
Frontiers in Veterinary Science 01 frontiersin.org

Development of a rapid 
quantitative method to 
differentiate MS1 vaccine strain 
from wild-type Mycoplasma 
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Mycoplasma synoviae (MS) is an economically important pathogen in the 
poultry industry. Vaccination is an effective method to prevent and control MS 
infections. Currently two live attenuated MS vaccines are commercially available, 
the temperature-sensitive MS-H vaccine strain and the NAD-independent MS1 
vaccine strain. Differentiation of vaccine strains from wild-type (WT) strains is 
crucial for monitoring MS infection, especially after vaccination. In this study, 
we  developed a Taqman duplex real-time polymerase chain reaction (PCR) 
method to identify MS1 vaccine strains from WT strains. The method was 
specific and did not cross-react with other avian pathogens. The sensitivity 
assay indicated that no inhibition occurred between probes or between mixed 
and pure templates in duplex real-time PCR. Compared with the melt-based 
mismatch amplification mutation assay (MAMA), our method was more sensitive 
and rapid. In conclusion, the Taqman duplex real-time PCR method is a useful 
method for the diagnosis and differentiation of WT-MS and MS1 vaccine strains 
in a single reaction.
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1 Introduction

Mycoplasma synoviae (MS) has been described as an important pathogen causing air sacculitis, 
infection synovitis and eggshell apex abnormalities (1–3), and is listed as a notifiable mycoplasma 
by the World Organization for Animal Health (WOAH) (4). MS infection can cause subclinical 
symptoms and lead to co-infection with Mycoplasma gallisepticum (MG), Newcastle disease virus 
(NDV), Infectious bronchitis virus (IBV), and other avian pathogens (5–8). Rapid and accurate 
diagnosis is necessary to monitor MS infection especially after vaccination. Diagnostic methods 
for MS include bacteriological isolation, serological assays and molecular detection (9). 
Mycoplasma isolation is inefficient and expensive, as in vitro growth requires a rich medium and 
is time-consuming (10, 11). The serological assay only provides a history of infection (12). 
Molecular analysis, such as polymerase chain reaction (PCR) or real-time PCR (qPCR), guarantees 
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earlier detection, is more rapid, more sensitive, and more specific than 
the others, and is widely used (9).

Measures to prevent and control MS include vaccines and 
antibiotics. However, the emergence of drug resistance in MS strains 
has made the use of antibiotics more cautious (13–16). Vaccination is 
another option to control the disease. At present, in addition to the 
inactivated vaccine, only two live attenuated vaccines are commercially 
available: the temperature-sensitive (ts+) MS-H vaccine strain 
(Vaxsafe® MS, Bioproperties Pty Ltd.) and the NAD-independent 
MS1 vaccine strain (Nobilis® MS Live, MSD Animal Health Inc.). The 
MS-H strain was developed by chemical mutagenesis of an Australian 
strain (86079/7NS), while the MS1 strain is a spontaneous attenuation 
of the wild-type pathogenic isolate WVU1853. After live vaccine 
inoculation, the differentiation of vaccine strains from wild-type 
strains is crucial for monitoring MS infection. Moreover, it is 
important to determine whether the vaccine strains have successfully 
colonized the respiratory mucosa to provide effective protection 
against wild-type (WT) strains (17, 18). Several genotyping techniques 
have been developed to differentiate MS-H strains from WT strains, 
including real-time PCR (19), melting curve analysis, agarose 
gel-based mismatch amplification mutation assay (MAMA) (20), and 
high-resolution melting curve assays (21, 22). However, only one 
study provided a way to distinguish the MS1 strain from WT strains, 
using melt-based MAMA PCR or agarose-MAMA PCR (23).

In this study, we  developed a Taqman duplex real-time PCR 
method that was sensitive, specific and more rapid than melt-based 
MAMA. The developed method is applicable both in laboratory and 
clinical testing, and promotes an easier method to differentiate 
WT-MS strains and MS1 vaccine strains in a single reaction.

