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Microorganisms inhabit the gastrointestinal tract of ruminants and regulate body 
metabolism by maintaining intestinal health. The state of gastrointestinal health 
is influenced not only by the macro-level factors of optimal development and 
the physiological structure integrity but also by the delicate equilibrium between 
the intestinal flora and immune status at the micro-level. Abrupt weaning 
in young ruminants causes incomplete development of the intestinal tract 
resulting in an unstable and unformed microbiota. Abrupt weaning also induced 
damages to the microecological homeostasis of the intestinal tract, resulting in 
the intestinal infections and diseases, such as diarrhea. Recently, nutritional and 
functional yeast culture has been researched to tackle these problems. Herein, 
we summarized current known interactions between intestinal microorganisms 
and the body of young ruminants, then we discussed the regulatory effects of 
using yeast culture as a feed supplement. Yeast culture is a microecological 
preparation that contains yeast, enriched with yeast metabolites and other 
nutrient-active components, including β-glucan, mannan, digestive enzymes, 
amino acids, minerals, vitamins, and some other unknown growth factors. 
It stimulates the proliferation of intestinal mucosal epithelial cells and the 
reproduction of intestinal microorganisms by providing special nutrient 
substrates to support the intestinal function. Additionally, the β-glucan and 
mannan effectively stimulate intestinal mucosal immunity, promote immune 
response, activate macrophages, and increase acid phosphatase levels, thereby 
improving the body’s resistance to several disease. The incorporation of yeast 
culture into young ruminants’ diet significantly alleviated the damage caused by 
weaning stress to the gastrointestinal tract which also acts an effective strategy 
to promote the balance of intestinal flora, development of intestinal tissue, and 
establishment of mucosal immune system. Our review provides a theoretical 
basis for the application of yeast culture in the diet of young ruminants.
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1 Introduction

In intensive farming, the natural weaning time of young animals is often advanced to 
enhance production efficiency. However, these animals are subjected to this early weaning, 
when their digestive and immune systems are immature. Combined with the stress of 
separation from the mother (in some instances), dietary changes, altered feeding methods, 
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and environmental shifts, the weaning induces a range of psychological 
and physiological stress responses in the animals. These responses can 
result in indigestion, stunted growth, decreased immunity (1) or more 
severe outcomes such as diarrhea and mortality in weaned animals. 
These phenomena are largely attributed to the alterations in the 
intestinal flora because of weaning stress (2). The animal gut hosts a 
myriad of microorganisms that symbiotically interact with their host, 
offering mutual benefits. These microorganisms not only enhance 
nutrient availability and food digestibility in the gut but also play a 
crucial role in the development of the immune system of the animal 
(3). This interaction accelerates the maturation of the immune system 
and bolsters pathogen elimination. Furthermore, the gut microbiota 
is reflective of co-metabolism and the symbiosis between 
microorganisms and the animal, significantly influencing the health 
and development of the animal (4). They are also recognized as a 
critical environmental factor that regulates immune function through 
metabolic exchanges.

Addressing weaning stress in lambs is a significant challenge, 
especially in the context of antibiotic bans in feed. Biological feed 
additives have shown promise as antibiotic-free alternatives. 
Microecological preparations not only enhance animal immune 
function, alleviate oxidative stress, and improve disease resistance (5) 
but also promote gastrointestinal floral balance and nutrient 
digestibility (6). For instance, yeast cultures can boost immunity and 
antioxidant capacity (7), modulate inflammatory factors, and exhibit 
other biological effects (8). Han et  al. (9) highlighted the role of 
microecological preparations in fostering intestinal development and 
establishing microbial communities. Xinxu et al. (10) showed that 
fermented feed significantly improves the growth performance of 
weaned piglets, altering their intestinal microflora, serum biochemical 
indices, and immune indices. Additionally, introducing yeast cultures 
during early weaning could enhance rumen microbial colonization, 
improve intestinal development and digestibility, and promote lamb 
growth (11). However, understanding the vast and complex gut 
microbial network remains a challenge, with existing research being 
somewhat fragmented. Therefore, investigating the interactions 
between yeast cultures and gut microbes in young ruminants is crucial 
for understanding their impact on animal welfare and health.

