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Introduction: Predicting which species are susceptible to viruses (i.e., host 
range) is important for understanding and developing effective strategies 
to control viral outbreaks in both humans and animals. The use of machine 
learning and bioinformatic approaches to predict viral hosts has been expanded 
with advancements in in-silico techniques. We  conducted a scoping review 
to identify the breadth of machine learning methods applied to influenza and 
coronavirus genome data for the identification of susceptible host species.

Methods: The protocol for this scoping review is available at https://hdl.handle.
net/10214/26112. Five online databases were searched, and 1,217 citations, 
published between January 2000 and May 2022, were obtained, and screened 
in duplicate for English language and in-silico research, covering the use of 
machine learning to identify susceptible species to viruses.

Results: Fifty-three relevant publications were identified for data charting. The 
breadth of research was extensive including 32 different machine learning 
algorithms used in combination with 29 different feature selection methods 
and 43 different genome data input formats. There were 20 different methods 
used by authors to assess accuracy. Authors mostly used influenza viruses 
(n = 31/53 publications, 58.5%), however, more recent publications focused on 
coronaviruses and other viruses in combination with influenza viruses (n = 22/53, 
41.5%). The susceptible animal groups authors most used were humans (n = 57/77 
analyses, 74.0%), avian (n = 35/77 45.4%), and swine (n = 28/77, 36.4%). In total, 53 
different hosts were used and, in most publications, data from multiple hosts 
was used.

Discussion: The main gaps in research were a lack of standardized reporting of 
methodology and the use of broad host categories for classification. Overall, 
approaches to viral host identification using machine learning were diverse and 
extensive.
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1 Introduction

Interspecies transmission of viruses is an ever-present risk to the 
well-being and health of humans and animals and to the vitality of 
agricultural practices (1, 2). Recent examples of the impact of these 
cross-species events within the One Health concept include the SARS-
CoV-2 and H1N1 pandemics and the emergence of West Nile virus in 
North America, Severe Acute Respiratory Syndrome (SARS), and 
Middle East Respiratory Syndrome (MERS). An illustration of the 
global impact of these cross-species events is shown through the 
number of unique non-human species with reported infections of 
highly pathogenic H5 avian influenza at the country level available 
through the Food and Agriculture Organization (FAO) (Figure 1). To 
understand and mitigate respective events, knowledge of a pathogen’s 
susceptible species (i.e., host range) is essential (4). Susceptible species 
refers to the set of host species a distinct pathogen can infect; 
susceptibility is dependent on several factors including, but not 
limited to the nature of the virus, opportunity for spillover events, 
involvement of vectors and vector transmission pathways, etc. (5). 
Determination of susceptible species is challenging due to the mutable 
nature of viruses and the influences of both abiotic and biotic 

interactions (6, 7). Traditionally, the susceptibility of species is assessed 
using empirical evidence derived from methods such as laboratory 
testing, surveillance, and other epidemiological methods including 
phylogenetic analysis (8). Methods applying machine learning for 
prediction of the susceptible species may be beneficial for outbreak 
preparedness and response planning for outbreaks (7, 9). In silico 
approaches can enhance the ability to obtain results much faster and 
at a lower cost, while still being capable of analyzing complex data 
patterns and enhancing predictive accuracy (10, 11). Here we conduct 
a scoping review to characterize the current body of evidence 
surrounding these techniques. Influenza viruses and coronaviruses 
were the focus of this review because of their public health relevance 
and because of their known propensity for a broad range of 
susceptible species.

Two prior syntheses on this topic have been published. 
Abd-Alrazaq et al. (12) conducted a scoping review on the uses of 
artificial intelligence (AI) during the SARS-CoV-2 pandemic and 
identified three publications involving the use of AI to predict 
potential hosts of SARS-CoV-2. In a systematic review of machine 
learning used for predicting influenza phenotype, Borkenhagen et al. 
(13) identified eleven publications where machine learning was used 

FIGURE 1

The global distribution of a country-level number of distinct non-human species with an event of highly pathogenic H5 influenza detection between 
January 2014 and May 2024. An event is defined as a nationally confirmed influenza finding in animals or humans. This includes outbreaks on farms, 
village or commune level, cases in wildlife or humans, or positive surveillance findings in animals (3). This figure includes only non-human events. Data 
were obtained from the Food and Agricultural Organization (FAO) EMPRES-i dataset on May 29, 2024. Data includes all available HPAI H5 information 
from FAO. Species were reported as reported by the FAO and were not altered, whereas territory and country names were modified in the FAO’s 
dataset when needed to allow for complete joining between the map and the attribute data.
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to identify determinants of host tropism (infection specificity) of 
influenza virus and seven where machine learning was used to 
perform host prediction. Here we updated their searches to capture 
recent work, expanded on the scope of these reviews to include both 
coronaviruses and influenza viruses, and focused the review topic on 
the use of machine learning for predicting susceptible host species.

The goal of this scoping review was to address the research 
question: “What machine learning methods have been applied to 
influenza virus and coronavirus genome data for identification of 
potential reservoirs?” The body of evidence was characterized by types 
of viruses, genome types, types of analyses and machine learning 
classifiers applied.

2 Methods

2.1 Protocol and registration

The protocol for this review titled “The Use of Machine Learning 
and Predictive Modelling Methods in the Identification of Hosts for 
Viral Infections: Scoping Review Protocol” was prepared using the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
Extension for Scoping Reviews (PRISMA-ScR) reporting guidelines 
(14). The protocol was posted a priori (i.e., before study 
commencement) on the University of Guelph Institutional Repository 
(The Atrium, https://hdl.handle.net/10214/26112) on July 28th, 2021 
(Supplementary material S2).

