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Introduction: The advancement of high-throughput, high-quality, flexible, 
and cost-effective genotyping platforms is crucial for the progress of dairy 
breeding in Bactrian camels. This study focuses on developing and evaluating 
a 1K functional liquid single nucleotide polymorphism (SNP) array specifically 
designed for milk performance in Bactrian camels.

Methods: We utilized RNA sequencing data from 125 lactating camels to identify 
and select 1,002 loci associated with milk production traits for inclusion in the 
SNP array. The array’s performance was then assessed using 24 randomly 
selected camels. Additionally, the array was employed to genotype 398 
individuals, which allowed for population validation to assess the polymorphism 
of SNP sites.

Results: The SNP array demonstrated high overall SNP call rates (> 99%) and 
a remarkable 100% consistency in genotyping. Population validation results 
indicate that camels from six breeding areas in Northwest China share a similar 
genetic background regarding lactation functionality.

Discussion: This study highlights the potential of the SNP array to accelerate the 
breeding process of lactating Bactrian camels and provides a robust technical 
foundation for improving lactation performance.
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1 Introduction

The versatile applications of Bactrian camels, such as their provision of milk, meat, and 
down, in addition to their adaptability to various ecological conditions, render them a crucial 
species in both contemporary and conventional agricultural practices. Notably, their milk is 
not only a dietary staple but also renowned for its medicinal properties, making it a crucial 
resource for both nutritional and therapeutic purposes (1–3). However, the full potential of 
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Bactrian camel milk production is yet to be harnessed, often limited 
by the lack of advanced breeding strategies that focus on lactation 
performance traits.

Single nucleotide polymorphism (SNP) chips are transforming 
animal breeding; low cost “assay-by-sequencing” methodologies and 
high quality reference genome sequences provide the opportunity for 
further significant improvement in both breeding and management (4). 
Functional SNPs are generally defined as SNPs from genome sequences 
that affect structure, expression, or function of a gene. SNPs, which were 
located within expressed genes, are especially important because they 
have the potential to change the function of a protein (5). RNA sequences 
are exclusively transcribed from exonic regions of the genome, making 
them ideal candidates for developing markers specific to these genic 
regions. Such markers are particularly valuable in domestic animal 
breeding. Several studies used RNA sequencing to identify markers in 
human (6) and animals (7–14). However, the genetic underpinnings of 
lactation traits in Bactrian camel remain insufficiently explored.

Single nucleotide polymorphism (SNP) arrays represent a high-
quality and user-friendly platform for genotyping (15, 16). Utilizing a 
SNP array enables the simultaneous detection of tens of thousands of 
SNPs per sample, thereby facilitating high-throughput and efficient 
methodologies in genetic research and breeding programs. More recently, 
advances have led to the development of a liquid SNP chip panel, 
leveraging Genotyping By Targeted Sequencing (GBTS) technology (17). 
This innovation aims to further reduce costs and enhance the accuracy 
of genomic selection. When compared to traditional SNP chips that 
utilize magnetic beads, liquid-phase chips offer several advantages, 
including reduced cost and increased flexibility (17, 18).

However, despite the widespread application of various high-
throughput methods in the genetic study of dairy cattle, poultry, and 
aquatic animals, their utilization remains limited in Bactrian camel 
research. Based on high-quality SNPs selected from transcribed regions, 
GBTS was utilized to develop a 1K functional SNP liquid array, named 
“CamelBell No. 1,” for Bactrian camels. The genotyping performance 
and prediction accuracy of the 1K SNP liquid array were validated. This 
array will become a valuable tool for enhancing Bactrian camel milk 
performance, attributable to its stable genotyping capabilities and its 
robust correlation with lactation traits in Bactrian camels.

2 Methods

2.1 Samples collection

Phenotypic data, along with milk and blood samples, were 
meticulously collected from 125 lactating Alxa Desert Bactrian camels 
located at the Alashan League, Inner Mongolia. All camels were in a 
consistent lactation period, with a parity ranging from 2 to 5, and were 
maintained in optimal body condition within a uniform environment. 
They were fed the same diet: dry clover supplemented with 2 kg of grain 
concentrate (68% corn +12% wheat bran +20% soybean cake after oil 
extraction) and 30 g of table salt for each animal daily. Blood and milk 
samples were collected from 32 and 83 Bactrian camels at approximately 
30 and 270 days postpartum, respectively. Daily milk production was 
estimated based on the average milk yield over three consecutive days. 
For compositional analysis, 25 mL of milk was sampled to determine 
the concentrations of key constituents such as fat, protein, and lactose 
using mid-infrared spectrometry (MilkoScan Minor, Foss Analytics, 

Hillerød, Denmark). Additionally, 10 mL of whole blood was collected 
from the jugular vein of each camel for genetic analysis. Blood samples 
were treated with TRIzol reagent (TaKaRa, United States) and stored at 
−80°C until RNA extraction could be performed.

