,
it has since been proven to be an ROS-independent mechanism
(56). Piperlongumine has been shown to promote caspase activity
and kill senescent human WI-38 fibroblasts (56). Piperlongumine,
has been assessed in an ex vivo goat osteoarthritis model,
demonstrating decreased p53 and p16 gene and protein expression
in senescent chondrocytes in a concentration-dependent manner
following treatment (57). Furthermore, piperlongumine treatment
rescued the oxidative stress cause by IL-1β in cartilage explants,
indicating that it has potential benefit to rescue senescent
chondrocytes in OA (57).

FOXO-related peptide

The FOXO-related peptide was engineered to be a permeable
peptide in p53-interaction domain in FOXO4. Treatment with
this synthetic peptide induces apoptosis in senescent fibroblasts
through the nuclear exclusion of p53 (58). In a concentration-
dependent manner, FOXO-related peptide reduced the viability of
senescent by 11.73-fold compared with control IMR90 cells (58).
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Importantly, the targeted design of FOXO-related peptide allows
it to be safe to normal cells. In vivo, the FOXO-related peptide
restored fitness, hair density, and renal function in aged mice (58).

Nutlin-3a

Nutlin-3a acts as an inhibitor of MDM2, a ubiquitin ligase
responsible for downregulating p53 (59). Interestingly, Nutlin-
3a has been described as both a senotherapeutic (60, 144) and
a senescence inducing agent (59, 145, 146). Originally studied
for its anti-cancer properties, Nutlin-3a has proven effective in
inducing apoptosis in carcinomas (147, 148), melanomas, T-cell
lymphoma (149) and adult T-cell leukemia (145). The senescence
inducing properties of Nutlin-3a have been described in normal
human and mouse fibroblasts (146, 150), non-small cell lung
cancers (151), adult T-cell leukemia cells (145), cutaneous T-cell
lymphoma (149), glioblastomas (152), renal carcinoma (153). It
is important to note that a dose dependent cytotoxic effect has
been described in both senescent and non-senescent melanoma
cells at concentrations ranging from 2.5 to 10 µmol/L in vitro

(60). Further studies are needed to evaluate the pharmacodynamics
and pharmacokinetics of Nutlin-3a in different cellular phenotypes.
In vivo, The senotherapeutic nutlin-3a has been investigated as a
treatment for age-related macular degeneration (144). Treatment
of a mouse model with nutlin-3a showed a significant recovery of
visual function (144) and ameliorated retinal degeneration (154).

Cardiac glycosides

Another previously established drug class, cardiac glycosides
has recently been described for their senotherapeutic properties
(61, 62, 155). This class of drug is FDA approved for the treatment
of heart failure and arrythmias such as atrial fibrillation (156,
157). Acting with Na+/K+ ATPase pump inhibition, cardiac
glycosides target SCs with higher H+ concentrations and slightly
depolarized membranes (62, 155). On the in vitro scale, the cardiac
glycoside digoxin had significant senotherapeutic activity against
A549 tumor cells, primary human BJ fibroblasts, and osteoarthritic
chondrocytes (62). However, efficacy in mouse embryo fibroblasts
was not seen (62). Treatment with Digoxin had significant
senotherapeutic activity in a mouse model of IPF (62). However,
research on the senotherapeutic uses of cardiac glycosides is still in
its infancy and further investigation is needed to determine efficacy
against different senescent phenotypes in vivo.

