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The newborn ovary homeobox gene (NOBOX) regulates ovarian and early 
oocyte development, and thus plays an essential role in reproduction. In this 
study, the mRNA expression level and single nucleotide polymorphism (SNP) 
of NOBOX in various tissues of Xiangsu pigs were studied to explore the 
relationship between its polymorphism and litter size traits. Also, bioinformatics 
was used to evaluate the effects of missense substitutions on protein structure 
and function. The results revealed that NOBOX is preferentially expressed in the 
ovary. Six mutations were detected in the NOBOX sequence, including g.1624 
T>C, g.1858 G>A, g.2770 G>A, g.2821 A>G, g.5659 A>G, and g.6025 T>A, of 
which g.1858 G>A was a missense mutation. However, only g.1858 G>A, g.5659 
A>G, and g.6025 T>A were significantly associated with litter size traits (p  <  0.05). 
Further prediction of the effect of the missense mutation g.1858 G>A on protein 
function revealed that p.V82M is a non-conservative mutation that significantly 
reduces protein stability and thus alters protein function. Overall, these findings 
suggest that NOBOX polymorphism is closely related to the litter size of Xiangsu 
pigs, which may provide new insights into pig breeding.
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1 Introduction

Litter size is one of the most important reproductive traits in sows that directly affect 
economic efficiency (1). It is a low heritability trait that is affected by many factors, such as 
genetics, environment, management, and nutrition (2). To improve economic efficiency, 
priority should be given to improving the reproductive quality of sows. However, relying on 
traditional crossbreeding selection techniques for improvement is significantly limiting. Given 
that SNPs in genes and trait association analysis methods are not affected by the environment, 
they are more efficient and accurate for the seed selection and expansion of high propagation 
populations (3, 4).

The newborn ovary homeobox (NOBOX) gene, an oocyte-specific homeobox gene, 
transcriptionally regulates oocyte-specific genes that play key roles in ovarian development, 
early oogenesis, and fertility (5–7). Research on the NOBOX gene has focused on its role in 
ovarian development and oogenesis. It is one of the most highly mutated genes in women with 
premature ovarian failure (8). Besides, NOBOX hypohydroxymethylation leads to ovarian 
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dysfunction in offspring adult rats (9). At the same time, compound 
heterozygous truncating mutations in NOBOX characterized by 
double allele deletion mutations cause severe primary premature 
ovarian insufficiency (POI) with primary amenorrhea in patients in 
consanguineous marriages (10).

Pure heterozygous NOBOX truncation variants induce defective 
transcriptional activation, leading to primary ovarian insufficiency 
(11). Of note, immunolocalization, protein imprinting, and 
transcriptional assay have validated NOBOX mutations as the plausible 
causes of POI pathogenesis in HEK293T and CHO cells (12). NOBOX 
is also essential for signaling between somatic and germ cells during 
mouse embryonic development (13). In livestock, NOBOX is an 
essential maternal transcription factor during early bovine 
embryogenesis, thereby regulating embryonic genome activation, 
pluripotency gene expression, and blastocyst cell allocation (14). In 
zebrafish, NOBOX deletion does not affect testicular development and 
spermatogenesis; however, it plays an important role in ovarian 
differentiation and early follicular development. This suggests that 
NOBOX is closely related to reproduction (15).

The Xiangsu pig is a new pig line developed via crossbreeding 
after obtaining desirable production traits by backcrossing multiple 
Guizhou Congjiang Xiang pig (female parent) and Sutai pig (sire) 
generations with the Congjiang Xiang pig (sire) (16). This new line is 
characterized by early sexual maturity and strong disease resistance. 
In addition, it bears the high adaptability of the Congjiang Xiang pig 
and the high litter size and fast growth rate of the Sutai pig. In this 
study, we report for the first time six SNPs in the NOBOX gene of the 
Xiangsu pig. NOBOX function was predicted using bioinformatic 
techniques, and the correlation between the six SNPs and litter size 
was investigated. These results may guide the screening of candidate 
genes for sow reproductive performance, thereby benefiting the 
Xiangsu pig breeding program.

