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In part two of this mini-series, we evaluate the range of machine-learning

tools now available for application to veterinary clinical text-mining. These

tools will be vital to automate extraction of information from large datasets

of veterinary clinical narratives curated by projects such as the Small Animal

Veterinary Surveillance Network (SAVSNET) and VetCompass, where volumes

of millions of records preclude reading records and the complexities of clinical

notes limit usefulness of more “traditional” text-mining approaches. We discuss

the application of various machine learning techniques ranging from simple

models for identifying words and phrases with similar meanings to expand

lexicons for keyword searching, to the use of more complex language models.

Specifically, we describe the use of language models for record annotation,

unsupervised approaches for identifying topics within large datasets, and discuss

more recent developments in the area of generative models (such as ChatGPT).

As these models become increasingly complex it is pertinent that researchers

and clinicians work together to ensure that the outputs of these models are

explainable in order to instill confidence in any conclusions drawn from them.

KEYWORDS

big data, machine learning, neural language modeling, clinical records, companion

animals

1 Introduction

Natural Language Processing (NLP) is a rapidly growing branch of machine learning

aimed at understanding unstructured text using computational methodologies. NLP

provides frameworks for computer systems to understand, interpret, and generate human

language, which has important implications for applications such as machine translation,

text classification, named entity recognition and summarization (1). NLP involves the

development of algorithms and computational models to help achieve these challenging

goals. However, language does not always follow defined rules but is complex, ambiguous

and context-dependent with complications that include regional and dialect differences,

emergence of new words, phrases, abbreviations, and colloquialisms.
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Within healthcare, NLP is increasingly used to analyze and

extract useful information from large volumes of unstructured

clinical text data such as electronic health records (EHRs) and

clinical notes in an automated process, enhancing the speed and

efficiency of clinical decision-making, supporting the detection of

disease outbreaks and the ongoing monitoring of disease incidence

and prevalence. One study used EHRs from nine hospitals to

support an understanding of the outbreak’s transmission routes (2).

Another area in which NLP has been applied is pharmacovigilance,

to capture adverse drug events being reported within clinical

narratives to gauge the prevalence and severity and can support the

understanding of multi-drug interactions (3, 4).

With the availability of large volumes of veterinary EHRs

through frameworks such as SAVSNET and VetCompass, there

is a growing need to develop tools and methodologies to fully

utilize the rich source of disease information that lies within them

(5, 6). As we will describe, machine learning models have the

potential to reveal disease syndromic signals within complex textual

inputs and have become increasingly accessible even to researchers

on modest budgets. This democratization of access to machine

learning methods with the attendant potential to screen clinical

records at scale has the potential to enhance our understanding of

disease patterns in veterinary medicine profoundly.

In the second part of this mini-series, we will discuss the

applications and potentials of machine learning methodology to

extract valuable insights from unstructured clinical records. We

explore how such tools are the building blocks for improving

the capabilities of downstream applications such as disease

epidemiology and outbreak surveillance. We examine the role of

language models, such as bidirectional encoder representations

through transformers (BERT) (7) and generative pretrained

transformers such as chatGPT (8), Llama (9) (and there are now

many more of these to choose from), to extract word meanings

to understand the nuances of language and spelling variations

within the corpora to better adapt fixed rule-based systems before

evaluating them as independent classification tools. By providing

an overview of the field’s current state, we aim to highlight the

pivotal role of machine learning-based text mining in enhancing

companion animal care and disease surveillance in veterinary

medicine.

2 Text-mining veterinary clinical notes
using machine learning

2.1 Machine-learning for word meaning

Machine-learning (ML) is becoming increasingly important

for text analysis. In many cases ML relies on neural networks.

These are computational representations or software simulations

of biological neural networks wherein virtual neurons (or nodes) in

multiple layers, are interconnected. Each node aggregates the value

of connections from nodes in the layer above, the mathematical

weighting of these connections adjusts how much any given

connection contributes to the activation of a node. In the simplest

neural network these weightings are adjusted by evaluating training

data over many iterations and at each iteration adjusting these

weightings until the input to the network leads to the “correct”

output. The number of weightings (connections) is sometimes

referred to as the number of parameters (10).

In part one of this mini-series we discussed the utility of

keyword searches for identifying features of EHRs. Veterinary free-

text invariably includes both technical scientific and colloquial

language, including non-standard abbreviations and misspellings.

