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Introduction: Pancreatic islet isolation is essential for studying islet physiology, 
pathology, and transplantation, and feline islets could be an important model 
for human type II diabetes mellitus (T2D). Traditional isolation methods utilizing 
collagenases inflict damage and, in cats, may contribute to the difficulty in 
generating functional islets, as demonstrated by glucose-stimulated insulin 
secretion (GSIS). GLUT2 expression in β cells may allow for adaptation to 
hyperosmolar glucose solutions while exocrine tissue is selectively disrupted.

Methods: Here we developed a protocol for selective osmotic shock (SOS) for 
feline islet isolation and evaluated the effect of different hyperosmolar glucose 
concentrations (300 mmol/L and 600 mmol/L) and incubation times (20 min 
and 40 min) on purity, morphology, yield, and GSIS.

Results: Across protocol treatments, islet yield was moderate and morphology 
excellent. The treatment of 600 mmol/L glucose solution with 20 min incubation 
resulted in the highest stimulation index by GSIS.

Discussion: Glucose responsiveness was demonstrated, permitting future in 
vitro studies. This research opens avenues for understanding feline islet function 
and transplantation possibilities and enables an additional islet model for T2D.

KEYWORDS

diabetes mellitus, islet isolation, feline, GLUT2, selective osmotic shock, β-cell

Introduction

In contrast to current rodent models, domestic cats naturally develop a form of diabetes 
mellitus (DM) that shares many similarities to type 2 diabetes (T2D) in humans, including 
obesity-induced insulin resistance and dyslipidemia, alterations in gut microbiota, impaired 
β-cell function, and spontaneous pancreatic amyloid deposition (1, 2). However, the utility of 
cats as a research model of type 2 diabetes has been hampered by the difficulty in studying 
feline islets in vitro. The ability to study islets in vitro is a critical component in the advancement 
of research into the prevention, targeted treatment, and etiology of DM.

The incidence of DM in cats is reported as approximately 1  in 100 cats presented to 
veterinary teaching hospitals (3) and approximately 1 in 200 cats presented to veterinary 
private practice (4). Like T2D in people, obesity, physical inactivity, and increased age are risk 
factors for DM in cats (5–7). Feline DM does not typically involve immune-mediated 
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FIGURE 1

Islet yield among individual cats. Histogram (median) and 
interquartile range (25 and 75 percentiles) depicting islet yield for 
each cat, #1–10. For each cat, n  =  4 (treatments A–D). Yield was 
compared between treatment groups and cats using a non-
parametric ANOVA (Friedman’s) test (two tailed) and was found to 
be different among individual cats (p  =  0.0025).

destruction of beta cells, but beta cell loss and dysfunction do occur 
(8–10), and unfortunately most cats are insulin-dependent upon 
diagnosis (11). Even with excellent owner compliance, daily insulin 
injections can be  challenging, and DM can lead to a variety of 
complications such as infection, polyneuropathy, nephropathy, 
hypoglycemia, and diabetic ketoacidosis (8, 11). Therefore, islet 
transplantation might be worth exploring as a treatment option in 
feline DM. Whole pancreas transplantation allows for precise glycemic 
control but necessitates lifelong immunosuppression and is 
accompanied by high risk of organ rejection and perioperative 
complications (12–14). In contrast, islet isolation from exocrine 
pancreatic tissue enables targeted transplantation of only functionally 
necessary cells while minimizing host immune response and avoiding 
a surgical procedure. The site of clinical islet transplantation in people 
is the portal vein accessed via interventional radiology (15), but 
infusion into the peritoneal cavity and omentum have been reported 
in dogs, and may be more realistic transplant sites for the veterinary 
patient (16, 17). Additionally, isolated islets can be  encapsulated, 
offering protection from the host immune system, eliminating the 
need for immunosuppression (15, 18). In humans, islet transplantation 
can result in 100% insulin independence at 1 year, and while this 
decreases to 30% at 5 years, recipients continue to have a 90% decrease 
in dangerous hypoglycemic episodes (15).