2 Materials and methods

2.1 Experimental animals

The animal experiments used in this study strictly complied with 
the guidelines of the Animal Welfare Committee of Guizhou University 
(EAE-GZU-2023-E015). A total of 142 healthy Xiangsu breeding sows 
under uniform feeding conditions were selected from the Guizhou 
University pig farm. The litter size traits, including the total number 
born (TNB), number born alive (NBA), and weaned piglet number 
were recorded per sow for the first and second litters 
(Supplementary material). Subsequently, blood samples were collected 
from the anterior vena cava of 142 pigs using a 5 mL EDTA anticoagulant 
tube and stored at −20°C. After the data collection of farrowing traits, 
three sows were randomly selected for slaughter, and their heart, liver, 
spleen, lung, kidney, longissimus dorsi muscle, and ovary tissue samples 
were collected and stored at −80°C in a refrigerator.

2.2 Extraction of whole blood DNA and 
tissue RNA

Genomic DNA was extracted from the anterior vena cava blood 
samples using a DNA extraction kit (DP348; Tiangen, Beijing, China) 

following the manufacturer’s guidelines. In addition, the total RNA 
was extracted from the heart, liver, spleen, lung, kidney, longissimus 
dorsi muscle, and ovary tissue samples using the TRIzol extraction kit 
(9109, TaKaRa, Dalian, China). The first strand of cDNA was 
synthesized via reverse transcription using a reverse transcription kit 
(A230; Kangrun, Beijing, China) according to the 
manufacturer’s interactions.

2.3 Primer design

The primers for DNA and cDNA amplification were designed 
according to the pig NOBOX DNA (accession number: NC_010451.4) 
and RNA (accession number: NM_001195116.1) sequences published 
on NCBI using Primer Premier 5.0 software (PREMIER Biosoft 
International, Palo Alto, CA, United States). Primers were synthesized 
by Qingdao Biotechnology Co., Ltd. (Chongqing, China), and the 
primer information is shown in Supplementary Table S1.

2.4 PCR amplification and real-time 
fluorescent quantitative PCR analysis

The PCR amplification of the genomic DNA was performed in 
a total volume of 20 μL, including 10 μL of 2× Taq PCR Master Mix 
(GeneStar, Beijing, China), 1 μL of forward primer, 1 μL of reverse 
primer, 1 μL of genomic DNA, and 7 μL of double-distilled water 
(ddH2O). The amplification conditions consisted of 35 cycles of 
3 min of pre-denaturation at 94°C, 30 s of denaturation at 94°C, 
30 s of denaturation at 63°C, 72°C annealing for 1 min, 72°C 
extension for 5 min, and preservation at 4°C. Next, 5 μL of 
amplification product was aspirated and subjected to 1% agarose 
gel electrophoresis for 25 min. The target bands were verified using 
a gel imaging system, and the amplicons were sent to Qingdao 
Biotech (Chongqing, China) for sequencing. The cDNA was 
amplified in a 20 μL q-PCR reaction system consisting of 1 μL of 
cDNA template, 0.5 μL of forward primer, 0.5 μL of reverse primer, 
10 μL of 2× RealStar Fast SYBR qPCR Mix (GeneStar, Beijing, 
China), and 8 μL of ddH2O. The cDNA amplification was replicated 
four times. The reaction conditions were pre-denaturation at 95°C 
for 2 min, denaturation at 95°C for 15 s, annealing at 60°C for 30 s, 
and extension at 72°C for 30 s for 40 cycles. GAPDH was the 
fluorescence quantitative reference gene.

2.5 Bioinformatics analysis

NOBOX amino acid sequences from eight species, including 
Homo sapiens (XP_016867231.1), Mus musculus (NP_570939.1), 
Equus caballus (XP_ 023494578.1), Sus scrofa (NP_001182045.1), 
Ovis aries (XP_042104903.1), Bos taurus (XP_024846980.1), 
Cervus elaphus (XP_043727747.1), and Gallus gallus 
(XP_040516952.1) were obtained from NCBI,1 and a phylogenetic 

1 www.ncbi.nlm.nih.gov/protein
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tree was constructed using MEGA72 (17). Subsequently, the 
common motifs in the super secondary structure were predicted 
using the MEME tool3 to reveal the structural characteristics and 
functions of NOBOX proteins in the selected eight species (18). 
Besides, the multiple sequence comparison of the amino acid 
sequences of NOBOX was performed using Clustal Omega4 (19), 
and the results were uploaded to the online server Con Surf5 for 
sequence conservation evaluation. For the functional and stability 
studies of NOBOX proteins, PhD-SNP,6 SNAP2,7 I-Mutant2.0,8 and 
MuPro9 were used for prediction analysis (20–23). Additionally, 
Sopma10 and AlphaFold2 were used to predict the secondary 
structure and construct the 3D model of the tertiary structure of 
the protein (24, 25).