2 Effects of intestinal microorganisms 
on young ruminants

2.1 Effects of intestinal microorganisms on 
the metabolism of young ruminants

Nicholson et al. (12) introduced the concept of the host-microbe 
metabolic axis, defining it as a system connecting specific host cellular 
pathways with a range of microbial species, sub-ecosystems, and 
microbial metabolic activities through multidirectional, reciprocal, 
high-speed chemical signals. In this metabolic axis, multiple microbial 
genomes collaborate to regulate metabolic processes, enabling 
microbial metabolites to interact with the host genome (13). Beneficial 
metabolites produced by microorganisms, such as bile acids, choline, 
and short-chain fatty acids (SCFAs) (14), contribute to the host’s 
health (15). Furthermore, these microbial metabolites influence the 
metabolic phenotype of the host, potentially reducing disease risk. The 
intestinal microorganisms form a host-microbial metabolic axis 

within the animal’s body, playing a crucial role in nutrient metabolism 
and immune response in the animal (16). The normal microbial flora 
in the gut metabolizes both externally ingested and endogenous 
macromolecules like carbohydrates, proteins, and fatty acids. 
Microorganisms also interact with the body metabolism to produce a 
variety of metabolites, including SCFAs, amino acids, small peptides, 
polyamines, bile salts, and methyl donors. These metabolites are 
instrumental in the metabolism of substances and stabilization of the 
immune system in both intestinal epithelial tissue and the entire body 
(12). Additionally, intestinal bacteria produce pathogen-associated 
pattern molecules, such as lipopolysaccharides and peptidoglycans, 
which can elicit an immune response from intestinal epithelial cells 
(IECs). Gut microorganisms and their metabolites extensively interact 
with host intestinal epithelial tissue and participate in the metabolism 
of nutrients in the host’s intestinal cavity. Changes in microbial 
community structure are often accompanied by alterations in the 
physiological functions of the intestinal environment (17), 
subsequently impacting the overall metabolic homeostasis of the body. 
Mardinoglu et al. (18) reported that the gut microbiota regulates the 
metabolism of glutathione and amino acids in the host body. 
Glutathione, a key antioxidant present in every cell, plays a vital role 
in various lifestyle diseases, and its depletion can trigger oxidative 
stress responses in the body (18).

2.2 Effects of intestinal microorganisms on 
the intestinal mucosal barrier function in 
young ruminants

The intestinal mucosal barrier comprises mechanical, chemical, 
immune, and biological barriers (19), with the mechanical and 
immune barriers being the most critical. The intestinal epithelial 
mechanical barrier is formed of epithelial cells, including structures 
like tight junctions, mucinous junctions, desmosomes, and interstitial 
junctions, among which tight junctions are pivotal in preventing 
epithelial cell bypass (20). Tight junction complexes consist of various 
transmembrane proteins, such as the claudin, occludin, and connexin 
family of proteins. Notably, tight junction protein 1 (ZO-1) is 
associated with the actin cytoskeleton. These intestinal epithelial tight 
junctions serve as a primary physical barrier to prevent 
microorganisms in the intestinal lumen from invading sterile internal 
organs. The regulation of intestinal permeability by probiotics has 
been demonstrated (21). For instance, the probiotic mixture Val #3 
(Streptococcus thermophilus, Bifidobacterium longum, B. breve, 
B. infantis, Lactobacillus acidophilus, L. plantarum, L. casei, 
L. bulgaricus), a compound of eight probiotics, when administered to 
rats via gavage, reduced colonic epithelial permeability by increasing 
the gene expression and protein content of closure proteins, including 
ZO-1 and closure proteins 1, 3, 4, and 5, thereby mitigating sodium 
dextrose sulfate-induced inflammation in the rat colon (22). In vitro 
studies have revealed that Zactokc decreases the permeability of 
Caco-2 epithelial cells by upregulating occludin and oingulin proteins 
(23). Additionally, both Escherichia coli NISSLE1917 and Lactobacillus 
plantarum could counteract the altered permeability of epithelial cells 
caused by enteropathogenic E. coli through mechanisms such as PKC 
silencing and ZO-2 upregulation (24). In contrast, conditional 
pathogenic bacteria like E. coli can reduce the expression of ZO-1, 
claudin, and claudin-1 proteins, thereby increasing the permeability 
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of IECs. These results underscore the significant role of gut microbes 
in regulating the intestinal barrier function (25).