Genomic DNA was collected from 398 Bactrian camels used for 
chip genotyping. These camels were from six key breeding regions in 
China, which are major areas for Bactrian camel breeding. Specifically, 
samples were obtained from Subei County, Gansu (GSB; 7 individuals), 
Alxa Right Banner, Inner Mongolia (NAY; 82 individuals), Alxa Left 
Banner, Inner Mongolia (NAZ; 257 individuals), Sunit Right Banner, 
Inner Mongolia (NSNT; 22 individuals), Siziwang Banner, Inner 
Mongolia (NSZW; 10 individuals), and Urad Rear Banner, Inner 
Mongolia (NWLT; 20 individuals). The dataset comprises three breeds 
of Bactrian camels: Alxa Desert Camel (n = 343), Alxa Gobi Camel 
(n = 22), and Sunit Bactrian Camel (n = 33). Alxa Desert Camels were 
sampled from GSB, NAY, and NAZ, while Alxa Gobi Camels were 
exclusively sampled from NWLT, and Sunit Bactrian Camels were 
sampled from NSNT and NSZW. The methodologies used in this 
study were approved by the Institutional Animal Care and Use 
Committee of Inner Mongolia Agricultural University, Hohhot, China.

2.2 RNA extraction and sequencing

We isolated total RNA from 125 blood samples using the TRIzol 
reagent (Invitrogen, Carlsbad, CA, United States). The blood samples 
were homogenized in TRIzol reagent and chloroform, followed by 
precipitation using isopropanol. Total RNA from each sample was 
treated for genomic DNA contamination using the RNase-free DNase 
set (QIAGEN, Crawley, West Sussex, United Kingdom) and purified 
using the RNeasy mini kit according to the supplied guidelines 
(QIAGEN, Crawley, West Sussex, United Kingdom). RNA sample 
quality was assessed using the NanoPhotometer® spectrophotometer 
(IMPLEN, CA, United  States) and the Agilent Bioanalyzer 2100 
system. RNA samples exhibited 28 S/18 S ratios ranging from 1.8 to 
2.0 and RNA integrity number values between 8.0 and 10.0.

For mRNA cDNA library preparation, 1.0 μg of total RNA was 
utilized from each sample using the TruSeq RNA Library Preparation 
kit v2 (Illumina, San Diego, CA, United States). Poly A-containing 
mRNA was enriched from the total RNA using poly-T oligo attached 
beads and fragmented for first-strand cDNA synthesis, followed by 
second-strand synthesis. The ends were repaired, and 3′ end 
adenylation and adapter ligation were performed for each library. 
Subsequently, libraries were polymerase chain reaction (PCR) 
amplified, validated using the Bioanalyzer (Agilent Technologies Inc., 
Cedar Creek, TX, United States), and finally normalized and pooled. 
Clustering of the index-coded samples was conducted on a cBot 
Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS 
(Illumina) according to the manufacturer’s instructions. Following 
cluster generation, the library preparations were sequenced on the 
Illumina NovaSeq  6000 high-throughput sequencing platform, 
generating 150 bp paired-end reads.

2.3 SNP detection and selection

The identification of SNPs was executed following the 
workflow depicted in Figure  1, with the comprehensive SNP 

https://doi.org/10.3389/fvets.2024.1359923
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Guo et al. 10.3389/fvets.2024.1359923

Frontiers in Veterinary Science 03 frontiersin.org

calling pipeline script provided in Supplementary file S4. Fastp 
v0.23.4 (19) was employed to assess the quality of sequence reads, 
targeting the identification of sequencing read artifacts such as 
low-quality Phred scores, duplicated reads, uncalled bases (N 
sequences), and potential contamination. Subsequently, the 
filtered reads from each sample underwent individual alignment 
to the Bactrian camel reference genome (Ca_bactrianus_
MBC_1.0) using Hisat2 v2.1.0 software (20). The aligned results 
were exclusively utilized for Single Nucleotide Polymorphism 
(SNP) calling, while insertions and deletions (indels) were 
excluded from the analysis due to challenges associated with 
accurate indel calling. Variant calling was performed for each read 
merging method using the “mpileup” and “call” commands from 
BCFtools v1.9–77-gd0cf724+ (21). Only those SNP variants were 
retained where the alternative allele manifested in all samples, 
accompanied by a Phred quality score of at least 25 and a minimum 
read depth of 10. We  calculated the minor allele frequencies 
(MAFs) and missing rates using PLINK v1.90 (22), and the SNPs 
with MAF <0.05 were excluded. We tested the Hardy–Weinberg 
equilibrium (HWE) using VCFtools v0.1.11 (23) with the -hwe 
option and removed SNPs that severely departed from HWE 
(p < 0.01).