After the publication of the protocol, the following modifications 
were made:

 1 Inclusion criteria for the publication year was extended to 2022, 
because an updated search was additionally performed on May 
4th, 2022.

 2 The study deduplication process, using Mendeley reference 
management software, was additionally performed using 
Distiller-SR (©2023 Systematic Review Software by Evidence 
Partners) (15).

 3 Title and abstract screening at the first level was split into a level 
1A and 1B because publications missing abstract metadata 
upon initial upload needed to be  managed differently. To 
account for missing metadata, the first question in level 1A 
identified if the abstract was included in the metadata. If the 
abstract was not available upon the initial upload, the 
publication was moved to 1B where the abstract was then 
manually uploaded before further screening. All other 
screening questions remained the same.

 4 Upon completion of pre-testing two publications, data charting 
was adjusted as follows:

 a Data charting was performed at the analysis-level rather 
than the publication-level (i.e., information from all analyses 
within a publication was charted into the number of analyses 
in a publication) to account for situations where publications 
contained more than one analysis.

 b Journal information and author-stated limitations were 
not charted.

 c For “data sources,” only the name of the data source for 
genome databases was collected.

 d In “data outcomes,” only the accuracy method and 
information regarding the use of predictive probabilities 
was collected.

2.2 Eligibility criteria

To be eligible for inclusion, publications had to be full-text English 
language publications of primary research from any geographic location 
and published between January 2000 to May 4th, 2022. The approaches 
outlined in the objectives of this review were not relevant prior to the 
introduction of whole genome sequencing and the advancement of 
machine learning techniques which, at the earliest, would have started 
being published in 2000. Eligible publications had to be  primary 
research investigating the susceptible species of coronaviruses or 
influenza viruses singularly or in combination with other viruses. 
Conference proceedings were considered because computer science 
and engineering conference proceedings often meet indexing 
requirements as stand-alone publications and are fully searchable in 
major bibliographic databases. All genera of coronavirus and influenza 
virus were considered as each has been documented as capable of 
transmission in multiple host species; both are global public health and 
agricultural priority pathogens and have been extensively surveyed 
genomically (16). Eligible research included the use of machine learning 
techniques on any genomic data for the purpose of understanding or 
predicting influenza virus or coronavirus host-range or transmission.

2.3 Information sources

On July 29th, 2021, and May 4th, 2022, six bibliographic databases 
were searched through five bibliometric platforms (Table  1). 
Proceedings from three conferences were hand-searched (Table 2), as 
were references of all publications identified as relevant.

The search string for Web of Science was formatted as follows:
((TS = (zoono* or between-species transmission or host range or 

cross-species transmission or pathogen spillover or spillover or host 
tropism or host specificity or reservoir)

AND
TS = (machine learning or big data or convolution neural network 

or deep learning or network analysis or bioinformatics or predictive 
model* or unsupervised learning or supervised learning or semi-
supervised learning or active learning or algorithm* or ai or 
artificial intelligence))

TABLE 1 Bibliographic databases and platforms (vendor interfaces) that 
were searched.

Platform (vendor 
interface)

Database

Clarivate Web of Science Core Collection

Elsevier Engineering Village-Inspec and Compendex

National Center for 

Biotechnology Information 

(NCBI)

PubMed—including MEDLINE (National Library 

of Medicine biomedical database of citations and 

abstracts indexed using MeSH thesaurus)

Ovid Technologies Inc. MEDLINE

ProQuest Coronavirus Research Database
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AND
TS = (influenza* or Orthomyxovir* or flu or Coronavir* or 

covid or IAV)
)
See also Supplementary Table S1 for the search strings for all the 

bibliographic databases.

2.4 Selection of sources of evidence 
(relevance screening), and data charting 
process

Citation metadata from the search output was compiled and 
deduplicated using Mendeley reference management software (15). 
Citation metadata were then uploaded to Distiller-SR (©2023) software 
package and deduplicated once again. Relevance screening was 
performed in three stages (levels 1A, 1B, and 2) using forms built in 
Distiller-SR (©2023). Levels 1A and 1B screening forms were identical 
but, level 1B was only for references found in level 1A screening to 
be missing abstract metadata and therefore required manual entry of 
abstracts prior to level 1B. Levels 1A and 1B relevance screening was 
at the level of the title and abstract. Level 2 screening was done using 
full texts. Screening and data charting were performed by two 
reviewers working independently followed by conflict resolution. If an 
agreement could not be reached, a third reviewer was consulted. The 
authors of references were not contacted for additional information. 
Full texts were obtained using EndNote citation management software 
(17) and through hand searching and then uploaded to Distiller-SR 
(©2023). The forms used are outlined in Supplementary Table S2.

Data on the following characteristics were charted:

 1 First author employment/research affiliation(s).
 2 First author region/country affiliation(s).
 3 Type of viral genome(s) used and sources of information.
 4 Host(s) taxonomy.
 5 Sequence processing technique(s).
 6 Machine learning classifier information including algorithm, 

feature selection, and type of validation used.
 7 Measure(s) of accuracy used for classifiers.
 8 Software used.

2.5 Synthesis of results

Data were downloaded from Distiller-SR (©2023) into R using 
RStudio (18, 19) for cleaning, analysis, and creation of relevant 

figures and tables. In R, a network analysis was performed to analyze 
the relationship between feature selection methods and machine 
learning methods used. “Tidyverse” (20) and “igraph” (21) packages 
in R were used to create a network analysis from the co-occurrence 
matrix between feature selection methods and machine 
learning methods.