As it is difficult to curate a complete list of the different ways in

which veterinary professionals will describe the same observation,

dictionary development can be time consuming and the use of

standardized ontologies may result in a loss of recall. Furthermore,

even the most complete dictionaries will require updating due

to the ever changing nature of nature language. However, there

are some simple machine learning approaches which can be

implemented in order to augment these dictionaries. An example

of such approaches is word embeddings.

Word embedding involves creating vector representations of

words (coordinates for a word in a multidimensional word-

space) which encapsulate word meaning, therefore allowing

mathematical analysis of text. An efficient method for creating

embeddings, word2vec, was developed by Mikolov et al., training

a neural network to predict words in sentences based on the

words surrounding them using a large corpus (hundreds of

thousands to millions) of documents (11). The resultant neural

network weightings are effectively a vector (usually 200–300

numbers) representing the words embedding. Words, spellings and

abbreviations with similar meanings can be identified due to the

mathematical similarity of the vectors representing them. A similar

procedure can be used to "embed" sentences and passages of text

giving these numerical representations of their overall meaning

(12).

This approach has been used to expand a dictionary of

dietary supplements as described in clinical notes (13), with

the model identifying between one and 12 variants for each

supplement, resulting in retrieval of 8.39% more clinical notes

on average. Similarly, word2vec was used to identify misspellings

of pharmaceutical words in clinical notes (14) and resulted in

identification of 150 new terms which were used to create an

extended lexicon.

The specific advantage of this approach is that the model is

trained on data taken from the target corpus, allowing development

of embeddings more representative of the language used within

that corpus. However, word2vec models do not capture remote

relationships between words and attribute a single vector for words

that might have multiple meanings. This limitation is avoided in

later approaches such as ELMO (15) and transformer architecture

(as described below).

2.2 Language models as tools for record
annotation

Languagemodels can accurately capture semantic and syntactic

structures, which is critical to leverage the rich sources of

information that unstructured clinical narratives have within them.

Such language models permit flexibility in understanding by

capturing patterns and relationships across large volumes of data

rather than pre-defined rules; the dynamic nature of language
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requires an equally malleable system to capture the many ways

clinicians can articulate their notes. Rule-based systems are limited

to defined inputs where subtle variants in language can add

significant complexities to their design and, therefore, can only

practically be used for searching for one item at a time such as for

single disease scope studies. Rule-based systems also rely heavily on

the developers’ domain-specific knowledge and manual readings

of the records to produce. Neural network-based architectures

present in language models, such as convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), were a significant

innovation away from statistical and rule-based frameworks and

introduced the concept of word embeddings, a movement toward

capturing rich contextual word representations (16).

Recently, the transformer architecture, which capitalizes on

the concept of attention (the relationship between words in

phrases/sentences sometimes separated by some distance), has

enabled new state-of-the-art performances across many NLP

tasks (17). Transformers are the core architecture behind

Bidirectional Encoder Representation for Transformers (BERT)

(7), Generative Pretraining (GPT) (18), and Language Models

for Dialog Applications (LaMDA) (19). A key difference to

word2vec embeddings is that these models allow for context-

specific representations of words to allow different meanings to

be coded differently. For example the word "discharge" may mean

fluid leaking from a wound or releasing a patient from hospital

and would have the same embedding in word2vec models but is

ultimately treated as different entities in BERT models depending

on context (7).

Disease coding frameworks, such as the International

Classification of Disease (ICD), provide a robust methodology

for understanding mortality and morbidity information for

research and epidemiology (20). However, disease coding of

unstructured clinical notes is challenging and is inherently

time-consuming, expensive, and prone to errors (21–24). For

these reasons, the concept of automating such a process with

language models has been well-explored, with previous research

exploring the application of RNNs, CNNS and, more recently,

the incorporation of attention mechanisms and the transformer

architectures (25–29). The desire for automated disease annotation

frameworks to exist within veterinary medicine is no different.

Previous works have aimed to apply SNOMED-CT diagnosis labels

using bidirectional long-short-term memory networks (BLSTMs),

a variant of RNNs, using 112,558 expert annotations from a

tertiary referral centre showing promising results (30). Further

works capitalized from this integrating a transformer architecture

allowing for a hierarchical organization of automated disease

codings (31). Language models have also been used to understand

veterinarians reasoning behind an antimicrobial administration;

here, a BERT model was additionally trained on 15 million clinical

notes from the VetCompass Australia corpus (32).