2.4 Development of the SNP panel

2.4.1 SNP identification with camel milk traits
To identify SNPs crucial to Bactrian camel lactation and to 

develop functional chips essential for enhancing their breeding, 
we conducted Exon-Wide Selection Signature (EWSS) and Genome-
Wide Association Study (GWAS) algorithm (24) analyses on carefully 
evaluated SNPs. Initially, EWSS is an SNP screening method based on 
transcription level by detecting the FST index of population 
differentiation. Thus, from 83 Bactrian camels at 270 days postpartum, 
we selected 30 individuals each, based on traits such as milk yield, 
milk protein, lactose, and milk fat, and conducted FST analysis on these 
extreme groups using VCFtools v0.1.11 (23). The single-locus FST for 
each SNP in transcriptomic regions was calculated, and those with an 
FST greater than 0.2 were retained. The Genome-Wide Association 
Study (GWAS) analysis was conducted utilizing the Genomic 
Association and Prediction Integrated Tool (GAPIT) within the R 
programming environment (25). The association analysis examined 
individual markers among 19,177 single nucleotide polymorphisms 
(SNPs) in relation to the best linear unbiased estimate (BLUE) value 
of each accession for each trait. The BLUE values provide unbiased 
estimates of phenotypic traits, incorporating fixed effects such as 

FIGURE 1

The workflow used for SNP chip design procedure.
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lactation stage and parity within the model. For population correction 
and stratification within the mixed linear model (MLM), both a 
kinship matrix and principal component analysis (PCA) were 
computed. The kinship matrix accounts for the genetic relatedness 
among individuals, while PCA addresses population structure, 
thereby mitigating the risk of false positives attributable to population 
stratification. p-values were subsequently adjusted at a 5% false 
discovery rate (FDR) to ascertain significant associations. To 
determine the relevance of the applied model for GWAS, quantile–
quantile (QQ) plot was derived among the observed and expected 
log10(p) value. The workflow used for SNP chip design procedure is 
summarized in Figure 1.

2.4.2 Variants annotation and enrichment analysis
Single nucleotide polymorphism (SNP) annotations, categorized 

by functional class (such as genic or intergenic), along with their 
genomic distributions, were performed using custom Perl scripts. The 
annotation process utilized the Generic Feature Format (GFF) file1 of 
the Bactrian camel genome reference (Ca_bactrianus_MBC_1.0). This 
file provided the necessary information to determine the genomic 
context of each SNP. A SNP was classified as genic if it was located 
within the start and end positions of an mRNA transcript, which 
includes coding sequences (CDS), 5′ untranslated regions (5′UTR), or 
3′ untranslated regions (3′UTR). Conversely, SNPs that did not fall 
within these mRNA boundaries were designated as intergenic.

For the Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses, we utilized the g:Profiler2 
web interface (26). This platform facilitated the identification of 
significant biological processes, cellular components, and molecular 
functions (as classified by GO), as well as the pathways (as cataloged 
in KEGG) that are overrepresented in our gene set. To account for the 
issue of multiple comparisons, which can lead to false positives, 
we employed Bonferroni for multiple testing correction. Only results 
with an adjusted p-value below 0.05 were considered 
statistically significant.

2.4.3 Design and synthesis of the liquid chip
The liquid chip utilizes GBTS technology (18, 27, 28), which 

operates on the principle of target capture through the complementary 
pairing of probes with the target sequences. In this study, we initially 
assessed and scored the selected candidate loci using the Compass 
probe design system (Compass Biotechnology, Guilin, China). The 
probe design considered the complexity and GC content of the 
sequences upstream and downstream of the target loci to ensure 
accuracy and efficiency. Priority was given to positioning the target 
loci in the middle of the probes, each designed to be 120 bp in length. 
After verification, these loci were submitted to Compass for probe 
synthesis, with each probe modified with a biotin group at the 5′ end 
to facilitate subsequent experimental steps.

2.4.4 DNA extraction and library construction
DNA was extracted from the 398 samples using a magnetic bead 

method, known for its efficiency and ability to yield high-quality 

1 https://www.ncbi.nlm.nih.gov/datasets/taxonomy/9837/

2 https://biit.cs.ut.ee/gprofiler/gost

DNA. The extracted DNA was then fragmented to align with the 
PE150 sequencing strategy, targeting a main fragment size range of 
200–300 bp. This fragmentation was followed by selection, end-repair, 
and A-tailing, preparing the DNA for sequencing library construction. 
The library construction process involved the ligation of sequencing 
adapters and PCR amplification to enrich the target fragments, 
ensuring comprehensive coverage. Subsequently, the libraries were 
quantified using the dsDNA HS Assay Kit for Qubit. Electrophoresis 
was employed to confirm that their main peak sizes fell within the 
350–450 bp range, a step crucial for ensuring sequencing quality 
and accuracy.

For hybrid capture, pooled libraries, comprising the whole-
genome DNA from each sample, were prepared, totaling 4 μg per 
hybrid capture library. These pooled libraries were then concentrated 
and subjected to probe hybridization, specifically targeting fragments 
from the whole-genome library. Following hybridization, excess 
probes, reagents, and other components were removed during the 
elution process. Post-hybridization, PCR amplification was performed 
to further enrich the target regions, culminating in the final library 
ready for sequencing. These libraries were quantified and subsequently 
sequenced using the MGI-T7 sequencer.