Aspirin

The non-steroidal anti-inflammatory, aspirin, has an
established repertoire in reducing endothelial senescence (158–
160). Recently, aspirin has been investigated for its senotherapeutic
abilities to ameliorate the long term effects on patients that have
received chemotherapy and radiation (63). This study found that
aspirin suppresses p53 and p21 accumulation in doxorubicin
induced senescent human fibroblasts and murine embryonic
fibroblasts (63). Cyclooxygenase 2 (COX2) knockout mouse

embryonic fibroblasts that underwent the same treatment had
a significant reduction in p53 accumulation (63). This data
suggests that aspirin’s senotherapeutic activity is through the
inhibition of COX2. In vivo, aspirin treatment significantly reduce
amyloid-β42 induced senescent neuronal cells by upregulating
sirtuin-1 (SIRT1), a key regulator in cell aging (161). Aspirin
has also demonstrated senotherapeutic potential in doxorubicin-
treated mouse models through the reduction of SA-ß-Gal staining
in liver, spleen, pancreas, and lung tissues when compared to
controls (63).

Second generation senotherapeutics

Following the identification of readily available “first
generation” senotherapeutics, the so-called “second generation”
of these drugs have been more recently identified and engineered
compounds (Table 2). The information available pertaining to
preclinical evidence for their application in veterinary medicine is
summarized below.

Oligosaccharide coated nanoparticles

The development of oligosaccharide coated nanoparticles
containing drug encapsulated beads such as doxorubicin or
navitoclax are capable of inducing apoptosis in senescent cells
(162). Direct targeting through endocytosis allows these drugs to be
delivered intracellularly withminimal reported systemic side effects
to date (162).

Senotherapeutic vaccines

Senotherapeutic vaccinations have evolved at the intersection
of oncology and immunotherapy. Chemotherapy-induced tumor
senescence has been demonstrated to limit further tumor growth
and can allow for immunomodulation through vaccination
against the static tumor cell type, leading to the development
of senotherapeutic vaccination (163–166). A murine model
of senescence-related aging implemented a CD153 vaccine to
effectively clear senescent T-cells (164). In another mouse model,
transcriptomic analyses were used to evaluate vascular endothelial
cells for senescent cell markers which identified transmembrane
glycoprotein nonmetastatic melanoma protein B (GPNMB) as a
sero-antigen candidate (165). Following vaccination with GPNMB,
improvement in aging phenotypes and male mouse lifespans
were noted (165). While these targeted approaches are promising,
additional preclinical modeling and Phase 1 clinical testing are
needed to ensure their safety and efficacy (164–168).

CAR-T targeting senescence

Recent attention has focused on chimeric antigen receptor T
cell (CAR T cell) modulated treatments targeting SC accumulation.
The urokinase-type plasminogen activator receptor (uPAR) was
identified as an expressed SC surface antigen, making it a potential
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target for immunomodulatory senotherapeutics (169). Treatment
with uPAR-specific CAR T cell therapy demonstrated efficacy
in reducing liver fibrosis and improving treatment outcomes in
mouse models of lung adenocarcinoma, which warrants further
investigation (169).

Human clinical trials evaluating
senotherapeutics

At present, human clinical trials are underway to assess the
safety and effectiveness of senotherapeutic agents. These trials cover
a diverse spectrum of medical conditions, including idiopathic
pulmonary fibrosis, hematopoietic stem cell transplants, chronic
diabetic kidney disease, childhood cancer survivors, age related
osteoporosis, Alzheimer’s disease, frailty, macular degeneration,
osteoarthritis, and viral infections such as COVID-19. While initial
findings indicate promising results in terms of medication safety
and patient tolerance, many of these clinical trials are advancing
to phase two and necessitate a randomized, blinded, placebo-
controlled study design. Current trials are summarized in Table 3.

Senotherapeutic potential in
veterinary species

The use of first generation senotherapeutics (e.g., dasatinib)
in veterinary medicine has largely been studied in the context
of neoplasia (31, 32, 172–174). Moving forward, evaluation of
senotherapeutics to specifically target SC in the context of naturally
occurring veterinary diseases presents a translational opportunity
to explore the long-term safety and efficacy of senotherapeutics
in spontaneous disease models (Figure 3). Examples of potential
applications of senotherapeutics in veterinary medicine include
treatment of osteoarthritis which is prevalent in dogs, horses and
cats (175, 176), or more specific disease processes such as idiopathic
pulmonary fibrosis in West Highland Terriers (177, 178), canine
cardiomyopathies (179–181), or renal disease and sarcopenia in
cats (182–185) (Figure 4). These collaborative prospects offer a new
avenue to bridge the gap between in vivo rodent models and clinical
trials in people, while simultaneously benefiting veterinary species
suffering from similar disease processes.