2.6 Statistical analysis

The presence of SNPs in NOBOX sequence was determined via 
peak plotting against the PCR sequencing reads using the SeqMan 
software (26). Wild-type and mutant sequences were aligned and 
compared using MegAlign and ClustalW software in the DNA Star 
package. Genotype and gene frequencies at each mutation locus 
were calculated directly. Hardy–Weinberg equilibrium (HWE) was 
evaluated using the chi-squared (χ2) test, and the gene 
polymorphism parameters included homozygosity (Ho), 
heterozygosity (He), number of effective alleles (Ne), and 
polypeptide information content (PIC) (27). Linkage 
disequilibrium (LD) and haplotype analyses among SNPs were 
performed using the SHEsis Main11 software (28), and the degree 
of chain imbalance was evaluated using the r2 value, where r2 > 0.33 
indicated a strong chain imbalance state (29). On the other hand, 
diplotypes were evaluated based on haplotypes.

The difference in the number of litters between the different 
genotype groups was compared using one-way analysis of variance in 
the average drop-down option in IBM SPSS Statistics 25 software. The 
following general linear model formula was used: Yijk = μ + Gi + Sk + Aj + eijk, 
where Yijk is the litter size and number of pigs weaned, μ is the mean, Gi 
is the fixed effect of genotype, Sk is the random effect of sire, Aj is fixed 
effect of age, and eijk is the residual effect. The results are presented as the 
mean ± standard error (30).

NOBOX expression levels at different mutation sites were 
calculated using the 2−ΔΔCtd method (31), and its expression patterns 
were mapped using the GraphPad Prism 8 software. Data are 
expressed as mean ± standard deviation at two decimal places.

2 www.megasoftware.net

3 http://meme.nbcr.net/

4 https://www.ebi.ac.uk/Tools/msa/clustalo/

5 https://consurf.tau.ac.il/consurf-old.php

6 https://snps.biofold.org/PhD-SNP/PhD-SNP.html

7 https://rostlab.org/services/snap2web/

8 http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant2.0/I-Mutant2.0.cgi

9 http://mupro.proteomics.ics.uci.edu/

10 https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page1/4npsa%20_

sopma.html

11 http://analysis.bio-x.cn

3 Results

3.1 Expression profile of NOBOX in 
different tissues

The tissue expression profiles of NOBOX are shown in Figure 1A 
NOBOX was expressed in the heart, liver, kidney, and ovary, with the 
highest expression level in the ovarian tissues, which was significantly 
higher than that in the heart, liver, and kidney (p < 0.01). On the 
contrary, there were no significant differences in NOBOX expression 
levels among the heart, liver, and kidney (p > 0.05). In addition, NOBOX 
was not expressed in the spleen, lung, and longest dorsal muscle.

3.2 PCR gel electrophoresis imaging 
analysis

The gel electrophoresis imaging is shown in Figure 1B. The PCR 
amplification products were consistent with the target fragment size, 
with clear and single bands, non-specific amplification, and no obvious 
trailing phenomenon, implying the primers had good specificity.

3.3 Identification of NOBOX polymorphic 
loci

Sequence alignment between the sequencing results and the 
reference sequence of porcine NOBOX (Accession number: 
NC_010451.4) revealed six SNPs in NOBOX, which were labelled 
g.1624 T>C, g.1858 G>A, g.2770 G>A, g.2821 A>G, g.5659 
A>G. Notably, two alleles and three genotypes were present in all the 
six SNPs (Figure 2). The wild-type and mutant sequence alignment 
revealed that the base G at the g.1858 G>A locus was mutated to A, 
altering the codon-GUG- to -AUG-. Consequently, methionine (M) 
replaced valine (V), and g.1858 G>A was a missense SNP. The 
mutation at g.5659 A>G changed the codon-CCA- to -CCG-, resulting 
in a synonymous mutation because-CCA- and-CCG- are simple 
codons and proline (P) was not replaced (Supplementary Figure S1).