Data charting results were split into three main levels as a logical 
grouping of the important information from all publications. These 
levels included:

 1 Publication metadata including author information.
 2 Analysis level information (a publication could consist of 

multiple analyses).
 3 Information about machine learning classifiers (an analysis 

could consist of multiple classifiers).

3 Results

The search strategy resulted in 1,217 citations, 53 of which were 
included in the final qualitative synthesis (Supplementary Table S3 
and Supplementary material S1). The complete process of selection is 
shown in the PRISMA flow diagram (Figure 2).

3.1 Publication information

Fifty-three relevant publications were identified, all published 
between 2008 and 2022 (Figure 3A), of which, 41 were journal articles, 
nine were conference proceedings, and three were categorized as 
“other” due to their preprint status at the time of data charting. The 
first author’s country of affiliation was most commonly the 
United  States of America (n = 16/53 publications, 30.2%), China 
(n = 15/53, 28.3%), and the United  Kingdom (n = 8/53, 15.1%) 
(Table 3). First author institutional affiliation was most frequently a 
university (n = 45/53, 84.9%), national or sub-national government 
organizations (n = 10/53, 18.9%), non-governmental organizations 
(n = 1/53, 1.9%), and private research institutions (n = 1/53, 1.9%). The 
department(s) of the first author were grouped into general categories 
(Supplementary Table S4). The most common was computer science 
or a related field (n = 25/53, 47.2%), biological sciences (n = 12/53, 
22.6%), health (n = 8/53, 15.1%), data science (n = 7/53, 13.2%), and 
microbiology (n = 5/53, 9.4%) (Table 3).

3.2 Analysis level information

An analysis was defined as; the same training and test source 
population was used with one or more classifiers in one or more input 
formats. A total of 77 analyses were reported across the 53 publications. 
To accurately chart all data, publications were split into the number of 
analyses they contained. The median number of analyses per 
publication was one. The range of analyses within the publications was 
one to five. Across publications, the general process for each analysis 
was host and virus selection, obtaining relevant genome data, 
processing these data into the appropriate form for input into the 
classifier, predicting the host or spillover of the viral genome using the 
classifier, and finally generating a measure of accuracy.

TABLE 2 Hand-searched conference proceedings.

Conference Proceeding availability

Computational Intelligence 

Methods for Bioinformatics and 

Biostatistics (CIBB)

Annual international conference. Selected 

conference publications are available for 

2008–2019

International Conference on 

Computational Biology and 

Bioinformatics (ICCBB)

Annual international conference. Titles and 

full-text conference publications are 

available for 2017–2020

Intelligent Systems for Molecular 

Biology (ISMB)

Annual international conference. Titles and 

full proceedings are available for 1993–2020
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3.2.1 Host and virus selection
The first step of the analysis process was selecting which hosts and 

virus types were to be used. Most authors used only influenza virus 
data (n = 31/53 publications, 58.5%, n = 40/77 analyses, 51.9%), 15.1% 
used only coronavirus data (n = 8/53, 15.1%, n = 18/77, 23.4%), and the 
remaining publications (n = 14/53, 26.4%, n = 19/77, 24.7%) used a 
combination of influenza viruses, coronaviruses, and other viruses 
(Figure  3B). The most common other virus included were of the 
Rhabdoviridae family (n = 10/17 analyses that used other viruses, 
58.8%), specifically, rabies (n = 3/17, 17.6%), followed by multiple 
other viral species, families, and genera (as stated by the authors) 
(Supplementary Table S5). Bartoszewicz et al. (22) used almost all 
available viruses on the Virus-Host Database (7,503 species) and 

Sutanto and Turcotte (23) used almost all available RNA viruses on 
NCBI Virus. Figure 3A depicts the type of viruses used per publication 
as split into a yearly count when compared to the total number of 
publications published that year. Prior to 2012, all the publications 
focused on influenza viruses. Aguas and Ferguson (24) were the first 
to incorporate coronaviruses and other viruses (Flavivirus and 
Alphavirus genera, Calciviridae and Paramyxoviridae families) in their 
analysis. Recent publications show a shift to greater incorporation of 
coronaviruses among other viruses with a focus on investigating a 
variety of viruses in one publication (9, 22–33).

Analyses considered in this scoping review were conducted using 
various subsets of available genome data and implied or stated 
inclusion criteria. This was addressed through charting of the highest 

FIGURE 2

PRISMA flow diagram outlining the selection of relevant publications. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; 
CIBB, Computational Intelligence Methods for Bioinformatics and Biostatistics; ICCBB, International Conference on Computational Biology and 
Bioinformatics; ISMB, Intelligent Systems for Molecular Biology.
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taxonomic or other classification level for the influenza viruses and 
coronaviruses. Forty-two analyses (n = 42/77, 55.8%) used influenza 
viruses. One analysis used the genome data of viruses from the family 
Orthomyxoviridae, whereas the majority of analyses (n = 38/42 
influenza analyses, 90.5%) used only viruses from influenza A type, 
one analysis used only viruses of the H7N9 subtype, and two analyses 
did not clearly specify which taxonomic level was used. Twenty-three 
(n = 23/77 analyses, 41.5%) analyses used coronaviruses, 13 of these 
used genomes of viruses from the entire family Coronaviridae, one 
was the subfamily Orthocoronavirinae, five specified the level of 
species but did not specify which species, five were SARS-CoV-2, 
three were MERS-CoV, three were SARS-CoV-1, and two did not state 
the taxonomic level used. Eight of the coronavirus analyses used 
multiple distinct taxonomic levels within the same analysis and were 
therefore counted multiple times in the latter count of coronaviruses; 
7 analyses used 2 levels, and 1 analysis used 3 levels. Nineteen analyses 
(n = 19/77, 24.7%) used other viruses that were not influenza viruses 
or coronaviruses, either alone or in different combinations with 
influenza viruses and/or coronaviruses.