Osteoarthritis in veterinary species

To highlight a few disease processes for example, osteoarthritis
(OA) is found to be a common cause of pain and lameness in
horses (186, 187). Approximately 33% of the equine population
overall in the US is estimated to be affected by OA (188), and
that prevalence climbs to 50% at 15 years of age and 80 to
90% in horses over 30 years of age (189–191). Therefore, OA
risk is highly associated with aging, which has been similarly
reported in humans (175, 176). In conditions such as osteoarthritis,
rheumatoid arthritis, and age-related frailty, senescent cells can
accumulate in musculoskeletal tissues. Transplantation of SC
has precipitated an OA-like phenotype in mice when compared

to transplantation of non-SC (192). A recent study evaluating
synovial fluid in healthy horses and horses with OA found an
increased number of senescent mesenchymal stem cells (193). The
senescent cells displayed impaired chondrogenic differentiation
(193) when compared with a non-senescent cell population,
making them potential targets for senotherapeutics. Murine
models of rheumatoid arthritis (RA) found that dasatinib was
protective against RA by inhibiting osteoclastogenesis through
immunomodulatory effects (194). Additional murine studies have
shown that SC interact with synovial cells and that dasatinib and/or
quercetin have been effective in ameliorating cartilage damage and
pain due to OA, as well as alleviating post-menopausal osteoporosis
(73, 75, 195, 196). These findings collectively support further
investigation of senotherapeutics as a potential disease modifying
treatment in OA.

Obesity in veterinary species

Senescent cells have been found to accumulate in adipose
tissue which is associated with chronic low-grade inflammation
and insulin resistance (17, 76, 197–200). Senotherapeutics have
been shown to reduce senescent cell burden in diet-induced
obesity, to alleviate metabolic dysfunction, and to restore the
capacity of preadipocytes to differentiate into functional insulin-
responsive fat cells (88). Obesity in companion animals is prevalent
in the US (e.g., 20–45% of riding horses) and has increasingly
been recognized as a factor associated with insulin resistance
and OA progression. Implementation of senotherapeutics in the
population of horses commonly treated for OAhas potential benefit
to simultaneously alleviate multiple co-morbidities (2, 201–203).
Displaying an age-related phenotype, metabolic dysregulationsmay
precipitate insulin resistance (204, 205). Hyperinsulinemia induces
human hepatocyte senescence (206), which has been shown to
be attenuated by dasatinib and quercetin. Interestingly, increased
cellular senescence has also been observed in equine adipose-
derived stem cells in horses with equine metabolic syndrome and is
associated with impaired antigen stability and clonogenic potential
(207). SC have altered metabolism compared to non-SC (208) and
likely contribute to impaired fat metabolism and insulin resistance.
Elimination of these cells may aid in healthy weight loss and
return to metabolic homeostasis, potentially improving treatment
of insulin resistance and associated disease processes (76).

Cardiac disease in veterinary species

Senescent cells have been found to contribute to the progression
of atherosclerosis, arterial stiffness, and heart failure in human
cardiovascular disease (120, 122, 209–211). The risk of heart disease
increases with age and precipitates hemodynamic instability.
Senotherapeutics have been investigated in canine myxomatous
mitral valve disease (212). Valve interstitial cells that were
treated with quercetin or quercetin plus dasatinib showed a
decrease in SC and p53 expression (212). The decrease in SC is
achieved through PI3K/AKT/mTOR antagonism which facilitates
the reversal of myofibroblast senescence and promoting autophagy
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TABLE 2 “Second generation” senotherapeutic drugs.