2.5 SNP array performance evaluation

To assess the stability and reliability of the “CamelBell No. 1” SNP 
chip, we  performed genotyping on 24 lactating camels randomly 
selected from the 398 DNA samples. The sample set included three 
pairs of duplicate samples to evaluate reproducibility. Next, the 
sequencing reads were first subjected to quality control using FastQC 
v0.11.5 (29) to assess the quality of the raw data. Low-quality reads and 
adapter sequences were trimmed using Trimmomatic v0.39 (30). The 
resulting data were aligned to the Bactrian camel reference genome 
(Ca_bactrianus_MBC_1.0) using BWA v0.7.17 (31). Post-alignment, 
the alignment rate was calculated to assess sequencing efficiency and 
accuracy. The alignment files were processed using SAMtools v1.17 
(21) to convert, sort, and index the aligned reads. Alignment quality 
was further assessed by examining metrics such as the percentage of 
mapped reads, coverage depth, and uniformity of coverage across the 
genome. To ensure the chip’s precision and reliability in genotyping, 
we meticulously analyzed the genotype concordance rate among the 
duplicate samples. This analysis is vital for validating the chip’s 
capability to produce consistent and reproducible results. Additionally, 
we quantified the detection rates of all test samples across various site 
coverage depths, providing a comprehensive evaluation of the chip’s 
performance under different genomic conditions.

2.6 Analysis of genetic diversity and 
population structure

To evaluate the performance of the SNP array in detecting 
population genetic diversity and structure, we genotyped and analyzed 
398 DNA samples. VCFtools v0.1.11 (23) was employed to filter the 
SNPs and individuals. Specifically, individuals and SNPs with a detection 
rate lower than 95% were excluded. SNPs with minor allele frequencies 
lower than 0.05 were excluded. SNPs with significant deviation from 
Hardy–Weinberg equilibrium (p < 0.01) in any population were 
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excluded. The genotyping data were extracted and converted into 
PLINK. bed and .fam formats, and then imported into PLINK v1.90 
(22) and ADMIXTURE v1.3.0 (32) software for analysis. Using PLINK, 
PCA is conducted to identify major sources of genetic variation across 
the six breeding areas. ADMIXTURE is used to infer population 
structure and assign individuals to genetic clusters. It provides estimates 
of the proportion of an individual’s genome that originates from each of 
K ancestral populations. The tested K was set from 2 to 9.

2.7 Genomic prediction

The GBLUP model is used to calculate GEBV as follows:

 y X Zu e= + + +1µ β

where y is the vector of corrected phenotypic values. These are the 
phenotypic measurements (e.g., milk yield, milk protein, milk lactose 
milk fat) that have been adjusted for fixed effects (e.g., breed, parity, 
lactation period). 1 is a vector of ones, which ensures that the overall 
mean (∝) is added to each observation, with 𝜇 being the overall mean of 
the phenotypic values across all individuals in the study. Xβ  represents 
the fixed effects, where 𝑋 is the incidence matrix for these effects, and 𝛽 
is the vector of fixed effects coefficients. 𝑍 is the incidence matrix that 
relates the additive genetic values (𝑢) to the phenotypic values (𝑦), with 
each row of 𝑍 corresponding to an individual and each column to a 
genetic effect. 𝑢 is the vector of additive genetic values (or genomic 
breeding values, GEBVs). These values represent the genetic contribution 
of each individual to the trait. It is assumed that 𝑢 ∼ N(0, Gσ𝑢

2), where G 
is the relationship matrix built with the HIBLUP v1.4.0 software (33). 
This matrix represents the genetic relationships between individuals 
based on SNP marker data. σ𝑢

2 represents the additive genetic variance. 
𝑒 is the vector of random residual effects, representing the variation in 
the phenotypic values not explained by the model. It is assumed that 
𝑒∼N (0, Iσ𝑒

2), where I is an identity matrix and σ𝑒
2 is the residual variance.

Cross-validation (CV) is usually used to obtain a reliable and 
stable model, and to evaluate the quality of the model (34). To evaluate 
the accuracy of genomic prediction, we  utilized five-fold cross-
validation. The dataset was divided into five approximately equal-sized 
groups. In each iteration of the cross-validation, four groups were used 
as the training set to estimate model parameters, while the remaining 
group was used as the validation set to test the model’s predictive 
performance. Prediction accuracy was calculated as the correlation 
between the predicted estimated breeding values (EBVs) and the 
actual phenotypes in the validation set, divided by the square root of 
the heritability estimated in the validation population. The standard 
error (SE) was calculated as the standard deviation of the five 
calculated reliability values from the five-fold cross-validation, divided 
by the square root of five.