Various host types were studied, some classified only as human 
versus non-human (n = 8/77, 10.3%) (22, 26, 30, 33–36), 3 analyses 
(3.9%) used pandemic human as a host (24, 37, 38), 3 analyses (3.9%) 
used zoonotic as a host (39–41) and others made classifications 
including multiple taxonomic levels (e.g., species and genus) 
(n = 14/77, 18.2%) (42). Based on analyses with reported hosts, on 
average, 5.0 hosts were studied per  analysis (min = 2, med = 3, 
max = 24). Publications focusing specifically on coronavirus studied 
on average 5.52 hosts per analysis (min = 2, med = 5, max = 21), and 

publications using specifically influenza viruses used an average of 
3.07 hosts per analysis (min = 2, med = 3, max = 9). Hosts were charted 
by taxonomic level. The most common taxonomic group was species 
(n = 67/77, 85.7%). Definitions for species level were non-strict since 
some authors defined species to a non-species level (i.e., non-human, 
avian, bovine, etc.). The results for species level are in 
Supplementary Table S6. The three most common species 
classifications were human (n = 57/77, 74.0%), avian (n = 35/77, 45%), 
and swine (n = 28/77 36.4%). The remaining taxonomic levels were 
reported in Supplementary Table S7.

3.2.2 Collation of genome data
A variety of techniques were used to obtain the appropriate 

genome sequences. Most authors only used viral genome sequences 
of the viruses they were interested in (n = 68/77 analyses, 88.3%). 
However, there were nine analyses (six publications) that used the host 
information to some capacity in combination with the viral genome. 
Mollentze et al. (30) and Bergner et al. (26) used the host information 
by calculating a human similarity statistic which was then used to 
assess the predictive probability of the virus to infect humans. Wardeh 
et al. (43) used mammalian phylogenetic, ecological, and geospatial 
traits to enhance their viral host informational traits. These traits were 
used in combination with viral genomics for classifier predictions of 
potential hosts of coronaviruses. Yang et al. (31) combined the host 
information from GenBank to map their viruses into 10 different 
host categories.

Viral genomes were used in all the publications and the most 
common source for coronavirus and influenza virus sequence data 

FIGURE 3

Viruses used per publication. (A) Viruses used per year per publication and the number of publications published per year. The search was conducted in 
May 2022 so there is not a complete record of publications from 2022. (B) Viruses used per publication, note: the publications where only others are 
listed did include coronavirus and influenza virus as part of a large group of viruses. Other viruses used are listed in Supplementary Table S5.
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was NCBI (n = 36/77 analyses, 46.8%), Influenza Research Database 
(IRD) (n = 13/77, 16.9%), and Global Initiative on Sharing Avian 
Influenza Data (GISAID) (n = 7/77, 9.1%) (Figure 4). Coronavirus 
genome data were used in the form of the whole genome (n = 6/23 
coronavirus analyses, 26.0%), the spike gene (n = 8/23, 34.8%), and 
was not stated in the remainder (n = 9/23, 39.1%). Influenza genome 
data were charted using the eight RNA segments PB2, PB1, PA, NP, 
HA, NA, M, and NS. In some analyses the proteins used were specified 
from within the segments, however, this information was not charted. 
Segments were either used separately or concatenated. The whole 

genome (n = 18/42 influenza analyses, 42.8%), partial genomes (i.e., a 
variety of combinations of the eight segments) (n = 11/42, 26.2%), only 
HA (n = 8/42, 19.0%), only PB1 (n = 1/42, 2.4%), or PB2 (n = 1/42, 
2.4%) were used. In three studies, it was not revealed whether a whole 
or partial genome was used.

3.2.3 Pre-processing genome data
Viral genome sequences were preprocessed prior to use in 

machine learning algorithm(s). Transformations were applied to both 
the nucleotide sequences and amino acid sequences and then used as 
input features in the machine-learning classifier. Forty-one types of 
feature transformations were used as well as the untransformed 
nucleotide sequence or amino acid sequence (Supplementary Table S8). 
The 41 types of feature transformations were categorized into 10 
categories (Figure  5). Authors commonly used a combination of 
multiple sequence formats/transformations to curate their feature 
library for each sequence (n = 57/77 analyses, 74.0%). Use of an 

TABLE 3 General characteristics of publication information used in the 
selected publications.

Publication characteristic Number of 
publications 

(n =  53)a

Percentage 
(%)

Publication type

  Conference proceeding 9 17.0

  Journal article 41 77.4

  Other 3 5.6

First author country

  United States of America 16 30.2

  China 15 28.3

  United Kingdom 8 15.1

  Egypt 4 7.5

  Singapore 4 7.5

  Germany 2 3.8

  Canada 1 1.9

  Cyprus 1 1.9

  Iran 1 1.9

  Israel 1 1.9

  South Korea 1 1.9

First author institutional affiliation

  University 45 84.9

  (Sub-)national government 

organization

10 18.9

  Non-governmental organization 1 1.9

  Private research institute 1 1.9

First author departmentb

  Computer Science 25 47.2

  Biological Sciences 12 22.6

  Health 8 15.1

  Data Science 7 13.2

  Microbiology 5 9.4

  Mathematics and Statistics 3 5.7

  Engineering 2 3.8

  Agriculture 1 1.9

  Epidemiology 1 1.9

  Not stated 1 1.9

aSome publications may belong to multiple categories.
bSupplementary Table S4 includes departments included in each department category.