Protocols for islet isolation and culture have been developed and 
are routinely performed in other species, but these traditional 
methods involve enzymatic digestion and mechanical cell separation 
via density gradient centrifugation (19, 20). These methods can result 
in low islet yield and high rates of cell death (21–23). Consequently, 
most diabetic patients require multiple islet transplants to achieve 
satisfactory results (15). Collagenases are intended to disrupt 
connective tissue, but can also penetrate islet cell membranes, 
resulting in apoptosis, necrosis, and release of pro-inflammatory 
cytokines and free radicals, contributing to graft failure (24, 25). 
Atwater et al. (26) proposed an alternative method of islet isolation to 
circumvent some of these negative outcomes. This method exploits the 
GLUT 2 transporter to selectively spare beta cells from rapid changes 
in osmolality mediated by glucose concentration. In a high glucose 
hyperosmolar solution, glucose enters beta cells freely, preventing an 
osmolar gradient. Meanwhile, cells that do not express this membranal 
transporter are subjected to rapid changes in tonicity, cell membrane 
damage, and subsequent cell death. This selective osmotic shock 
technique has been successfully applied for islet isolation from 
porcine, canine, and human pancreata (26–28). Moreover, it is 
technically simpler and yields higher quantities compared to 
enzymatic digestions (26, 27).

Feline islet isolation has been described in a small number of 
studies with limited success utilizing traditional collagenase methods 
(29–32). To our knowledge, there is only one publication 
demonstrating yield of functional feline islets as determined by 
glucose-stimulated insulin secretion (GSIS) testing (32), which is the 
gold standard for assessing islet function (33). We hypothesized that 
use of selective osmotic shock (SOS) for isolation of feline islets will 
produce glucose-responsive beta cells. Our objectives in the current 
study were to (1) develop a selective osmotic shock protocol for feline 
islet isolation (2) describe purity and morphology and (3) compare 
the effects of osmolality and incubation time on islet yield and 
glucose responsiveness.

Methods

Cats

The study was approved by the Institutional Animal Care and Use 
Committee (protocol #202011101) at the University of Florida and 
conducted in accordance with all applicable regulations and 
guidelines, including the ARRIVE guidelines (34). Nine adult, aged 
6–7 years, domestic shorthair cats from a laboratory colony housed at 
the University of Florida were used in this study. Body weight ranged 
from 3.9 to 7.2 kg (mean 5.3, SD 0.91). Four cats were female spayed, 
and five cats were male neutered. All animals were part of another 
study that involved partial pancreatectomy of the left pancreatic limb 
under general anesthesia. Anesthesia protocols were determined by 
the Animal Care and Use Veterinarian and consisted of premedication 
using Ketamine 2.5 mcg/kg, Dexmedetomidine 10 mcg/kg, and 
Butorphanol 0.2 mg/kg intramuscularly. Once sedated, cats underwent 
endotracheal intubation. Inhaled Isoflurane was administered if 
needed to facilitate intubation. Cats were maintained under anesthesia 
with inhaled Isoflurane in 100% oxygen. The resected tissue would 
have otherwise been discarded but instead was used in our study for 
islet isolation. Additional pancreatic tissue was obtained from a single 
cat that was euthanized for reasons unrelated to this study in 
accordance with AVMA guidelines for the Euthanasia of Animals 
(2020). This was a 2-year-old purpose-bred, male cat, and is cat 2 in 
Figure 1. All cats used in this study were healthy and without known 
pancreatic disease.

SOS-based method of islet isolation

Following tissue harvest, the pancreatic tissue was submerged in 
RPMI 1640 media within a sterile specimen cup and covered in at 
least 1 inch of ice during transportation to the laboratory. Isolation 
was started within 15 min of harvest. Aseptic technique was used 
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throughout the isolation method. The tissue in entirety was weighed 
using a gram scale and then divided into 4 comparable-sized pieces. 
These 4 pieces were randomly assigned to treatments A through D 
(Figure 2). Each segment was weighed individually using a gram scale 
so that yield could be standardized and reported per gram of tissue. 
Under a laminar flow hood at room temperature, the tissue segment 
was diced using a #10 surgical blade for approximately 10 min, or until 
fragments were < 3 mm. Each diced tissue segment was placed into 
50 mL sterile centrifuge tubes with 30 mL Roswell Park Memorial 
Institute (RPMI) 1,640 zero glucose (Gibco™). Tissue homogenization 
was performed for approximately 30 s using a handheld tissue 
homogenizer (Tissue Tearor™, Biospec Products, Inc. Bartlesville, 
OK). The tubes were then centrifuged for 5 min at 180 relative 
centrifugal force (rcf) to produce a pellet. Media was decanted, and 
each homogenized tissue segment was resuspended in 30 mL of a 
hyperosmolar glucose solutions with the following protocols: 
treatment A; 300 mmol/L glucose for 20 min exposure time, treatment 
B; 300 mmol/L glucose for 40 min exposure time, treatment C; 
600 mmol/L glucose for 20 min exposure time, and treatment D; 
600 mmol/L glucose for 40 min exposure time. Experimental media 
were prepared prior to the experiments by adding appropriate 
amounts of glucose (Dextrose 50%, VetOne, Boise, ID) to glucose-free 
RPMI 1640 media.