In summary, language models present promise for automating

annotations within unstructured EHRs. Their capacity to analyze

extensive datasets and discern intricate linguistic relationships

empowers these models to enhance annotation precision and

speed, facilitating more comprehensive data analysis in disease

epidemiology. An exemplification of this potential lies in the

development of PetBERT, a substantial language model trained

on a corpus exceeding 500 million tokens sourced from the

SAVSNET dataset (33). This dataset comprises clinical narratives

from diverse veterinary practices across the UK. Through fine-

tuning, PetBERT was transformed into a multi-label classifier

proficient in automatically coding veterinary clinical EHRs

using the International Classification of Diseases 11 framework.

Impressively, it achieved F1 scores surpassing 83% across 20

disease codings with minimal annotation requirements. Moreover,

they serve as foundational structures for bolstering disease

outbreak detection capabilities. Employing this syndromic labeling

system, we identified a documented disease outbreak. Comparative

analysis between PetBERT’s automated identification and the

previously employed clinician-assigned point-of-care labeling

strategy revealed PetBERT’s capability to identify the outbreak up

to three weeks earlier. The demonstrated proficiency of PetBERT in

automating coding processes within veterinary clinical narratives

underscores the transformative potential of language models in

augmenting disease surveillance and timely outbreak detection

within veterinary medicine.

2.3 Unsupervised machine learning

The machine-learning approaches described above often rely

on identifying groups of records for study and in the case of

using neural language models will often entail training models

using gold-standard annotations made by experts. These are often

referred to as ’supervised’ systems where the researcher/developer

directs what the system learns. Unsupervised systems involve

presenting a dataset to a model without stipulating an underlying

structure to be detected and to identify the underlying structure

within the data in the hope that this will expose relevant clinical

features. One such approach is topic modeling. A key approach to

this was published by Blei et al. (34) using a statistical approach

to text (latent dirichlet allocation) which modeled the assumption

that documents contain a distribution of topics and that topics are

made up of a specific distribution of words. Reverse engineering

this allowed identification of the word distributions present in a set

of topics which were inferred from the text itself rather than a prior

assumption of what topics were present in the data. This method is

made readily available through accessible programming interfaces

(35). This approach has been applied to veterinary clinical data

allowing clinically relevant topics to be identified in veterinary text

to the extent that a topic identified through this method displayed

a clear temporal pattern matching a known national outbreak

of gastroenteric disease in dogs (36). Topic modeling has been

recognized as valuable tool for bioinformatic research (37) and as

a tool for clinical research (38, 39).A key feature of topic modeling

is that topics discovered in documents are easily interpreted due

to each topic having a list of words (and probabilities for those

words) that make them up, such that in the example above the

outbreak identified above could be clearly seen to be gastroenteric

disease given that it comprised words like “diarrhoea,” “vomit,” and

“food.” Furthermore, topic-modeling methods allow for evaluation

of the weighting of words that comprise the topic with time (or

across other categories such as breed, age, and date) highlighting

evolution of themes with time that, in the case of disease phenotype,
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might illustrate emergence of new syndromes (36, 40). More

recently, transformer-based models that create whole document

embeddings i.e., representation of clinical notes as 768 dimensional

arrays based on the meaning of words/tokens in the documents

provide another route to topic modeling. Following a reduction

of dimensionality in these arrays, a clustering algorithm can be

used to cluster documents. An analysis of term-frequency-inverse

document frequency (tf-idf) identifies key-words reflected in the

these clusters. These words then indicate themes or topics in

those documents. This approach is encapsulated in the BERTopic

FIGURE 1

Distribution of odds ratios with 95% confidence interval for a given topic to occur in records from specific breeds. The model comprised 200 topics,

generated entirely by the computer without external “hints,” many having clear clinical relevance. Here, odds ratio for records with topic 23 as their

most probable topic are calculated against the odds of records from crossbreeds having that topic as the most probable one. Data for topic 23 with

key-words: seizure, seizures, bloods, diazepam, epiphen, phenobarb, epilepsy, pexion, lasted, episode.