3.4 Biological evolution and protection

The phylogenetic tree of NOBOX sequences from the eight species 
is presented in Figure 3. Among the NOBOX species affinities, pig 
(S. scrofa) was most closely related to human (H. sapiens), followed by 
house mouse (M. musculus) and horse (E. caballus), and was furthest 
removed from the chicken (G. gallus). Fifteen significant amino acid 
sequences were detected in the eight species, indicating functional 
similarity at the super-secondary structure (Supplementary Figure S2). 
In addition, NOBOX was poorly conserved across species, with 
p.V82M as the nonconserved mutation (Figure 4).

3.5 Missense SNPs affect protein structure 
and function prediction

The predicted effect of missense SNPs on protein function based 
on the online prediction tool PhD-SNP yielded a score of 8, indicating 
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a neutral effect. However, the prediction tool SNAP2 yielded a score 
of 37, suggesting altered protein function. Additionally, the prediction 
of protein stability using I-Mutant 2.0 and MuPro revealed the free 

energy changes of −1.21 and −0.53, respectively, with the P.V82M 
mutation reducing protein stability. A comparison of the secondary 
structure prediction results between the wild type and mutant revealed 

FIGURE 1

(A) Tissue expression of NOBOX in Xiangsu pig. Different capital letters indicated that the difference between different tissues was extremely significant 
(p  <  0.01). (B) The results of gel electrophoresis imaging of PCR amplification products. M: DL2000 marker, N1–N6: NOBOX gene Exon1–Exon6.

FIGURE 2

SNP locus of NOBOX in Xiangsu pig. (A) g.1624 T>C, (B) g.1858 G>A, (C) g.2770 G>A, (D) g.2821 A>G, (E) g.5659 A>G, (F) g.6025 T>A.
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FIGURE 3

Phylogenetic tree (left) and motif structural analysis (right) for eight species. Fifteen significant motifs were identified. The length of the color block 
shows the position, strength and significance of a particular motif site. The length of the color block shows the position, strength and significance of a 
particular motif site. The length of the motif is proportional to the negative logarithm of the p-value of the motif site, truncated at the height for 
a p-value of 1  ×  10−10. The colors were generated through motif analysis performed via the MEME suit system.

FIGURE 4

Conservative analysis of NOBOX SNP amino acid mutation sites. The red circle corresponds to p.V82M.
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that p.V82M mutation increased the α helix and β turn and decreased 
the random coil (Supplementary Tables S2–S4).

The 3D model of the NOBOX protein at p.V82M constructed 
using AlphaFold2 is presented in Figure 5. The p.V82M mutation 
replaced nonpolar, uncharged valine with a large, nonpolar, uncharged 
methionine, which altered the polar interactions with surrounding 
amino acids and affected the protein structure and function after 
the mutation.

3.6 NOBOX polymorphism in Xiangsu pig

According to NOBOX population genetic analyses (Table 1), 
the purity of each SNP locus was greater than the heterozygosity 
and the effective allele number ranged from 0.12 to 0.37. Besides, 
the polypeptide of SNP loci g.1624 T>C, g.1858 G>A, g.2821 
A>G, g.5659 A>G, and g.6025 T>A was at the moderate 
polymorphism level (0.25 < PIC < 0.50). These five loci were in 
the Shangsu hybridization annotation, with strong selection 
potential and rich genetic diversity. The χ2 test revealed that all 
five SNP loci were in HWE (p > 0.05). However, the polypeptide 
content at locus g.2770 G>A was 0.12, a lower polymorphism 
level (PIC <0.25), contrary to the HWE based on the χ2 test 
(p < 0.05).

3.7 NOBOX LD and haplotype analyses

The LD analysis of NOBOX SNPs using D′ and r2 tests is shown in 
Figure 6 (32). LD analysis revealed that the D′ values ranged from 0.08 
to 1.00 and r2 values from 0 to 0.874. SNP loci between g.1624 T>C 
and g.5659 A>G, g.1624 T>C and g.6025 T>A, g.2821 A>G and 
g.5659 A>G, and g.5659 A>G, and g.6025 T>A, with the r2 of 0.44, 
0.52, 0.37, and 0.87, respectively, were n strong chain imbalance, with 
the strongest degree of chain imbalance between g.5659 A>G and 
g.6025 T>A (Table 2).

Haplotype analysis identified three dominant haplotypes with 
frequencies greater than 5% from the Xiangsu pig population. They 
included Hap1 (TAGAAT), Hap2 (TGGAAT), and Hap3 (CGGGGA), 
with the frequencies of 36.20, 18.30, and 18.10%, respectively 
(Table 3).