3 Results

3.1 Variant calling from transcribed region 
sequences

A total of 19,177 confident SNPs were detected from the RNA-seq 
data of lactating Bactrian camels. Initially, transcriptomes of 

peripheral blood from 125 selectively chosen individuals, exhibiting 
consistent lactation period out of 1,243 Bactrian camels, were 
sequenced. This sequencing yielded approximately 3,575 million 
paired-end reads, averaging 29 million paired-end reads per individual 
sample. After quality control, the base effectiveness rate stood at 
97.88%. The Q30 ratio surpassed 93.14%, and the GC content 
exceeded 52.08%. Remarkably, about 91.72% of the reads were 
accurately mapped to the Bactrian camel genome (Ca_bactrianus_
MBC_1.0), with nearly 80.54% of the reads from each individual 
uniquely aligning with the camel genome. Detailed alignment 
information for each sample is tabulated in Supplementary Table S1. 
Subsequently, a comprehensive SNP calling was conducted in the 
reference genome from 125 transcriptome datasets, unveiling 
9,790,170 SNPs. Only those SNP variants where the alternative allele 
appeared in all samples and had a Phred quality score of at least 25 and 
a minimum read depth of 10 were retained. Minor allele frequencies 
(MAFs) and missing rates were calculated, with SNPs having MAF 
<0.05 excluded. Additionally, we  tested for Hardy–Weinberg 
equilibrium (HWE) using the -hwe option and removed SNPs that 
significantly deviated from HWE (p < 0.01). Among these, 19,177 
SNPs were confidently ascertained across the entire cohort.

3.2 Identification of SNPs associated with 
milk traits

For the lactation performance traits of milk yield, milk protein, 
milk lactose, and milk fat, both Exon Wide Selection Signature 
(EWSS) and Genome Wide Association Study (GWAS) methodologies 
were employed to generate a comprehensive SNP set. Initially, the 
calculation of FST was applied to 19,177 SNPs to discern associations 
with extreme phenotypic milk traits. Groupings according to extreme 
values of milk traits are shown in Table 1. The statistical analysis of 
other milk components in each extreme value group is shown in 
Tables 2–5. Using a threshold of FST > 0.2, we identified 178 loci as 
outliers associated with various milk traits. Specifically, 138 loci were 
related to milk yield, 28 to milk protein, 30 to milk lactose, and 6 to 
milk fat. These loci are depicted in Figure 2. These identified loci serve 
as a partial reference for the selection of SNPs associated with lactation 
traits. Simultaneously, leveraging the 19,177 SNPs identified within 
the transcribed regions, we also employed GWAS to associate them 
with four continuous lactation performance traits across 125 subjects, 
thereby providing an additional reference set for the screening of 
pertinent loci. Therefore, significant associations were found with 923 
SNPs for milk yield, 980 SNPs for milk protein, 955 SNPs for lactose, 
and 756 SNPs for milk fat traits (FDR <0.05), shown in Figure 3. 
During the analysis, we calculated the genomic inflation factor (λ) to 
assess the potential inflation of test statistics due to population 
structure or cryptic relatedness. The results showed a genomic 
inflation factor of 0.945, indicating minimal inflation and suggesting 
that the test statistics were not significantly affected by population 
structure or cryptic relatedness (Figure  4A). The overlap of SNPs 
associated with different traits is shown in Figures 4B,C. Overall, the 
amalgamation of both methods furnished us with a reference set 
comprising 2,960 SNP loci, which are associated with four lactation 
traits and dispersed within the transcribed regions of 1,395 genes, 
shown in Supplementary Table S2. A total of 81 overlapping sites were 
identified between FST and GWAS analyses. The functional enrichment 
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TABLE 5 Statistical analysis of milk components in extreme milk fat 
group.

Milk 
component

High milk 
yield group

Low milk 
yield group

p-value

Milk yield, kg/day 1.12 ± 0.20 1.41 ± 0.46 0.12

Milk protein, % 3.98 ± 0.02 3.51 ± 0.14 0.64

Milk lactose, % 5.44 ± 0.03 4.83 ± 0.31 0.37

Milk fat, % 8.38 ± 0.84 2.49 ± 0.95 <0.01

Values are presented as mean ± standard deviation (SD).

FIGURE 2

Manhattan plot of SNPs for milk traits by EWSS. (A) Manhattan plot of 
SNPs between high and low milk yield group. (B) Manhattan plot of 
SNPs between high and low milk protein group. (C) Manhattan plot 
of SNPs between high and low milk lactose group. (D) Manhattan 
plot of SNPs between high and low milk fat group.

analysis conducted on the identified genes indicated a significant 
overrepresentation in several biological processes (BP), particularly in 
areas related to the immune system, organonitrogen compound 
metabolism, and regulation of metabolic processes. Additional 
processes such as vesicle-mediated transport, positive regulation of 

TABLE 1 The phenotype group of 4 milk traits.