2 Materials and methods

2.1 Samples

The MS1 (Nobilis® MS Live, MSD) and MS-H (Vaxsafe® MS-H, 
SINDER) vaccine strains used in this study were obtained from 
commercial distributors. The WT- MS strains and DNA samples 
extracted from tracheal swab samples were isolated by the authors 
(Supplementary Table S1). The genomes of MG, IBV, NDV, Avian 
influenza virus (AIV), Avian reovirus (ARV), Escherichia coli (E. coli) 
and Avibacterium paragallinarum (A. paragallinarum) were used for 
the specific detection of the method. The standard nucleic acid 
(plasmid) of MS1 and WT- MS used in this study was constructed 
with pMD-18 T (Takara, China).

2.2 Nucleic acid extraction

The nucleic acids of MS, MG, E.coli and A. paragallinarum were 
extracted using the Bioer Total DNA Extraction Kit (Bioer Tec., 
China). The nucleic acids of IBV, NDV, AIV and ARV were extracted 
using the Bioer Total RNA Extraction Kit (Bioer Tec., China) and then 
the extracted RNAs were used to synthesize cDNAs using the 
PrimeScript™ II 1st Strand cDNA Synthesis Kit (Takara, China) 
according to the manufacturer’s instructions.

2.3 Monoplex and duplex real-time PCR

By sequencing and comparing the whole genomes of the vaccine 
strain and wild-type strains (24), we  found a single nucleotide 
mutation site, and designed probes and primers that could be used to 
distinguish the vaccine strain (MS1) from wild-type strains 
(Supplementary Table S2). All real-time PCR reactions were carried 
out on an ABI 7500fast Real-time PCR Detection System. A volume 
of 20 μL reaction mixture contained 10 μL 2x THUNDERBIRD Probe 
qPCR Mix (TOYOBO, China), 200 nM each primer, 100 nM each 
probe, and 2 μL templates. The reaction conditions involved 
incubation at 95°C for 3 min, followed by 40 cycles of denaturation at 
95°C for 15 s and a combined annealing and extension step at 60°C 
for 30s.

For the sensitivity of real-time PCR assays, MS1 and MS-WT 
standard plasmids were constructed. Briefly, qPCR amplification 
products were collected, purified by gel, and then connected to the 
pMT-18 T vector. The recombinant plasmids with correct sequencing 
were used as the standard plasmids for subsequent experiments. Each 
standard plasmid was serially diluted tenfold to achieve concentrations 
of 101 to 107 copies/μL. The serially diluted plasmids were used to 
establish a standard curve for each target after three technical 
replications. For duplex real-time PCR, two plasmids were equally 
mixed and then serially diluted as described above. The single and 
mixed plasmids were used to compare detection sensitivities between 
the duplex reaction and the individual singular reactions.

For the specificity assay, potential cross-reactions with other avian 
pathogens were measured to ensure the specificity of our method. The 
templates used in this assay included DNA from MS1, MS-H, MS-WT, 
MG, E.coli and A. paragallinarum, and cDNA from IBV, NDV, AIV, 
and ARV.

2.4 Melt-based mismatch amplification 
mutation assays

As described by Kreizinger et al. (23), MAMA is based on allele-
specific competing primers and is widely used for SNP detection. One 
volume of Melt-MAMA PCR reaction was performed in 20 μL, 
containing 2 μL templates, 150 nM each primer, 4 μL 5x Colorless 
GoTaq Flexi Buffer (Promega), 2 μL MgCl2 (25 mM), 0.6 μL dNTP 
(10 mM, Takara), 1 μL EvaGreen (Biotium Inc.) and 0.16 μL GoTaq 
DNA polymerase (5 U/μL, Promega). Melt-based MAMA PCR 
reactions were carried out on an ABI 7500fast Real-time PCR 
Detection System with High Resolution Melting (HRM) Software 
(v3.2, Thermo Fisher). The thermocycling parameters were 95°C for 
10 min, followed by 40 cycles of 95°C for 15 s and 58°C for 1 min and 
a dissociation protocol comprising 95°C for 15 s, followed by an 
incremental temperature ramp (0.2°C) from 58°C to 95°C.