FIGURE 2

Example of prompt engineering to extract selected data (in this case heart rate) from clinical narratives.
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Package (41) and when applied to 1,000,000 SAVSNET records, we

produced a topic model comprising 200 different topics each with

keywords produced by the model without external prompting or

intervention. Each topic is characterized by the keywords present

and these usually have a clear clinical correlate for instance words

describing ear disease (“ear,” “canal,” “left ear,” “wax,” “right ear,”

“otitis,” “discharge,” “left,” “drops,” “both,” “osurnia”) and words

describing wound management (“collar,” “wound,” “buster collar,”

“poc,” “keep,” “healing,” “looks,” “wound looks,” “healed,” “post,”

“off,” “licking,” and “well”). The probability distribution for a given

topic could be calculated across breeds. An example of how a

topic relating to seizures (with keywords such as seizure, bloods,

diazepam epiphen, and epilepsy) created using BERTopic in this

way is distributed in records from dogs of different breeds is shown

in Figure 1. This data was very similar to published breed-related

data on seizuring (42). While topics may not be precise, they

can allow rapid and comprehensive screening of large volumes of

records for a huge variety of disease phenotypes in a single study.

2.4 Generative models

The neural network models described so far have ranged from

tens of thousands of connections (parameters) through to hundreds

of millions of parameters (in BERT Language models). More

recently models have been developed that have billions to trillions

of parameters. As a comparison, the human neocortex is estimated

to have in the order of 200 trillion synapses (43). These generative

models are often trained using tasks such as text completion

(particularly next word prediction) and question/answer using

massive training sets from diverse sources. Examples include GPT-

3, ChatGPT, created by OpenAI (44) and OPT and Llama from

Meta (45). The complexity of the internal wiring of these models

combined with the extensive training data set leads to behavior

that is uncannily human. The main form of interaction is to

provide a prompt to which the model generates an answer (this

is after all the task the model is trained on). Thus prompting

ChatGPT (8) with the text "tell me in 30 words, why dogs vomit"

returns the text "Dogs can vomit due to various reasons such as

eating too fast, consuming something toxic, having an underlying

medical condition, or experiencing motion sickness." On the face

of it, this conversational dialog appears challenging to extract

structured data from but the model will respond with more useful

text if prompted in a more structured manner. So called “prompt

engineering” allows the prompter to coerce the model to return

structured outputs and can be used to classify text from clinical

records. For instance when trying to extract an important clinical

index of health such as heart rate data from free-text narratives, a

suitably engineered prompt can do this (Figure 2). This technique

would allow evaluation of a population at scale where previously

extensive manual reading or arcane rule-based classification of

records might be needed covering only a small subset of available

records.

The ability to run prompts across numerous texts is made

available through a programming interface which, in theory,

could allow for screening of extremely large numbers of records

but there are several drawbacks: Firstly, for large volumes,

record screening can have a cost per record which can be

come substantial for very large datasets (millions of records)

with multiple prompts; Secondly, some large language models

capture the prompt text for further model training which can

lead to some of the potentially sensitive material appearing

in outputted text for other users. In order to run such large

language models on a local machine (i.e., a copy which will not

train on the text or be prompted by external users) requires

substantial computing resource. Additionally, when using more

complex prompts looking for complicated responses, further

issues arise: given the very varied nature of the training data,

these models can output opinion that can be misleading,

completely fictitious (often referred to as “hallucination”) and

even prejudiced/unwholesome. In the case of ChatGPT, beyond

the prompt-response training, further fine tuning has been

implemented using reinforcement learning from human feedback

among other tools to try to forestall misleading or offensive

content (44). In our preliminary experiments utilizing ChatGPT

to identify overweight animals and body condition scores based

on notes written by clinicians during consultations, ChatGPT’s

performance compared very favorably with a rule-based classifier

used for the same task (46). Manual reading of records

remains the gold standard against which such approaches are

validated.

3 Conclusion

Machine learning and artificial intelligence are revolutionizing

our ability to automate the generation of signals relating to disease

phenotypes in veterinary patients using EHRs. The underlying

machinery of the tools is becoming less and less explainable as

models with massive numbers of parameters are trained on vast

datasets. The impact of large language models will become very

significant in the coming years and it will be important that users

understand the provenance of data from these models and that

researchers work to ensure that the outputs from these models

are explainable. While the methods discussed in this second part

of the review series have clear benefits in screening huge volumes

of data sometimes without requiring any stipulation of the nature

of signals to detect, there will remain a role for manual review of

records identified by these tools to maintain confidence that valid

conclusions are drawn from them.
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