Groups Traits Sample size Mean Min Max SD

HMY High milk yield (kg) 15 2.28 2.05 2.70 0.10

LMY Low milk yield (kg) 15 0.56 0.32 0.81 0.18

HMP High milk protein (%) 15 4.11 4.01 4.26 0.08

LMP Low milk protein (%) 15 2.82 2.25 3.33 0.29

HML High milk lactose (%) 15 5.57 5.45 5.84 0.14

LML Low milk lactose (%) 15 3.73 3.04 4.19 0.31

HMF High milk fat (%) 15 8.38 7.53 10.00 0.84

LMF Low milk fat (%) 15 2.49 1.04 3.58 0.95

TABLE 2 Statistical analysis of milk components in extreme milk yield 
group.

Milk 
component

High milk 
yield group

Low milk 
yield group

p-value

Milk yield, kg/day 2.28 ± 0.10 0.56 ± 0.18 <0.01

Milk protein, % 3.67 ± 0.06 3.7 ± 0.15 0.79

Milk lactose, % 5.05 ± 0.14 5.06 ± 0.32 0.95

Milk fat, % 5.80 ± 0.58 5.96 ± 0.33 0.56

TABLE 3 Statistical analysis of milk components in extreme milk protein 
group.

Milk 
component

High milk 
protein 
group

Low milk 
protein 
group

p-value

Milk yield, kg/day 1.08 ± 0.64 1.16 ± 0.0.83 0.75

Milk protein, % 4.11 ± 0.08 2.82 ± 0.29 <0.01

Milk lactose, % 5.53 ± 0.02 4.59 ± 0.21 <0.01

Milk fat, % 5.07 ± 0.27 4.76 ± 0.23 0.25

TABLE 4 Statistical analysis of milk components in extreme milk lactose 
group.

Milk 
component

High milk 
lactose 
group

Low milk 
lactose 
group

p-value

Milk yield, kg/day 1.29 ± 0.40 1.44 ± 0.47 0.49

Milk protein, % 4.03 ± 0.01 2.96 ± 0.12 <0.01

Milk lactose, % 5.57 ± 0.14 3.73 ± 0.31 <0.01

Milk fat, % 5.02 ± 1.77 4.96 ± 0.80 0.83
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biological processes, protein metabolism, and cellular localization 
establishment were also notably enriched. Furthermore, genes 
involved in catabolic processes were highlighted as part of the 
biological process category. To provide a comprehensive overview, the 
top 10 items from each category—Biological Processes (BP), Cellular 
Components (CC), Molecular Functions (MF), and Kyoto 
Encyclopedia of Genes and Genomes pathways (KEGG) were visually 
summarized in Figure 4D.

3.3 SNPs for the “CamelBell No. 1” array

To explore the variation in SNP density across different 
chromosomes, a box plot was generated (Figure 5A). The median 
distances and the ranges vary significantly, with some scaffold showing 
a higher concentration of closely spaced SNPs. To mitigate the 

incidence of false positives in genotyping, SNPs were judiciously 
selected for inclusion on the chip, guided by criteria such as SNP 
quality, polymorphism status, SNP density, and the extent of 
association with specific traits. In brief, we submitted 2,960 previously 
identified candidate SNPs associated with lactation traits to the 
Targeted Capture Sequencing Probe Design System, and 2,681 SNPs 
passed evaluation. Next, considering the location and function of 
these SNPs, we eliminated one of the two sites within less than 100 bp 
from each other, focusing on retaining sites supported by existing 
literature. Thus, 1,002 SNPs were finally manually selected for the 
“CamelBell No. 1” array. For those SNP site, there were 460 SNPs 
located in exon region, 54 located in intron region and 10 located in 
intergenic region, shown in Figure  5B, and the details are in 
Supplementary Table S3. The association of these SNPs with lactation 
traits is visually represented in Figure  5C, with 201 SNPs being 
correlated with two or more lactation traits.

A

B

C

D

FIGURE 3

Manhattan plot of SNPs for milk traits by GWAS. (A) Manhattan plot of SNPs associated with milk yield traits. (B) Manhattan plot of SNPs associated with 
milk protein traits. (C) Manhattan plot of SNPs associated with milk lactose traits. (D) Manhattan plot of SNPs associated with milk fat traits.
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FIGURE 4

SNPs associated with four milk traits. (A) Quantile–quantile (QQ) plots represent the negative logarithms of the expected p-values (x-axis) and 
observed p-values (y-axis) (right panel). (B) SNPs associated with four milk traits by EWSS. (C) SNPs associated with four milk traits by GWAS. (D) Top 10 
Gene Ontology (GO) and KEGG pathway terms associated with milk trait-related snp genes.