3.8 Association analysis between NOBOX 
polymorphism and litter size traits in 
Xiangsu pigs

The correlation between the SNPs of pig NOBOX and litter size 
traits is shown in Table 4. The GG genotypes were significantly higher 
than AA genotypes at the g.1858 G>A locus and GG genotypes were 

FIGURE 5

Modelled tertiary structure of the protein encoded by NOBOX. Different colors in the figure represent different secondary structures, (A) wild-type, 
(B) mutant type.
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TABLE 1 Population genetic information of NOBOX SNPs.

SNP 
locus

Genotype frequency Allele frequency Ho He Ne PIC χ2 p

g.1624 T>C
TT (79) TC (53) CC (10) T C

0.62 0.38 1.62 0.31 0.07 0.96
0.56 0.37 0.07 0.74 0.26

g.1858 G>A
GG (41) GA (75) AA (26) G A

0.51 0.49 1.98 0.37 0.66 0.72
0.29 0.53 0.18 0.55 0.45

g.2770 G>A
GG (125) GA (14) AA (3) G A

0.87 0.13 1.15 0.12 8.66 0.01
0.88 0.10 0.02 0.93 0.07

g.2821 A>G
AA (61) AG (56) GG (25) A G

0.53 0.47 1.88 0.36 3.50 0.17
0.43 0.39 0.18 0.63 0.37

g.5659 A>G
AA (69) AG (57) GG (16) A G

0.57 0.43 1.76 0.34 0.64 0.73
0.49 0.40 0.11 0.69 0.31

g.6025 T>A
TT (72) TA (59) AA (11) T A

0.59 0.41 1.69 0.33 0.05 0.98
0.51 0.42 0.08 0.72 0.29

Ho was homozygosity, He was heterozygosity, Ne was effective number of alleles, PIC was polymorphism information content. PIC <0.25 indicates low polymorphism, 0.25 < PIC < 0.50 
represents moderate polymorphism, and PIC >0.5 denotes high polymorphism. p > 0.05 indicates that the gene frequency in the population is at Hardy–Weinberg equilibrium.

FIGURE 6

Analysis of linkage disequilibrium. r2 represents the correlation between a pair of loci, and D′ denotes the difference between the observed and the 
expected frequency of a given haplotype.

TABLE 2 Linkage disequilibrium coefficient between SNPs of NOBOX.

D′/r2 g.1624 T>C g.1858 G>A g.2770 G>A g.2821 A>G g.5659 A>G g.6025 T>A

g.1624 T>C 0.26 0.03 0.20 0.44 0.52

g.1858 G>A 0.96 0.00 0.14 0.20 0.16

g.2770 G>A 0.99 0.08 0.13 0.03 0.03

g.2821 A>G 0.59 0.53 1.00 0.37 0.31

g.5659 A>G 0.76 0.74 0.99 0.69 0.87

g.6025 T>A 0.77 0.70 0.99 0.67 1.00
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significantly higher than AG genotypes at the g.5659 A>G locus in 
first-born TNB and NBA (p < 0.05). For g.6025 T>A, the TT and TA 
genotypes were significantly higher than AA genotype in the TNB and 
NBA of second-born sows (p < 0.05).

The association analysis between diplotype and litter size traits is 
summarized in Table 5. The TNB and number of weaned piglets in the 
first-born sows were significantly higher in diploid Hap1/1 
(TTAAGGAAAATT) and Hap1/3 (TCGAGGAGAGTA) than in 
Hap1/2 (TTGAGGAAAATT) (p < 0.05). Diplotypes with <5.0% 
frequency were not considered.

4 Discussion

Guizhou is rich in genomically pure and small pig breeds, 
including the Congjiang Xiang pig, one of the most famous small pig 
breeds (33, 34). These small pig breeds have the disadvantages of small 
size and low farrowing rate, which seriously hinders the economic 
development of local pig farming (35). However, compared with the 
Congjiang Xiangsu pig, the Xiangsu pig has the advantages of 

delicious quality meat and strong disease resistance, with greatly 
improved body size and reproductive performance. Therefore, 
Xiangsu pig line breeding significantly promotes the overall pig 
breeding and economic development in Guizhou.