2nd generation

Senotherapeutic Mode of action E�cacy Dose Notes References

Galacto-
oligosaccharide-coated
nanoparticles with
toxic cargos

Drug encapsulated beads coated
w/an oligosaccharide (targeting
β-galactosidase) are taken into SC
lysosomes, and the drug is released
via exocytosis

1. Gal-encapsulated doxorubicin=

higher levels of apoptosis in
senescent cells
2. Gal-encapsulated navitoclax=
higher levels of apoptosis in
senescent cells

100mg of
drug/gram of beads
∼30mg of drug is
released per gram of
beads

Decreased systemic
side effects
compared to
systemic navitoclax
administration

(162)

Vaccines/
immunomodulation

Inducing or modifying immune
responses to SC

1. CD153 vaccination: potentially removes senescent
T-cells from high-fat diet-induced obese C57BL/6J mice
2. Oncolytic Measles Vaccine Virus can decrease SC in
tumors (proof of concept)
3. sPD1-expressing senescent tumor cell vaccine
induced anti-tumor response

Early trials and
development

(163–168)

(213). Therefore, current therapeutic approaches for mitral valve
disease could be expanded to include senotherapeutics which may
slow disease progression (212).

Renal disease in veterinary species

Senescent cells can accumulate in renal tissue, contributing
to inflammation, fibrosis, and impaired function (100, 135, 214).
Eliminating dysfunctional cells may reduce inflammation, decrease
fibrosis, slow down the progression of kidney damage, and
preserve renal function (100, 214). Spontaneous chronic kidney
disease (CKD) is well-described in cats (182–185). Feline patients
suffering from CKD have renal senescence, telomere shortening,
and nitrosative stress in renal cells (215). With similar pathologic
findings to humans (216, 217), they represent a naturally occurring
model for study of senotherapeutics (215). In vitro studies utilizing
feline renal cells have shown a dose dependent correlation with
radiation and SC (218). Further studies can utilize this data
to understand the etiopathology of radiotoxicity induced renal
senescence and investigation of senotherapeutics in vivo in this
context (Figure 4).

Limitations of senotherapy in veterinary
species

Despite the potential benefits, there are prominent limitations
that call for collaborative research to fully understand the breadth
and depth of senotherapy in veterinary species. Studies in
laboratory species and human clinical trials are still examining the
full extent of side effects and long-term effects of senotherapeutics.
It remains crucial to also examine the impact this drug class has
on healthy cells and to not lose focus on the unknown effects
on cell and tissue homeostasis. This raises concerns for off-target
effects and toxicity in veterinary species since there are metabolic
nuances depending on which species is studied. SC have different
markers and characteristics depending on the tissue and the cause
of senescence. The heterogeneity in SC makes it difficult to develop
universally effective protocol, especially when considering effective
dosing across species. Lastly, it is important to recognize that
senescent cells could become resistant to these therapies. Similar

with anthelmintic use and antibiotic stewardship, judicious use of
medication relies on accurate diagnostics, clinical monitoring, and
continued research.

Discussion

Senotherapeutics attenuate tissue inflammation and restore
progenitor cell function to delay, prevent or alleviate symptoms
in multiple age-related diseases (3). The first generation
senotherapeutics have been largely deemed safe and with
varying degrees of efficacy (1, 135, 219, 220), with the exception
of navitoclax and curcumin that have demonstrated cytotoxicity
(28, 31, 39, 40). Optimal dosage and duration for various
disease processes have not been fully explored. Although short
intermittent dosing regimens appear effective and offer clinical
translation with fewer negative off-target effects compared
to sustained administration with currently available drugs.
Administration for extensive periods may consequently deplete cell
types necessary for remodeling (1, 3, 49, 221, 222). The majority of
senotherapeutic pre-clinical trials have been conducted in induced
murine models (49, 53, 83, 101, 114, 135). Further development
of senotherapeutics for use in naturally occurring companion
animal models of disease may inform future human clinical trials
regarding pharmacokinetic, pharmacodynamic and interactions
with other drugs that may be administered concurrently (223–226).