2.5 Image and statistical analyses

All graphs and statistics in this study were created with GraphPad 
Prism 8 software (v8.0.2). All data are presented as standard errors 
(SEs) of at least three independent experiments.
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3 Results

3.1 Duplex real-time PCR specificity 
analysis

To determine the specificity of the method, genomes extracted 
from different chicken pathogens were used as templates. As shown 
in Table 1, no specific amplifications occurred between the reaction 
systems of other avian pathogens. As expected, in the duplex real-time 
PCR reaction system, the nucleic acids of WT-MS were positive in the 
MS-WT measurement channel and negative in the MS1 measurement 
channel and vice versa. The MS-H strain was identified as the WT 
strain in the duplex real-time PCR system.

3.2 Duplex real-time PCR sensitivity 
analysis

The sensitivity of the duplex real-time PCR was investigated from 
two perspectives. One was to compare the detection limits of 
monoplex qPCR with duplex qPCR. The other was carried out with 
templates containing a single target or mixed targets.

To make the comparison more intuitive, we  constructed the 
standard plasmids of MS-WT and MS1 respectively, and plotted the 
standard curves. As shown in Figure 1, targeting the same plasmids, 
the curves shown for duplex and monoplex real-time PCRs, 
respectively, were in practical agreement, and the minimum detection 
limits of all qPCRs were between 101 and 102 copies/μL (Figure 1). No 
evidence of inhibition between probes was observed in the 
duplex reaction.

Do mixed targets have any effect on duplex real-time PCR? 
The assay was performed with single or mixed plasmids of 
MS-WT and MS1. As shown in Table 2, similar Ct values were 
obtained from the same target in mixed and single templates. 
There was no evidence of inhibition as both targets only reacted 
with their specific probe.

3.3 Comparison of duplex real-time PCR 
with melt-based MAMA

To confirm the practicality of duplex real-time PCR, we detected 
the same templates by real-time PCR and melt-based MAMA 
methods, respectively. The template information is shown in Table 1. 
Results showed that both methods could distinguish between WT 
strains and the MS1 vaccine strain (Table 3). Test results of clinical 
swab samples showed a higher detection rate of duplex real-time PCR 
than melt-based MAMA, especially when the nucleic acid content of 
the samples was low (Supplementary Table S3). It should be noted that 
the melt-based MAMA method was more suitable for qualitative 
analysis because the instrumentation system only showed the Ct 
values of the higher peak when there were two detection targets in the 
same sample (Table 3). All of the results indicated that the developed 
duplex real-time PCR method was more sensitive and more suitable 
for quantitative analysis than the existing method.

In addition, the duplex real-time PCR took less time for detection 
than the existing method because there was no slow warming step 
(0.2°C/s).

4 Discussion

MS is distributed worldwide and has become one of the most 
important pathogens threatening the global poultry industry (24, 25). 
Furthermore, MS co-infections with other infectious agents such as 
NDV, IBV, E. coli, and MG increase economic losses (26–28). Research 
on MS can lay the foundation for the prevention and treatment of 
MS-related diseases. With the increase in positive and incidence rates, 
prevention and control of MS have become the focus of the poultry 
industry in China (29–31).

To increase the knowledge of MS epidemiology and to improve 
control and eradication programs, it is important to monitor MS 
infection and identify sources of infection and modes of transmission. 
In order to avoid economic losses due to disease outbreaks, vaccination 
has become the primary prevention and control measure in the 

TABLE 1 Specificity of the duplex real-time polymerase chain reaction (PCR).

Pathogens Nucleic acid type MS-WT channel (Ct) MS1 channel (Ct) Detection results

MS-WT DNA 21.0365 / Wild-type positive

MS1 DNA / 19.2354 MS1 vaccine positive

MS-WT + MS1 DNA 21.8562 20.0004
Both wild-type and MS1 vaccine 

positive

MS-H DNA 19.2650 / Wild-type positive

MG DNA / / Negative

IBV cDNA / / Negative

NDV cDNA / / Negative

AIV cDNA / / Negative

ARV cDNA / / Negative

E.coli DNA / / Negative

A. paragallinarum DNA / / Negative
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poultry industry. For MS, the live vaccine stands out among other 
types of vaccines because it prevents infection with wild-type strains 
by colonizing the trachea and continuously stimulating the immune 
response (17, 18). To date, only two commercial live vaccines are 
available in the world. After immunization with a live vaccine, 
differentiation between wild-type strains and vaccine strains is 
imperative. There have been several reports on distinguishing the 
MS-H vaccine strain from wild-type strains but only one report on 
the MS1 vaccine strain (23). In this study, we  developed a 
quantitative and rapid Taqman-based duplex real-time PCR method 
to differentiate and quantify the MS1vaccine strain and wild-type 
strains simultaneously.