NOBOX is important for promoting ovarian differentiation and 
development, regulating early oogenesis to mature female follicles, 
and regulating germ cell development (36, 37). It is also a key factor 
in the development of various germ cells and the main regulator of key 
oocyte genes and is closely related to the number and quality of 
mature follicles produced by women (38, 39). Based on this, it is 
valuable to establish the relationship between NOBOX mutations and 
female reproductive performance. However, there are no relevant 
studies on this relationship. More importantly, it is of research 
significance to explore the correlation between the variation of SNPs 
in NOBOX and litter performance in Xiangsu pigs.

The differences in gene expression among different tissues are 
related to their corresponding functions. In this study, the 
qRT-PCR analysis in the different tissues of adult sows revealed 
different NOBOX expression levels in the heart, liver, kidney, and 
ovary tissues, with the highest expression in the ovary, consistent 

TABLE 4 Correlation analysis of NOBOX polymorphisms with litter size traits.

SNPs Genotype TNB* NBA* Number of 
weaned 
piglets*

TNB** NBA** Number of 
weaned 
piglets**

g.1624 T>C

TT (79) 9.59 ± 1.55 9.37 ± 1.42 9.19 ± 1.29 9.96 ± 1.43 9.71 ± 1.34 9.38 ± 1.10

TC (53) 9.68 ± 1.57 9.53 ± 1.32 9.30 ± 1.23 9.85 ± 1.46 9.64 ± 1.33 9.43 ± 1.14

CC (10) 10.20 ± 1.23 9.90 ± 0.99 9.20 ± 1.14 9.10 ± 0.74 9.00 ± 0.67 8.70 ± 0.67

g.1858 G>A

GG (41) 10.02 ± 1.59a 9.78 ± 1.29a 9.49 ± 1.27 10.00 ± 1.69 9.71 ± 1.42 9.41 ± 1.20

GA (75) 9.61 ± 1.35ab 9.45 ± 1.21ab 9.20 ± 1.09 9.81 ± 1.40 9.64 ± 1.38 9.33 ± 1.11

AA (26) 9.27 ± 1.85b 9.00 ± 1.74b 8.92 ± 1.60 9.77 ± 0.91 9.50 ± 0.86 9.31 ± 0.93

g.2770 G>A

GG (125) 9.72 ± 1.54 9.52 ± 1.34 9.30 ± 1.27 9.86 ± 1.44 9.64 ± 1.32 9.38 ± 1.12

TA (14) 9.21 ± 1.48 9.00 ± 1.57 8.64 ± 1.08 10.00 ± 1.30 9.79 ± 1.19 9.36 ± 0.93

AA (3) 9.67 ± 1.53 9.33 ± 1.15 9.00 ± 1.00 9.33 ± 1.15 8.67 ± 1.15 8.33 ± 0.58

g.2821 A>G

AA (61) 9.77 ± 1.61 9.52 ± 1.40 9.38 ± 1.32 9.95 ± 1.53 9.74 ± 1.37 9.43 ± 1.07

AG (56) 9.64 ± 1.49 9.46 ± 1.26 9.21 ± 1.19 9.89 ± 1.32 9.70 ± 1.28 9.45 ± 1.19

GG (25) 9.48 ± 1.48 9.32 ± 1.52 8.92 ± 1.22 9.56 ± 1.33 9.24 ± 1.20 8.96 ± 0.89

g.5659 A>G

AA (69) 9.77 ± 1.44ab 9.57 ± 1.30ab 9.36 ± 1.16 9.88 ± 1.43 9.67 ± 1.31 9.39 ± 1.05

AG (57) 9.39 ± 1.69b 9.18 ± 1.45b 9.02 ± 1.37 9.96 ± 1.46 9.72 ± 1.39 9.42 ± 1.21

GG (16) 10.25 ± 1.18a 10.06 ± 1.06a 9.44 ± 1.15 9.38 ± 1.09 9.19 ± 0.91 8.94 ± 0.85

g.6025 T>A

TT (72) 9.76 ± 1.46 9.54 ± 1.31 9.35 ± 1.18 9.92 ± 1.43a 9.69 ± 1.31 9.43 ± 1.06a

TA (59) 9.44 ± 1.65 9.27 ± 1.46 9.07 ± 1.35 9.95 ± 1.44a 9.69 ± 1.37 9.39 ± 1.17a

AA (11) 10.27 ± 1.19 10.00 ± 1.00 9.36 ± 1.21 9.00 ± 0.77b 8.91 ± 0.70 8.64 ± 0.67b

Different lowercase letters indicate significant differences (p < 0.05), same small letter differences are not significant (p > 0.05). TNB is the number of births, NBA is the number of live births. 
*Indicates first litter performance per sow; **indicates the litter performance of the second litter per sow.