3.4 Genotyping performance of SNP array

The efficacy of the SNP array was assessed through the genotyping 
of 24 DNA samples from Alashan League, Inner Mongolia. Inclusion 
of three pairs of replicate samples facilitated the evaluation of the 
chip’s detection performance. A genome alignment rate exceeding 
99% was achieved for all samples, culminating in an average alignment 
rate of 99.77%, shown in Figure 5D. Separate testing of three duplicate 
samples yielded a typing consistency of 100% for each pair, 
underscoring the chip’s detection stability (Figure 5E). Comprehensive 
statistics pertaining to the detection rates across all test samples 
revealed that with a target site coverage depth exceeding 5×, an 
average site detection rate of 99.72% was maintained. Remarkably, 

even at a coverage depth surpassing 20×, the detection rate remained 
robust at 99.07%, shown in Figure 5F.

3.5 Genetic diversity of the core breeding 
populations

To assess the genetic diversity of the core breeding populations in 
of dairy Bactrian camels in northwest China, we collected 398 camels 
from six representative breeding areas, and conducted SNP genotyping 
using the SNP array. Firstly, we calculated the minor allele frequency 
(MAF) distribution of the population and plotted the histogram, as 
shown in Figure  6A. The MAF data from SNP array genotyping 
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revealed that 95% of SNPs had a minor allele frequency greater than 
0.1. Subsequently, we estimated the genetic structure and distance, 
observing minimal genetic divergence among samples from different 
breeding areas (Figures 6B,C). These results indicate that camels from 
six breeding areas share a similar genetic background regarding 
lactation functionality.

3.6 The prediction accuracy of CamelBell 
No. 1 SNP array

Genomic prediction (GBLUP) accuracy for the four milk traits 
was assessed using genotype information from 914 markers that 
passed the quality control filters (MAF >0.01, Call Rate >0.9). A total 
of 398 camels were randomly divided into training (80%) and 
validation (20%) sets for cross-validation, and this process was 
repeated five times to ensure robust evaluation. The box plot of 
prediction accuracy values is shown in Figure  7. The genomic 
prediction accuracies for the four milk traits vary, with milk lactose 
showing the highest and most consistent accuracy, followed by milk 
yield and milk fat, while milk protein exhibits the lowest and most 
variable accuracy. The mean Pearson correlation coefficients of the 
four milk traits were 0.27, 0.30, 0.34, and 0.44, respectively, indicating 
modest linear relationships between the predicted Genomic Estimated 
Breeding Values (GEBVs) and the actual phenotypes. Among these 
traits, milk fat exhibited the strongest correlation. The standard error 
(SE) values of the estimated correlation coefficients for all traits were 
less than 0.10. The mean regression coefficients for the four milk traits 
were 0.88, 0.76, 1.14, and 0.69, respectively. These values suggest that 
while predictions for milk yield are relatively unbiased, predictions for 
milk protein and milkfat tend to underestimate the actual genetic 
values, and predictions for milk lactose tend to overestimate them. 

The SE values of the estimated regression coefficients for all traits were 
less than 0.06.

4 Discussion

In this study, we developed a new SNP array (CamelBell No. 1) in 
Bactrian camel based on genotyping by target sequencing. To our 
knowledge, this is the inaugural liquid chip specifically designed for 
dairy Bactrian camel breeding. After collecting lactation performance 
and phenotype data from thousands of lactating Bactrian camels in 
Northwest China, we handpicked 523 to establish a core breeding 
group. From this pool, we further selected 125 camels that shared the 
same peak lactation period and identical feeding conditions, aiming 
to identify single nucleotide polymorphisms (SNPs) linked to lactation 
traits. Utilizing these 1,002 SNPs, we  advanced the genetic 
enhancement of dairy Bactrian camel breeding. When SNPs are 
identified using RNA-seq data, a limited number of individuals can 
effectively pinpoint loci exhibiting significant polymorphism (35). 
Given that lactation traits are quantitative and influenced by a 
multitude of genes and environmental factors, a larger sample size is 
instrumental in deciphering the genetic architecture of these complex 
traits. Consequently, in this study, RNA-seq data from the 125 
lactating Bactrian camels were chosen as the reference dataset for SNP 
discovery, providing a comprehensive basis for understanding the 
genetic determinants of lactation characteristics. One advantage of 
SNP discovery using RNA-seq is the versatility of the sequenced data, 
which extends beyond initial research objectives. This data can 
be  repurposed for further investigative queries, including the 
exploration of how organisms adapt to varying environmental 
conditions. This multifaceted utility enhances the value of RNA-seq 
in genetic research (36). This method, widely adopted in genomic 

FIGURE 5

Annotation of 1,002 SNPs and Quality assessment of CamelBell No. 1 SNP array. (A) Box plot of SNP distances by 230 scaffolds. The x-axis lists the 
chromosomes, and the y-axis represents the distance between adjacent SNPs on a logarithmic scale. (B) Pie chart depicting the distribution of SNP 
positions across the genome. (C) Venn diagram illustrating the overlap of SNPs associated with various lactation traits. (D) Genome alignment rates 
achieved using the CamelBell No. 1 SNP array. (E) Genotyping consistency of duplicate samples analyzed with the CamelBell No. 1 SNP Array. (F) Site 
detection rates at varying coverage depths using the CamelBell No. 1 SNP array.
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FIGURE 6

Genetic structure of camel core breeding population. (A) Bar plot of minor allele frequency (MAF) distribution. (B) PCA plot of the first and second PCs 
showing genetic distances among samples. Samples from different locations are represented in different colors. (C) Admixture plot (K  =  2–9) for the 
398 large camel individuals. Each individual is shown as vertical bar divided into K colors.