The tissue fragments were periodically agitated during incubation 
at room temperature. After the respective treatment times, the tubes 
were centrifuged for 5 min at 180 rcf, media was decanted, and the 
pellet was resuspended in glucose-free RPMI media. Each sample was 
vigorously mixed and re-centrifuged for an additional 2 rinses using 
glucose-free RPMI for a total of 3 rinses. The tissue was then plated 
into 100 mm sterile polystyrene petri dishes and 3 mL of standard islet 
culture media composed of RPMI 1640 + 10% fetal bovine serum 

(Gibco™) + 1% Penicillin Streptomycin (Gibco™) and incubated at 
37°C, 5% CO2. At 24 h after islet isolation, islets were hand-picked 
using a micropipette to increase purity and quantified per plate using 
an inverted light microscope (Olympus CKX53). Light microscopy 
imaging was performed with SPOT Idea CMOS microscope camera 
and SPOT Software 5.2 imaging software. Islet yield was then 
calculated by dividing the number of islets per treatment plate by the 
respective weight of the tissue segment. Purity (% islet tissue vs. % 
exocrine tissue) was estimated visually under light microscopy.

Glucose-stimulated insulin secretion

Islet β-cell function was measured with a modified version of a 
glucose-stimulated insulin secretion (GSIS) assay used in human islet 
transplant centers (Integrated Islet Distribution Program City of 
Hope, Standard Operating Procedure for GSIS).1 GSIS was performed 
24 h after islet isolation on pancreata from cat 3–10 (n = 8) and was not 
performed on pancreata from cats 1 and 2 due to the lack of available 
consumables. Approximately 20 islets of similar size were handpicked 
with a micropipette from each treatment group and divided between 
2 Eppendorf tubes (1.5 mL), each tube containing 500 μL of glucose-
free RPMI 1640. The tubes were then pre-incubated for 2 h at 
37°C. After incubation, the Eppendorf tubes were spun at low speed 
(180 rcf, 2 min), the glucose-free media was decanted, and each 
treatment group had 500 μL of a low glucose concentration RPMI 

1 https://www.protocols.io/view/potency-test-glucose-stimulated-insulin-

release-as-36wgq5odkgk5/v3?step=49

FIGURE 2

Illustration of the division of the feline pancreas and randomized treatment group assignment for selective osmotic shock. Partial pancreatectomy is 
represented by the pancreas outlined in green while total pancreas extraction is represented by the pancreas outlined in red. The assignment of 
treatment groups A–D was random for each cat to avoid bias due to asymmetrical distribution of islets. Following treatment group assignment, the 
tissue was mechanically disrupted and then subjected to either 300  mmol/L glucose solution or 600  mmol/L glucose solution for either 20  min or 
40  min. Illustration is not to scale.
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(2.8 mmol/L) added to one tube and a high glucose concentration 
RPMI (28 mmol/L) added to the other tube. The researcher 
performing the experiment was blinded to the assignment of high 
(28 mmol/L) glucose concentration and low (2.8 mmol/L) glucose 
concentration during the islet handpicking as to minimize bias based 
on islet size and morphology. After 1 h incubation at 37°C, the tubes 
were again spun, and the media was removed and stored in a −20°C 
freezer for insulin determination. Insulin was measured using a 
commercially available feline insulin ELISA kit (Mercodia). 
Stimulation index was calculated using the standard formula:

 

Stimulation Index SI
Insulin concentration after high glu

 
    

( ) =
ccose stimulation

Insulin concentration after low glucose sti
 

   mmulation

The stimulation assay was performed in triplicates, for a total of 
24 samples (approximately 60 islets per treatment group). In summary, 
three 10-islet Eppendorf tubes were tested at a low-glucose 
concentration and three 10-islet Eppendorf tubes were tested at a 
high-glucose concentration for each of the 4 treatment groups 
(treatment A–D) (Figure 3). Missing GSIS data for two pancreata in 
treatments B–D (n = 6 for these treatment groups) was due to limited 
sample and feline insulin ELISA kit.