TABLE 3 Haplotype analysis and frequency of NOBOX SNPs.

Haplotype g.1624 T>C g.1858 G>A g.2770 G>A g.2821 A>G g.5659 A>G g.6025 T>A Frequency

Hap1 T A G A A T 36.20%

Hap2 T G G A A T 18.30%

Hap3 C G G G G A 18.10%

Haplotypes with frequencies greater than 5.00% were selected, Hap1, TAGAAT; Hap2, TGGAAT; Hap3, CGGGGA.
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with previous reports (14, 40). In addition, the mutation at g.1858 
G>A, a missense SNP, replaced valine (V) with methionine (M). 
Missense mutations can reduce protein stability and are associated 
with phenotype (41, 42). Herein, the missense mutation altered 
NOBOX protein structure and function, thereby greatly reducing 
the protein stability. In addition, the p.V82M mutation increased 
the α helix and β turn proportions but decreased the random coil, 
which altered the different protein components that regulate the 
protein function.

Predicting the NOBOX protein structure and function revealed 
that pigs and poultry had the farthest genetic relationship during 
species evolution. In addition, 15 significant amino acid sequences 
were found in eight species, implying that they had functional 
similarity at the super-secondary structure. However, NOBOX was less 
conserved in different species, with p.V82M, a non-conservative 
mutation. Further assessment of gene polymorphisms revealed that 
the mutant locus g.2770 G>A did not conform to the population 
HWE, contrary to the other five SNPs, which may be caused by long-
term human intervention during breeding (43). An assessment of LD 
among the six loci revealed that the synonymous mutation g.5659A>G 
and the 3′-UTR mutation g.6025 T>A had a strong linkage relationship 
(D′ = 1.000, r2 = 0.874) with the strongest degree of interlocking, 
implying that the two SNPs may have a synergistic effect on sow litter 
size (44, 45).

The correlation between NOBOX polymorphisms and sow litter 
size revealed that the SNP loci g.1858 G>A, g.5659 A>G, and g.6025 
T>A were significantly correlated with sow litter size traits. At the 
same time, the litter and weaned piglet sizes were significantly lower 
for diploid Hap1/2 than for Hap1/1 and Hap1/3. Intronic mutations 
mostly affect mRNA shearing and folding at the molecular level and 
do not directly affect phenotypic traits (46, 47). For example, two 
intronic NOBOX mutations in Chinese women with premature 
ovarian failure (POF) were not associated with the disease (48), 
consistent with the intronic mutations in the present study, where 
g.1624 T>C, g.2770 G>A, and g.2821 A>G were not significantly 
associated with sow litter size traits (49, 50). In the present study, the 
3′-UTR mutation locus g.6025 T>A was significantly lower in the AA 
genotype, characterized by fewer litters and weaned piglets than in TT 
and TA genotypes in the second litter. Besides, there was a significant 
correlation between the number of live piglets produced in the first 
litter for the synonymous mutation loci g.5659 A>G. g.5659 A>G and 
g.6025 T>A that belong to a strong cascade, confirming that these two 
SNPs had a synergistic effect on the number of litters born. The 
mutation from GG to AA at the missense SNP locus g.1858 G>A was 
accompanied by a gradual decrease in litter size and number of live 
and weaned piglets born in the first and second litters, consistent with 

the NOBOX mutation that causes POF in females (12, 51). Therefore, 
NOBOX may be an important molecular co-marker gene associated 
with porcine reproductive performance, which is significant in future 
molecular breeding improvement efforts in pigs.

5 Conclusion

This study identified six new SNPs in the pig NOBOX, 
including g.1858 G>A, a missense SNP that alters the amino acid 
sequence structure. Additionally, g.1858 G>A, g.5659 A>G, and 
g.6025 T>A significantly correlated with the litter size traits. 
Hap1/1, a high yielding dominant diploid, had the highest and 
most stable litter size traits. At the same time, g.1858 G>A 
significantly reduced the protein stability and greatly affected 
protein function. The heterozygous and homozygous genotypes 
after g.1858 G>A mutation gradually decrease the litter 
performance; thus, NOBOX may be an important SNP molecular 
marker gene for improving the litter performance of sows.
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