FIGURE 4

The databases used for obtaining viral genome sequences to be 
used within the classifiers and the number of analyses that used each 
database (n). Displayed by the virus type the database was used for 
(i.e., influenza virus or coronavirus). Database type was not collected 
for “other” viruses only influenza viruses and coronaviruses. Some 
analyses may have used multiple databases. RVDB, Reference Viral 
Database; Virus-Host DB, Virus-Host Database; ISD, Influenza 
Sequence Database (merged with IRD); ViPR, Virus Pathogen 
Database and Analysis Resource [merged with IRD to become 
Bacterial and Viral Bioinformatics Resource Center (BV-BRC)]; 
GISAID, Global Initiative on Sharing Avian Influenza Data; IRD, 
Influenza Research Database [merged with ViPR to become Bacterial 
and Viral Bioinformatics Resource Center (BV-BRC)]; NCBI, National 
Center for Biotechnology Information.
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unchanged sequence as an input (unchanged nucleotide = 6/77 
analyses, 7.8%, unchanged amino acid = 11/77, 14.3%) was reported 
in 22% (n = 17/77) of analyses.

Genomic bias accounts for the proportionality of bases or 
codons in the form of the sequence length, dinucleotide frequencies, 
and mononucleotide frequency amongst others. Bias scores are 
calculated in several ways most often concerning expected or 
favoured compositional frequencies (44). Forty-one analyses 
(53.2%) incorporated one or more forms of genomic bias 
transformation. This transformation was applied to both nucleotide 
sequences (n = 29/77, 37.7%) and amino acid sequences (n = 12/77, 
15.6%). Frequency (n = 30/77, 39.0%) and substring frequency 
(n = 15/77, 19.5%) were transformations to account for various 
frequencies and sequence compositions. Most frequency measures 
were implemented as a count, however, a study employed word 
embedding methods to factor in the relation between words rather 
than strictly a count (45). Twenty-six percent (n = 20/77) of analyses 
transformed the sequence length, including adjustments such as 

adjusting all sequences to have the same length as the shortest 
sequence (29), generating short sequences (100–400 bp or 
400–800 bp) to reduce the computational complexity (27), only 
using the receptor binding site of HA (38), amongst others. Pseudo-
compositions were used in 10 analyses. Pseudo-composition 
incorporates features from the original sequence and features from 
pseudo-components such as in the calculation of order. Yerukala 
Sathipati et al. (36) performed an analysis on four different feature 
descriptors including pseudo-amino acid composition (PseAAC) 
with eight different classifiers. Physiochemical properties consider 
features such as hydrophobicity, isoelectric point, and molar mass 
and were also used as a feature descriptor in Yerukala et al. (36). 
Fourteen analyses used physiochemical properties; physiochemical 
property transformations were only applied to amino acid 
sequences. Seven (9.1%) analyses used structural patterns and the 
assessment of secondary structures association with a virus’s ability 
to infect a host. Sequence features categorized as “other” included 
phylogenetic neighbourhood assessment, assessment of similarity 
to human genome transcripts, and the output of truncated singular 
value decomposition. Similarity to the human genome was used as 
previously described (30). In 74% (n = 57/77) of analyses, multiple 
sequence formats were used either as a comparative method or a 
combined feature matrix.

3.2.4 Software and programming languages used
Nine different software or programming languages were 

applied to the data, and the different software or programming 
languages used were categorized at the analysis level. The most 
common were R (n = 28/77 analyses, 36.4%), Python (n = 23/77, 
29.9%), MATLAB (n = 10/77, 13.0%), Weka (n = 10/77, 13%), and 
Java (n = 3/77, 3.9%) (Table 4). In 18.2% (n = 14/77) of analyses, 
the authors did not reference the software or programming 
language used. In 20.8% (n = 16/77) of analyses, more than one 
software or programming language was used. The most applied 
combinations were a combination of R and Python (9, 25, 42, 46) 
(n = 7/77, 9.1%) or a combination of Weka and an additional 
software or programming language (n = 7/77, 9.1%) (36, 
37, 47–50).

TABLE 4 Software/programming language used.

Software Number of 
analyses 
(n =  77)a

Percentage (%)

R 28 36.4

Python 23 29.9

MATLAB 10 13.0

Weka 10 13.0

Java 3 3.9

LIBSVM 3 3.9

RapidMiner 1 1.3

Spark ML 1 1.3

SVM-Light 1 1.3

Not stated 14 18.2

aSome analyses may belong to multiple categories.