The specificity assay indicated that no fluorescent signal was 
detected among the nucleic acids of MG, IBV, NDV, AIV, ARV, E. coli 
and A. paragallinarum in our reaction system. Since the purpose of 
this study is to distinguish the MS1 strain from the wild-type strains, 
we  did not take the MS-H strain into account. According to the 
results, the MS-H strain was identified as wild-type as expected. The 
quantification method requires knowledge of the detection limit. 
Therefore, we determined the limit of our method by 10-fold serial 
dilution of the standard plasmids. The lowest detection range was 

FIGURE 1

Standard curves of monoplex and duplex real-time PCRs with the same targets. (A) Standard curves of monoplex and duplex real-time PCRs using the 
MS1 standard plasmid template. (B) Standard curves of monoplex and duplex real-time PCRs using the MS-WT standard plasmid template.

TABLE 2 Sensitivity of the duplex real-time polymerase chain reaction 
(PCR).

Templatesa Duplex real-time 
PCR, MS-WT 

channel

Duplex real-time 
PCR, MS1 channel

Mean Ct SEb Mean Ct SEb

MS-WT-P1 22.0793 0.1097 / /

MS-WT-P2 25.5165 0.1283 / /

MS-WT-P3 29.1750 0.0075 / /

MS-WT-P4 32.7358 0.1617 / /

MS1-P1 / / 19.3164 0.1655

MS1-P2 / / 23.0032 0.1855

MS1-P3 / / 26.9095 0.1806

MS1-P4 / / 29.9573 0.1378

MS1-P1 + WT-P1 22.1378 0.1732 19.7309 0.1414

MS1-P2 + WT-P2 25.9738 0.0181 23.6055 0.1411

MS1-P3 + WT-P3 29.5684 0.1176 27.3696 0.1996

MS1-P4 + WT-P4 32.9125 0.0226 30.4886 0.0219

ap refers to the plasmid, the number represents different dilution multiples of the plasmid.
bSE indicates standard error.

TABLE 3 Ct values of samples detected by duplex real-time polymerase 
chain reaction (PCR) and melt-based mismatch amplification mutation 
assay (MAMA) method.

Samples Duplex real-time 
PCR

Melt-based MAMA

MS-WT 
channel 

(Ct)

MS1 
channel 

(Ct)

MS-WT 
channela 

(Ct)

MS1 
channela 

(Ct)

MS1 / 25.13 / 30.93

MS-WT1 18.6 / 23.75 /

MS-WT2 26.27 / 31.97 /

MS-WT3 22.76 / 28.21 /

SI-1 26.40 / 32.51 /

SI-2 28.27 / 34.08 /

SI-3 26.71 / 33.09 /

SI-7 32.85 / / /

SV-7 33.18 29.15 / 34.59

SV-8 33.50 28.23 Bb 33.98

SV-9 31.84 29.17 / 35.07

SV-10 28.20 30.28 Bb 36.40

aThe MS1 and MS-WT channels represent the melting temperatures of the MS1 vaccine 
strain (approximately 75°C) and wild-type strains (approximately 70°C) respectively.
bB indicates that there is a peak near the corresponding Tm value, but no Ct value.
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between 101 and 102 copies/μL, regardless of whether it was an MS1 
plasmid or MS-WT plasmid. We also found that duplex reactions or 
mixed targets did not significantly influence the detection results.

Duplex real-time PCR has distinct advantages over melt-based 
MAMA, because it allows quantification and differentiation at the same 
time. In addition, the detection limit of duplex real-time PCR is more 
sensitive than that of melt-based MAMA considering the lower Ct values.

5 Conclusion

In conclusion, a duplex real-time PCR method was developed to 
distinguish between wild-type MS strains and MS1 vaccine strains. 
This method was highly specific and sensitive, and allowed the 
simultaneous quantification of MS1 and MS-WT. Based on the above, 
duplex real-time PCR can be used as a diagnostic tool for the detection 
and quantification of MS strains after inoculation with the MS1 
live vaccine.
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