Statistics

Data were analyzed using a commercial software package 
(GraphPad Prism, Version 10.0.2). Because of the small sample size, 
all data were analyzed with nonparametric tests and reported as 
median and range. For GSIS data, triplicates were first averaged into a 

single data point per treatment. Yield was compared between cats and 
between treatments using non-parametric ANOVA (Friedman’s) test 
(two-tailed). For GSIS, missing data precluded a repeated-measure 
analysis and treatments were compared using the Kruskal-Wallis test 
followed by Dunn’s test for multiple comparisons with adjusted 
p-values (two-tailed). Significance level was set to 0.05.

Results

Islet yield

SOS produced isolated islets in all cats. Overall median (range) of 
islet yield was 690 (95–2,704) islets/g (n = 10). Treatment group did 
not have an effect on islet yield (p = 0.7) (Figure 4). Two outliers were 
identified in treatment group A, but even with removal of these 
outliers, there was no difference between treatment groups (p = 0.7). 
When evaluating the specific effects of osmolality of the glucose 
solution, islet/g median (range) for tissue exposed to 300 mmol/L 
glucose (611 [237–2,497], treatment groups A and B) was not different 
for tissue exposed to 600 mmol/L glucose (690 [95–2,704], treatment 
groups C and D). There was also no difference between exposure time 
on islet yield, in which tissue exposed for 20 min yielded 611 islets/g 
(95–2,497) and tissue exposed for 40 min yielded 666 islets/g (237–
2,704). Islet yield differed among individual cats (p = 0.0025, Figure 1).

Islet purity and morphology

Islet purity (percentage of islets vs. acinar tissue) was estimated to 
be between 20 and 30% in all individuals and treatment groups, and 
there was no quantifiable difference between treatments. Visual 

FIGURE 3

Illustration of the glucose stimulated insulin secretion test. Treatment group B, represented by cell culture plate B, is used as an example to depict 
the procedure used for all treatment groups (A–D). For each treatment group, represented by cell culture plate A–D, 20 islets were hand-picked 
with a pipette and divided into two Eppendorf tubes for a 2-h pre-incubation in glucose-free RPMI 1640. Then, one group of 10 islets was exposed 
to a low glucose concentration (2.8 mmol/L) and the other group of islets was exposed to a high glucose concentration (28 mmol/L). After 1 h, the 
supernatant from each group was saved and analyzed for insulin concentration to determine stimulation index. This was performed in triplicate for 
each treatment group. Illustration is not to scale.
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assessment of morphology with light microscopy revealed islet sizes 
ranging from 50 to 150 μm. Observed islets were spherical, compact, 
and had well-rounded borders with congruent translucent capsular 
integrity (Figure 5). Subjectively, no differences in morphology were 
observed between treatments.

GSIS

Median (range) stimulation index (SI) for all islets in the study 
that underwent GSIS was 1.19 (0.06–3.61). Treatment group C 
(600 mmol/L glucose for 20 min) was found to have a higher 
(p = 0.017) median SI (2.03 [1.19–3.61]) compared to treatment group 
B (300 mmol/L glucose for 40 min) (0.69 [0.06–1.23] Figure 6). When 
osmolality was considered, median SI was higher (p = 0.0032) in islets 
incubated at 600 mmol/L glucose (1.95 [0.902–3.61]) compared to 
islets incubated at 300 mmol/L glucose (0.85 [0.06–2.56]). No 
difference (p = 0.25) was found between 20-min incubation (1.3 [0.48–
3.61]) and 40-min incubation (0.92 [0.06–2.69]).