FIGURE 5

Sequence format transformations applied per analysis. Some 
analyses used multiple transformations. In some analyses, 
transformations were applied to both nucleotide sequence and 
amino acid sequence. Each category contains multiple different 
formats amalgamated into one category (Supplementary Table S8). 
The classification was determined by the most common sequence 
format used. The format used in the corresponding figure was 
determined based on whether nucleotide sequence, amino acid 
sequence, or both were selected in the corresponding input 
sequence question if no selection was made the classification 
defaulted to that used in Supplementary Table S8.
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3.3 Classifier level information

The general characteristics of classifiers used in the selected 
publications are presented in Table 5. Each analysis used one or more 
classifiers. Classifiers used a form of feature selection, a machine 
learning algorithm, and a form of validation. In cases where an 
ensemble of classifiers was used each classifier within the ensemble 
was charted separately. During charting, we  indicated that these 
classifiers were part of an ensemble. In total, there were 174 classifiers 
used, the median number of classifiers used per analysis was one, and 
the range of classifiers used was one to eight. Most of the classifiers 
used in separate analyses were newly trained classifiers making 
up 87.4% of classifiers (n = 152/174 classifiers). For the remainder of 
the classifiers, they had been used previously (n = 20/174, 11.5%), or 
it was unclear if the classifier had been used previously (n = 2/174, 
1.1%). In cases where a classifier had been used previously, sometimes 
it was an expansion on previous research, and other times it was to 
compare a novel classifier to an already developed model.

More than one host was used as discrete levels of the input in 
96.5% (n = 168/174) of classifiers. With four classifiers it was unclear 
whether multiple hosts were used, and with two classifiers only one 
host was used. Bergner et al. (26) only used viruses derived from the 
saliva and feces of vampire bat colonies and assessed zoonotic 
potential by comparing these viruses with the known zoonotic 
potential of some viruses. The first analysis of Meroz et  al. (38) 
predicted pandemic strains of H1N1, and the two comparative 
groups were human and pandemic human (human viruses with 
pandemic potential); in this case, only one species was used to train 
the classifier, but this one species was still split into multiple host 
groups. In 59.8% (n = 104/174) of the classifiers, multiple viral groups 
were used where viral groups were defined as the highest level of viral 
classification referred to within the publication. A viral group can 
be any taxonomic grouping. If an analysis specified only a singular 
group and did not compare multiple groups, it was recorded as not 
using multiple viral groups. In 26.4% (n = 46/174) of the classifiers, it 
was unclear if multiple viral groups were being used to train the 
classifiers and then in the remaining 13.8% (n = 24/174), only one 
viral group was used to train the classifiers.

The number of sequences used to train and test a classifier was 
charted by calculating the total amount of sequences used for one 
classifier (summation of all hosts), or in cases where the influenza 
segments were utilized, the maximum number of sequences per segment 
was charted. The average number of sequences used to train and test a 
classifier was 304,105, however, this number is skewed due to the large 
variability in the number of sequences used and extremes in the data 
(Table 5); the median number was 1902. The minimum number of 
sequences used was 17. Lee et al. (9), used 17 sequences of SARS-CoV2 
and SARS-related viruses to predict reservoir hosts using a gradient 
boosting machine (GBM) classifier method in the second analysis that 
had been previously trained on a separate dataset within the first analysis 
reported in that publication. Bartoszewicz et al. (22) used the maximum 
number of sequences 14,242,329; however, these were not complete 
sequences of an entire virus, segment, or gene. Rather, reads of 150 base 
pairs were used and, such an approach was used for three classifiers.

Feature selection can improve the accuracy of a classifier and 
reduce computational requirements by removing redundancies and 
selecting more contributive features (51). In 52.9% (n = 92/174) of 
the classifiers, a feature selection was not used, or it was not stated. 

“Not used” and “not stated” were combined when referencing the 
feature selection method used since there was no explicit distinction 
for publications that explicitly chose to not use a feature selection. 
In all, 28 feature selection methods were used 
(Supplementary Table S9). The five most used were gradient-
boosted classification trees as feature selection (n = 15/174, 8.6%), 
random forest as feature selection (n = 14/174, 8.0%), information 
gain (n = 11/174, 6.3%), single value decomposition (n = 8/174, 
4.6%), ridge regression (n = 7/174, 4.0%) and in many the classifiers 
feature selection was not stated (n = 92/174, 52.9%). All feature 

TABLE 5 General characteristics of classifiers used in the selected 
publications.

Classifier characteristic Number of 
classifiers 
(n =  174)

Percentage 
(%)

Was a novel classifier

  Yes 152 87.4

  No 20 11.5

  Unclear 2 1.1

Used more than one host to train the classifier

  Yes 168 96.5

  No 2 1.1

  Unclear 4 2.3

Used more than one viral group to train the classifier

  Yes 104 59.8

  No 24 13.8

  Unclear 46 26.4

Class of classifier

  Supervised 172 98.8

  Unsupervised 2 1.1

  Semi-supervised 0 0

Top 8 machine learning algorithm categoriesa

  Neural network 39 22.4

  Random forest 34 19.5

  Support vector machine 28 16.1

  Classification tree 15 8.6

  k-nearest neighbour 15 8.6

  Gradient boosting machine 12 6.9

  Naïve bayes 12 6.9

  Logistic regression 11 6.3

The number of sequences used

  <100 5 2.9

  100–1,000 58 33.3

  1,000–10,000 56 32.2

  10,000–100,000 28 16.1

  100,000–1,000,000 17 9.8

  >1,000,000 4 2.3

  Not stated 6 3.4

aCategorizations listed in Supplementary Table S10.
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selection types listed were used prior to input into the machine 
learning algorithm and were not a part of the classifier (i.e., when 
random forest was used as feature selection it was used in tandem 
with another machine learning algorithm).