FIGURE 7

Prediction accuracies of genomic estimated breeding values for different milk traits using GBLUP in camel.
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research, has proven effective in identifying SNPs associated with 
traits such as muscle yield and quality in fish (37), as well as thermo-
resistant in oysters (38). Additionally, it has been instrumental in 
unraveling the genetic mechanisms behind tail fat deposition in sheep 
(9) and lactation performance in dairy cows (7), highlighting its 
versatility and importance in the field of animal genetics.

In our research, we employed Extended Window Sum Statistic 
(EWSS) to calculate fixation indices (FST) (39, 40) for populations 
exhibiting significant variations in lactation performance. This 
approach allows us to screen for SNP variants in extreme phenotypic 
groups after controlling for environmental variables. Concurrently, 
we adopted the principles and methodologies of Genome-Wide 
Association Studies (GWAS) (41, 42) to investigate the correlation 
between lactation performance and polymorphic sites in 
transcription regions of the Bactrian camel. By integrating these two 
methods, we were able to screen for the most pertinent functional 
loci in Bactrian camels, providing a foundational set of functional 
loci crucial for chip design. However, despite our efforts to control 
for various confounding factors in our analysis, several potential 
confounding factors may still influence our results. These include 
environmental variation, physiological and health status, and 
genetic background. Specifically, although we standardized diet and 
housing conditions, other environmental factors such as 
microclimatic conditions, handling practices, and feed intake were 
not explicitly controlled. Variations in the health status or 
physiological conditions of the camels, such as subclinical 
infections, stress levels, and hormonal imbalances, were not 
measured or controlled. While principal component analysis (PCA) 
was used to account for major population structure, subtle genetic 
stratification or cryptic relatedness within the population may still 
exist. These unaccounted confounding factors may introduce biases 
or residual confounding in our GWAS results, potentially affecting 
the generalizability and validity of our findings. Future research 
should aim to measure and control for these variables more 
comprehensively to ensure more accurate and reliable genetic 
association results.

Compared to traditional silicon-based SNP panels, Genotyping 
By Targeted Sequencing (GBTS) (43) panels offer enhanced flexibility 
in handling varying sample sizes for genotyping. The GBTS marker 
system offers the flexibility to create multiple marker panels from a 
single master panel. It allows researchers to select a specific number 
of markers tailored to their unique research goals. While the breeding 
of dairy camels, including Camelus dromedarius and Camelus 
bactrianus, is progressing in various countries (44–46), conventional 
breeding methods still predominate. This study lies in its contribution 
to the breeding of camels with desirable milk production traits, such 
as milk yield, protein content, fat content, and lactose content, 
bolstered by advancements in Bactrian camel genome research. The 
development of CamellBell No. 1 provides technical support for the 
large-scale promotion of dairy breeding in Bactrian camel.

Our evaluation of the array’s typing performance revealed high 
levels of consistency and stability. Remarkably, even at a coverage 
depth exceeding 20×, the detection rate remained robust at 99.07%. 
This reliability is crucial for the chip’s application in further genetic 
studies. We used the chip to sequence DNA from individuals in core 
breeding groups across six regions to analyze their population 
structure. The analysis of 398 individuals did not show complete 

separation in terms of lactation function, suggesting a common 
ancestral origin or an early stage in the selection process. The 
breeding values were estimated using the GBLUP model, and the 
accuracy of trait prediction was evaluated using five-fold cross-
validation. We found that although the model for the lactose trait had 
the risk of overfitting, its prediction accuracy was the highest. This 
high accuracy may be attributed to the genetic stability of the lactose 
trait. Lactose percent has been reported to be highly heritable (0.53), 
according to a study in Holstein cows from Michigan (47). The 
statistical model, marker density, and sample size influenced on 
selection accuracy (48). Due to the low samples size in this research, 
there may be bias in the prediction. Additional animals are required 
to fully evaluate the array for genomic selection (GS), and we are 
working to increase the sample sizes of the reference and candidate 
populations for genotyping with the SNP array. Given that large-scale 
breeding of Bactrian camels is not as established as in cows and other 
animals, and considering the challenges in sampling, low-cost and 
highly flexible liquid phase chips like CamelBell No. 1 play a vital role 
in accelerating the breeding of dairy Bactrian camels.

5 Conclusion

In summary, this study is the first try to report a functional liquid 
chip of Bactrian camel, CamelBell No. 1 SNP array, and conduct a 
comprehensive evaluation of the chip’s typing performance, with a 
view to providing tools and carriers for dairy Bactrian camels breeding.
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