Discussion

To our knowledge, this is the first description of SOS islet isolation 
in cats, and our results show that the SOS isolation protocol produces 
glucose-responsive β-cells, supporting our hypothesis. GSIS is a well-
accepted measure of islet function, and healthy islets are expected to 
secrete increased insulin concentrations when moved from low to high 
concentrations of glucose (21, 35). In other species, healthy islets 
typically produce stimulation index >2 (35–37), but the standard for SI 

in human islet transplantation is an SI >1 (21). This is because clinical 
outcome of human islet transplant is not correlated with SI (18). 
Stimulation index can also be variable due to differences in protocols 
between institutions (37) and potentially because of intrinsic 
differences between species (35–37). There is only one study that has 
published on GSIS in isolated feline islets, and although this study used 
a different incubation time (30 min) and high glucose concentration 
(16.7 mM), the mean SI was approximately 2 (32), which is similar to 
our results in treatment group C. In vivo insulin stimulation testing 
suggests that glucose is a less effective stimulator of insulin secretion in 
cats compared to humans and that arginine may be superior to glucose 
for assessing insulin secretory capacity (38). Our results showed that 
islets isolated with 600 mmol/L glucose solution had higher SI than 
islets isolated with 300 mmol/L glucose solution. In canine islets, no 
significant difference was found between these two osmolalities, 
however, islets isolated with 300 mmol/L glucose solutions had higher 
trending SI than those isolated with 600 mmol/L glucose (27). It was 
suggested that higher glucose concentrations in dogs may affect islet 
function and viability, and although no difference in islet viability was 
found between osmolalites, there was a higher percentage of acinar cell 
death in the higher osmolality treatments (26). Unlike dogs, our results 
suggest that a higher osmolality could be optimal for isolation by SOS 
in cats. However, viability was not assessed, which is one of the 
limitations of this study.

Feline islets may be more sensitive to collagenases than islets of other 
species, and one proposed reason for this is that there is less basement 

FIGURE 4

Islet yield among treatments. Histogram (median) and interquartile 
range (25 and 75 percentiles) depicting islet yield in treatment groups 
A (20  min incubation, 300  mmol/L glucose), B (40  min incubation, 
300  mmol/L glucose), C (20  min incubation, 600  mmol/L glucose), 
and D (40  min incubation, 600  mmol/L glucose). For each treatment, 
n  =  10. There was no difference in islet yield between treatment 
groups.

FIGURE 5

Isolated feline islets. Light microscopy photographs of feline islets 
isolated by SOS. Arrowheads (A) highlighting islets free of acinar 
cells. The surrounding floating amorphous material are acinar cells. 
Scale bars in both in panels (A, B): 100 μm. Note the intact peri-
insular capsule, a marker of islet health.
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FIGURE 6

Stimulation index from glucose stimulated insulin secretion (GSIS). 
Histogram (median) and interquartile range (25 and 75 percentiles) 
depicting stimulation index (SI) in treatment groups A (20  min 
incubation, 300  mmol/L glucose) n =  8, B (40  min incubation, 
300  mmol/L glucose) n =  6, C (20  min incubation, 600  mmol/L 
glucose) n =  6, and D (40  min incubation, 600  mmol/L glucose) 
n =  6. SI was significantly higher in treatment C compared to 
treatment B.

membrane-like material and collagen surrounding feline islets and 
separating them from acinar tissue (30, 31). Higher amounts of collagen 
directly surrounding islets has been associated with higher purity (39) 
after enzymatic islet isolation procedures in other species, while higher 
amounts of total collagen in the pancreas are also associated with more 
difficult islet isolation. Thus, it is possible that traditional enzymatic islet 
isolation methods have a causal relationship with the limited success in 
producing glucose-responsive feline islets in the literature. The use of 
collagenases inherently cause damage to islets, injuring basement 
membranes and extracellular matrix, which causes a localized 
pro-inflammatory response via free radicals and cytokines (23–25, 40). 
Islets have even been shown to internalize these enzymes, resulting in 
decreased function and cell death (24). This results in the selection for 
resilience to collagenase-based procedures, which is unlikely to 
be uniform among islet size, functionality, and micro-architecture (41–
43). Conversely, SOS likely selects for islets that have a higher density of 
GLUT 2 transporters, which has been identified as a favorable indicator 
of islet function and glucose responsiveness, (26, 44, 45) desirable traits 
for transplantation as well as in vitro studies.