98.8% (n = 172/174) of the machine learning algorithms used were 
supervised algorithms. Eng et  al. (52) and Kou et  al. (53) used an 
unsupervised hierarchical clustering approach. Kou’s et al. (53), approach 
was a descriptive analysis rather than the typical analytical analysis 
performed by other authors whose work was included in this review. The 
most used supervised learning algorithms were random forest (RF) 
(n = 31/174, 17.8%), support vector machine (SVM) (n = 28/174, 16.1%), 
k-nearest neighbour (KNN) (n = 15/174, 8.6%), classification tree (CT) 
(n = 12/174, 6.9%) and naïve Bayes (NB) (n = 12/174, 6.9%). In total, 31 
different supervised algorithms were used (Supplementary Table S10). 
The machine learning categories presented in Figure  6; Table  5; 
Supplementary Table S10 encompass a variety of classifiers categorized 
into machine learning classes. A network analysis was performed to 
analyze the relationship between the feature selection method used and 
the machine learning algorithm used (Figure 7). From this network 
analysis, the most common occurrence was using RF, SVM, or KNN and 

not stating (or not using) a feature selection method (n = 37/174, 21.3%). 
Figure 8 displays the neural network classes over time.

Ensemble methods are machine learning approaches that use one 
or more models in combination (in an ensemble). Algorithms such 
as random forest and gradient boosting are examples of ensemble 
methods. Ensemble methods can also be used by combining the best 
results of multiple runs of a model (31, 43) or the best results of 
different input types such as k-mer length (34). Five classifiers from 
two publications were “part of an ensemble.” Kargarfard et al. (54) 
used CBA, RIPPER, and decision trees together in an ensemble for 
their final model. Kou et al. (46) used an ensemble of 64 random 
forest runs in their prediction algorithm.

Multiple types of validation were done for some classifiers 
(n = 96/174, 55.2%). The type of validation done was stated for 93.7% 
(n = 163/174) of classifiers. The most common types of validation 
were N-Fold Cross-Validation (n = 137/174, 78.7%), splitting the data 
into a training and validation dataset (n = 50/174, 28.7%) or training, 
optimization, and validation datasets (n = 34/174, 19.5%). There were 
nine classifiers (5.2%) where the authors did not split the datasets but 
rather used an entirely independent dataset. Other techniques that 
were used included simulation (n = 10/174, 5.8%), experimental 
validation (n = 9/174, 5.2%), and comparison to results from a 
previous classifier (n = 5/174, 2.9%) (Supplementary Table S11). Yang 
et al. (31) used the University of California, Irvine Medical Center 
medical benchmarks to validate their hybrid transfer classifier as a 
simulation of data before testing it on their coronavirus dataset. 
Another study using simulations was Bartoszewicz et al. (22) who 
simulated 250 bp Illumina reads to use as part of their 
validation technique.

The accuracy of the classifiers was assessed in 20 different ways 
and categorized on the analysis-level, not the classifier-level. The 
most common measures of accuracy reported included accuracy 
(n = 55/77 analyses, 71.4%), sensitivity (n = 31/77, 40.2%), specificity 
(n = 28/77, 36.3%), receiver operating characteristic (ROC) (n = 20/77, 
26.0%), and the area under the curve (AUC) (n = 18/77, 23.4%). There 
were 15 other measures of accuracy as well (Supplementary Table S12) 
and some authors did not report the accuracy (n = 3/77, 3.9%). 
Accuracy was also used in terms of predictive probability in some 
cases. It was inferred that 21 analyses (27.3%) were using predictive 
probability to determine the most likely host, for three of the analyses 
it was unclear, and the remainder did not appear to be  using 
predictive probability to determine the most likely host or for other 
types of inferences.

Twenty-five classifiers were identified in this scoping review as the 
best classifier used within a given analysis. This was determined based on 
what the authors deemed to be the best classifier or, if not stated, the 
classifier with the highest measure of accuracy. Analyses that only included 
one classifier were not assessed for this metric (n = 41/77 analyses, 53.2% 
or n = 41/174 classifiers, 23.0%). Of the 25 classifiers that were identified 
as the best, the most common feature selection was not used/not stated 
(n = 14/25, 56.0%), and the remaining 11 classifiers all used different 
feature selection methods. In analyses that identified the most accurate 
classifier, the most common machine learning algorithm class (category) 
identified was a neural network (bi-path, multiplayer perceptron, 
convolution) (n = 8/25, 32.0%), support vector machine (n = 6/25, 24.0%), 
k-nearest neighbour (n = 3/25, 12.0%), random forest (n = 3/25, 12.0%) 
and the remaining 5 classifiers used different machine learning algorithms.

FIGURE 6

Top 8 machine learning algorithms used over time at the publication 
level. The representation of the top 8 machine learning algorithms 
used over time at the level of publication (i.e., if one publication used 
two different random forest classifiers it counts as random forest being 
used in a publication). Algorithms were displayed at the publication 
level rather than the classifier level to reflect the distribution of usage 
more accurately over time rather than representing a large change 
because one publication used one type of classifier multiple times.
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4 Discussion

4.1 Summary of evidence

The main objectives of this review were to describe and 
categorize machine learning methods as a method for host 
prediction using viral sequences and genome data. There was a wide 
variety of approaches taken, and even where commonalities were 
found there were still many differences. This reflects the exploratory 
nature of computational data and the variety of approaches where 
the greatest limiting resources are time and data availability. 
Approaches differed not only comparatively to one another but also 
within publications. Many authors explored their data in multiple 
ways to configure the most effective predictive pipeline, and this 
was reflected by the number of analyses and the number of 
classifiers used per publication.