Treatments targeting senescent cells and the SASP have broad
potential implications in the field of veterinary medicine as the
hallmarks of aging (6) are highly conserved across species (227,
228). These hallmarks include DNA damage (229), telomere
shortening (230, 231), aberrant proteostasis (232), epigenetic
modifications (233), altered nutritional signaling (234, 235), cell
senescence (193, 213, 215, 231, 236), stem cell depletion (237),
mitochondrial dysfunction (238, 239), and abnormal inflammatory
signaling (240, 241). Treatment of age-related diseases in veterinary
species may further serve to bolster preclinical evidence for use
in humans. To date, the majority of preclinical or in vitro studies
have largely focused on investigating dasatinib, quercetin, or fisetin
(1, 171). Dasatinib is well known in the oncology realm and
has been used to treat a variety of human, canine, and feline
cancers (64, 65, 172–174, 242). Additionally, quercetin has also
been beneficial in treating canine neoplasia including osteosarcoma
cells (243, 244). Similar to humans, sarcopenia (185, 245–247)
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TABLE 3 Clinical trials involving senotherapeutic, as listed on clinicaltrials.gov (as of December 2023).

Disease ClinicalTrials.gov ID Senotherapeutic Status

Age related frailty NCT03430037 Fisetin Recruiting

Age related frailty NCT03675724 Fisetin Recruiting

Alzheimer’s NCT04063124 D, Q, D+Q Complete (78, 170)

Alzheimer’s NCT04685590 D+ Q Recruiting

Alzheimer’s NCT05422885 D+ Q Active

Alzheimer’s NCT04785300 D+ Q Enrolling

Arterial endothelial dysfunction NCT06133634 Fisetin Recruiting

Carpal tunnel syndrome NCT05416515 Fisetin Recruiting

Childhood cancer frailty NCT04733534 D+ Q, Fisetin Recruiting

Chronic kidney disease NCT02848131 D vs Q Enrolling (77)

Coronary artery disease NCT04907253 Q Active

COVID-19 NCT04771611 Fisetin Completed

COVID-19 NCT04537299 Fisetin Enrolling

COVID-19 NCT04476953 Fisetin Enrolling

Diabetic macular edema NCT04857996 UBX1325 Complete

Diabetic macular edema or age-related macular degeneration NCT04537884 UBX1325 Complete

Fatty liver disease NCT05506488 D+ Q Recruiting

Femoroacetabular Impingement NCT05025956 Fisetin Recruiting

Healthy Skeletal Muscle NCT04313634 D, Q, Fisetin Active

Hematopoietic stem cell transplant survivor NCT02652052 D, Q Recruiting

Idiopathic Pulmonary Fibrosis NCT02874989 D+Q Complete (14, 171)

Long COVID-19 NCT04903132 - Recruiting

Healthy vs. Obesity NCT05653258 D, Q Not yet Recruiting

Osteoarthritis (Knee) OA NCT04129944 UBX0101 Complete

Osteoarthritis (knee) OA NCT04229225 UBX0101 Complete

Osteoarthritis (knee) OA NCT04210986 Fisetin Complete

Osteoarthritis (knee) OA NCT04815902 Fisetin Active

Osteoarthritis (knee) OA NCT03513016 UBX0101 Complete

Osteoarthritis (meniscal repair) NCT05505747 Fisetin Not yet Recruiting

Osteoarthritis (OA) NCT05276895 D+/- Fisetin Suspended

Osteoporosis NCT06018467 D+ Q Recruiting

Post-cancer frailty NCT06113016 Fisetin Not yet Recruiting

Post-cancer frailty NCT05595499 Fisetin Recruiting

Sepsis NCT05758246 Fisetin Recruiting

and decreased bone density (248, 249) is commonly associated
with age in both felines and canines. The use of senotherapeutics
for Alzheimer’s disease is being evaluated (74, 78, 170, 250) and
canine or feline cognitive dysfunction may serve as a comparative
naturally occurring model (249, 251–253). Osteoarthritis is also
significantly linked with age and cellular senescence (193, 196).
Due to similarities in cartilage thickness and joint volume, equine
models are well suited comparisons of human osteoarthritis (175,
176, 254). Greater recognition of similarities in animal preclinical