The SOS isolation method has been shown to yield higher islets 
per gram of tissue (13,423 islets/g) (26) compared to Liberase-treated 
porcine pancreata (4,210 islets/g) (46) and compared to human 
cadaveric pancreata (2,279 islets/g) (19). In dogs, the SOS protocol 
had lower yield (28×103 islet-like equivalents) compared to traditional 
methods (49 to 234×103 islet-like equivalents) (47), however, delay in 
quantification and warm ischemia are suggested to have affected yield 
(27). There is minimal information on feline islet yield, with a single 
publication showing a mean yield of islet-like cell clusters (±SD) to 
be  2,200 ± 1,400 from a mean 3.8 ± 1.0 g of pancreas (30). Other 
publications have not reported yield(29, 31, 32). SOS isolation in feline 
donors, however, seems to have similar to increased yield when 
compared to traditional methods. Warm ischemia during islet 

isolation could have affected islet yield, and performing this step 
under cooled conditions is recommended in the future. Our treatment 
groups were the same as in other studies on SOS, and we found that 
neither osmolality nor incubation time had an effect on islet yield. 
Thompson et al. had a similar finding in canine donors (27), while 
Atwater et al. (26) found highest yield in 600 mmol/L incubated for 
20 min in porcine donors. It has been proposed that higher osmolality 
could increase yield while longer incubation time may increase 
damage to islets. However, our findings did not support this outcome 
in cats. Additionally, there was marked variability in yield among 
individual cats, despite being free of known pancreatic and circulatory 
disease, which could also affect our ability to perceive treatment 
differences. The explanation for such wide ranges in islet yields is 
unclear, but some potential explanations could include varying 
degrees of warm ischemia after harvest and subclinical pancreatic, 
cardiovascular, or metabolic disease that may have affected islet 
concentration. Unfortunately, histopathology was not performed to 
assess and compare pancreatic architecture and islet concentration 
differences among individuals, which is a limitation to this study. 
There was significant variability in human islet yield until Ricordi 
described a method for a semi-automation of the enzymatic isolation 
process (15, 19). It is possible that a similar system for automation of 
the degree of mechanical and chemical exposure of the islets will 
be required before the selective osmotic shock procedure results in 
consistent islet yield, as well.

There are no standard morphological assessment criteria for 
isolated islets, and morphology differs among species (48). 
Morphology scoring systems proposed in human islet 
xenotransplantation have shown to correlate with outcome, where 
higher scores consist of spherical islets, well-rounded borders, 
compact cells, and larger borders (49, 50). Peri-insular capsule 
integrity has also been recognized as marker of islet health, and in 
recent years collagenase-based methods have aimed to preserved to 
aim capsular integrity (25, 26, 46, 51, 52). Feline islets isolated by SOS 
meet the majority of high-quality morphological characteristics 
described in isolated islets of other species, with a notably prominent 
and congruent peri-insular capsule that has not been described or 
demonstrated in feline islets isolated by other methods (29–31).

SOS is technically simple, allows for the successful isolation of 
clinical grade quality islets from feline donors, and is considerably less 
costly than traditional methods. While this protocol will be useful in 
obtaining feline islets for in vitro studies of feline islet physiology, it still 
requires significant improvements in islet purity and yield before clinical 
application of islet transplantation. Following SOS, Thompson et al. (27) 
incorporated the use of a sieve and cell strainer prior to plating canine 
islets for cell culture. We found that, in feline islet isolation, this drastically 
compromised yield, therefore the only purification step performed was 
hand picking islets to separate them from acinar tissue. Visual estimation 
of purity is also a limitation of this study, and in the future the use of an 
image analysis software for quantification of purity is suggested. Clinical 
islet transplant materials for humans have significantly higher purity 
(78.5%), (50, 53) but collagenase-based techniques require an additional 
step in purity, such density-gradient centrifugation, which separates 
acinar tissue from islets using dextran or ficoll (19, 20). An additional 
step to improve purity and further refinement and automation of 
mechanical tissue disruption is likely needed for the current SOS 
protocol. Nevertheless, this protocol enables access to an additional islet 
model for human type II diabetes mellitus.
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