The main findings arose from the pre-processing of the 
sequences and the feature selection methods used prior to the 
machine learning algorithm. This is where the greatest disparity in 
methodological approaches was observed with 41 different 
pre-processing transformations applied to the genomic data. This 
shows the vast number of ways that data can be manipulated for the 
extraction of desired information. Publications showing a high 
degree of complexity incorporated measures related to phylogeny 
and host interaction. Commonly, each publication used more than 
one sequence pre-processing transformation (n = 57/77 analyses, 
74.0%). Due to the large size of the feature libraries, feature selection 
tools were employed to reduce the dimensionality of the input 
database. Over half of the publications did not state or did not use 
a feature selection method. It may be that some classifiers did not 
require or benefit from a feature selection processing step to 
maximize classifier performance. Nonetheless, the rationale for 

FIGURE 7

Machine learning algorithm and feature selection method network analysis. The thickness of the edges reflects the impact and frequency of that 
relationship within the network, similarly, the size of the node reflects the frequency of the method.
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using specific sequences or a combination of feature selection and 
predictive approaches was not widely available. Most of the machine 
learning algorithms used were common supervised algorithms (RF, 
SVM, KNN, CT, NB) (n = 98/174, 56.4%) (55). Still, the number of 
different methods used was 31 with one being a non-supervised 
algorithm (hierarchical clustering). There were five analyses (2 
publications) that used an ensemble approach per our definition 
(46, 54). The top eight machine learning categories accounted for 
95.3% (n = 166/174 classifiers) of the classifiers. This is likely 
because these are well-established methods that continue to 
perform well (Table 5; Supplementary Table S10). These are also 
amongst the most popular classification algorithms to use (56) and 
familiarity with given algorithms will result in greater use over 
unknown or emerging algorithms. The distribution of the usage of 
these methods remains consistent over time (Figure 6). The greatest 
change is observed in the usage of gradient boosting machines 
which has increased over the last several years. However, this 
method is not new as it was first introduced in 1999 (57), and other 
boosting methods were introduced prior to that, yet the reason for 
the increase in usage is unclear. A reason for the increase could 
be increased availability of or access to software that can reliably 
perform these algorithms. Examining the neural network usage 
over time, publications that were published more recently tended 
to describe their neural network in greater detail and there was a 
rise in the use of deep neural networks (Figure 8). Interesting and 
unique approaches to classifier validation were charted such as 
simulating an additional dataset and experimental validation. 
Twenty-one analyses used predictive probability to determine the 
most likely host, for three it was unclear, and the remainder did not 
appear to be using predictive probability to determine the most 
likely host or for other types of inferences.

A commonality in the publications themselves was an increase 
in complexity and specificity of host species in more recent 
publications with the advancement of data availability, computer 
science, and expansion of knowledge. Most of the publications 
originated from the United States, China, and the United Kingdom, 
however, this may reflect the English language limit implemented 
during the screening process. The earliest publication was 
published in 2008 and the most recent in 2022. Spikes in the 
number of publications were seen in 2010 and 2021. In 2010, all 
the publications used influenza virus genome data, and may 
be reflective of the 2009 H1N1 Pandemic with some publications 
specifically covering the 2009 H1N1 Pandemic (37, 38, 58, 59). 
Most publications from 2021 involved coronaviruses or a 
combination of coronaviruses, other viruses, and influenza 
viruses. This may be  reflective of the SARS-CoV-2 pandemic 
originating in 2019 (27, 31, 60). At the analysis level, the same 
advancement can be  seen with the significant increase in data 
availability and usage regarding both hosts and the number of 
sequences used. Another commonality was accuracy; measures 
most used were standard measures for machine learning classifiers 
such as accuracy, sensitivity, specificity, ROC, AUC, and F-score 
(n = 64/77 analyses used at least one of these accuracy measures, 
83.1%). This may be useful for the comparison of results from 
various publications such as in a systematic review, however, the 
differences in materials and methods may make this an 
inappropriate comparison. Consistency in the method(s) of 

reporting accuracy is also important for a reader’s interpretability 
of results.

A limitation of this review was the heterogeneity of approaches 
which made it more difficult to succinctly chart all data. However, this 
was addressed by splitting data charting into three levels which were: 
publication information, analysis information, and classifier 
information. In this review, pathogens other than influenza viruses 
and coronaviruses were charted but the list of such pathogens likely 
does not completely represent this population of pathogens because 
the focus was on the two most important groups of pathogens 
affecting multiple species. A secondary limitation of this review was 
that data was not charted for the deployment methods used within the 
arithmetic design of the machine learning approaches in the analyses. 
It is recommended that future studies take this into account.

5 Conclusion

This scoping review aimed to address the research question “What 
machine learning methods have been applied to influenza virus and 
coronavirus genome data for identification of potential reservoirs?” 
Through conducting a scoping review, 53 publications were identified 
as relevant for this paper. It was found that 32 different machine 
learning algorithms were utilized, but the top eight algorithm classes 

FIGURE 8

Neural network algorithms used over time. The neural networks used 
per publication over time to see the trend of distribution of type over 
time. Neural networks were not used every year.
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accounted for 95.3 percent of the classifiers used. Additionally, it was 
identified that 41 different feature transformations were used, and 28 
different types of feature selection were used as part of the machine 
learning analysis. The approaches used were heterogeneous and 
displayed the emerging nature of this research. This scoping review 
also allowed for the identification of several gaps in the current 
literature. For example, most publications used “avian” as a host group 
rather than specifying bird species. This is a gap in the current body 
of literature that should be addressed in future studies. Overall, the 
area of predictive modelling is developing fast, including novel 
methods. However, regardless of the methods used, the authors should 
consider the clinical, diagnostic, or surveillance question of interest, 
and sufficient specificity and quality of the data in combination with 
data analytics platforms for a thorough analysis.
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