models to human aging related disorders has the potential to
advance the field of senotherapeutics to the benefit of both humans
and veterinary species.

The current state-of-play in the field of senotherapeutics
presents multiple avenues for future research. Further development
of species- and tissue-specific biomarkers for senescent cell
abundance, SASP mediators, and senescent phenotypes (i.e.,
senotype), a field termed “gerodiagnostics” will be critical to
fully understand the effects of senotherapeutics and reduce
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FIGURE 3

Diagram depicting the circular flow of comparative and translational medical research including the contribution of veterinary species in clinical

trials. Created with BioRender.com.

FIGURE 4

Veterinary species (horses, dogs, and cats) su�er from many similar disease processes to humans that may benefit from treatment with

senotherapeutics, serving as preclinical naturally occurring disease models to also provide translational data for future human clinical trials. Created

with BioRender.com.
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off-target effects with their administration (1, 3, 15). Generation
of comprehensive atlases of senescent cells that arise during aging
and disease states across multiple tissue types and specific to the
target species of interest are warranted (221). Toward this goal,
the National Institute of Aging (NIA) has established a common
fund’s cellular senescence network (SenNet) program to generate
atlases for humans and mice (221), to facilitate identification
of senotype specific biomarkers that will help to identify the
therapeutic window for senotherapeutic interventions and to guide
dosage, timing, and duration of senotherapeuthic treatments in
the aging population. Future directions for new drug development
may include evaluation of clearance of senescent cells using genetic
and epigenetic approaches or interventions that modulate SASP
(1, 3, 15). Correlation of interventions with more specifically
defined veterinary gerodiagnostics and development of therapeutic
strategies targeting fundamental aging processes such as dietary
changes and exercise will further the field. Expanded clinical trials
to ensure safety, benefit, and target engagement first in serious
disease processes followed by other senescence associated disorders
are indicated. Results of ongoing clinical trials will yield insights
and informative data into the role of cellular senescence as a
therapeutic target for age-related disorders (1, 3, 15). Evaluation
of senotherapeutics in different age groups will identify limits
of biomarkers and therapeutic benefit in different species and
signalments. Future clinical trials could facilitate identification of
systemic markers that could be associated with senotherapeutic
responsive individuals given inter-individual variability in aging
(e.g., circulating SASP factors, cytokines such as TGF-ß). Finally,
more comprehensive investigation of the mechanisms of action of
senotherapeutics is indicated as proposed mechanisms have other
functions outside of addressing senescence, thus confounding the
contributions of each response during tissue repair process and
aging. Addressing these scientific and regulatory challenges will be
critical if senotherapeutics are to be used outside of clinical trials
and in veterinary medicine.

Conclusions

Cellular senescence is considered a “double-edged” sword in
the balance of disease and health states (4), and addressing states
of immunosenescence, both systemically and locally, represents
a novel treatment of age-related diseases in veterinary medicine
(255). Senotherapeutic drugs identified via bioinformatic analyses
present a novel therapeutic strategy to selectively clear senescent
cells with broad implications to aging related disorders. Dasatinib,
quercetin and fisetin represent the most studied compounds to
date and are currently under investigation in human clinical trials.
Further exploration of senotherapeutic applications in companion
animals, including enhanced understanding of mechanism of

action and investigation of route of delivery, bioabsorption, and
potential off-target effects represents a new frontier to extend
healthspan in veterinary patients.
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