Intestinal microbial metabolism products, such as SCFAs, 
polyamines, and secondary bile acids, also play a role in gut barrier 
function regulation (26). SCFAs can alter the permeability of tight 
junctions between IECs (27). Inoculating Bifidobacterium longum, 
which produces high concentrations of acetic acid, into germ-free 
mice was found to confer resistance to infection by the intestinal 
pathogen Escherichia coli O157:H7. This suggests that SCFAs may 
effectively prevent pathogen transfer from the intestinal lumen to the 
circulatory system by maintaining intestinal epithelial integrity (28). 
Furthermore, butyric acid has been shown to significantly increase 
oxygen consumption in colonic IECs in mice, creating a “physiological 
hypoxia” effect. This effect induces the synthesis and secretion of 
hypoxia-inducible factors by colonic IECs, thereby sustaining 
intestinal barrier function. Antibiotic intervention that inhibit 
intestinal microorganisms can significantly reduce the intestinal SCFA 
content and IEC oxygen consumption, deactivating hypoxia-inducible 
factors and consequently weakening the intestinal barrier function 
(29). Additionally, in vitro cell assays have shown that butyric acid can 
regulate the recombination of ZO-1 and occludin proteins in Caco-2 
epithelial cells via the AMP-activated protein kinase pathway, thus 
enhancing the cellular barrier function in these cells (30). A study by 
Burger van et al. (31) on human LS174T cells revealed that appropriate 
concentrations of butyric acid and propanoic acid enhanced the 
barrier function of IECs by boosting MUC2 expression, while higher 
concentrations inversely regulated this function.

2.3 Effects of intestinal microbes on the 
development of the intestinal immune 
system in young ruminants

Intestinal microbes are crucial in establishing the early immune 
system. Increasing evidence suggests a higher incidence of allergies in 
infants delivered by Cesarean section than in those delivered vaginally 
(32). Additionally, gut microbial compositions differ between healthy 
and allergic infants (33), indicating that early microbial colonization 
may be a pivotal factor in stimulating immune system maturation. 
Intestinal microbes can promote the differentiation of immune cells 
through specific components, such as regulatory T and Th17 cells (34). 
Disturbances in intestinal flora can lead to bacterial translocation and 
damage to intestinal barrier function (35), subsequently affecting 
overall health. Research using germ-free or germ-restricted mice has 
highlighted that commensal microflora in the gut are significant 
contributors to regulating the host’s immune system and intestinal 
morphology. Microbial metabolites, such as SCFAs, have been shown 

to stimulate the proliferation of mucosal epithelial cells (36). Oral 
tolerance to ovalbumin was established after reconstituting the 
intestinal flora of germ-free neonatal mice, but this effect was absent 
in adult mice (37). The germ-free mice exhibited more developmental 
defects in their immune systems, such as shorter and fewer crypt cells, 
fewer TCRαβ+ intraepithelial lymphocytes, lower serum 
immunoglobulin levels, than those in the wild-type mice systems, 
along with an absence of induced lymphoid follicles (38). 
Transplanting normal mouse intestinal flora into germ-free mice 
could induce the development of gut-associated lymphoid tissue, such 
as TCRαβ+ intraepithelial lymphocytes (39). Further, colonization of 
segmented filamentous bacteria in the small intestine of germ-free 
mice could restore mucosal morphology and function, elevating the 
number of TCRαβ+ intraepithelial cells to levels observed in normal 
mice (40). Hall et al. (41) demonstrated that bacterial DNA derived 
from gut microbiota mediates the balance between proinflammatory 
Th-17 cells and regulatory T cells. Additionally, adenosine 
triphosphate produced by bacteria could promote Th-17 accumulation 
(42), and segmented filamentous bacteria could induce the 
development of Th-17 cells in the lamina propria (43). Thus, early 
intestinal microbes play a vital role in establishing the intestinal 
immune system, whereas later intestinal microbes are important for 
the homeostatic regulation of this system. The different effects of 
intestinal microbes on the development of the intestinal immune 
system in young ruminants (44–48) is presented in Table 1.

2.4 Effects of intestinal microorganisms on 
the immune response of intestinal mucosa 
in young ruminants

The intestinal mucosa is the initial contact point of the intestinal 
microorganisms with the host (49); the microbes are separated from 
the host’s immune system by only a single epithelial layer. Besides 
epithelial cells, specialized cells such as M, PAN, cup, and dendritic 
cells could extend their dendrites to directly sense the contents of the 
intestinal lumen and interact with intestinal bacteria. Upon pathogen 
detection, epithelial cells secrete humoral mediators like 
immunoglobulin A, antimicrobial peptides, chemokines, or cytokines, 
which activate innate and adaptive immune responses. Additionally, 
M cells can transfer antigens to antigen-presenting cells such as 
dendritic cells or macrophages. These cells then carry bacterial 
antigens to induce adaptive immune responses in Pan’s node cells or 
mesenteric lymph node cells (50).

The intestinal immune system typically has a pro-inflammatory 
response to pathogenic bacteria, whereas commensal bacteria often 
evade such responses. Although the exact mechanism is not fully 

TABLE 1 Effects of intestinal microbes on the development of the intestinal immune system in young ruminants.

Animal Conclusion References

Calves Intestinal microorganisms can regulate the development of intestinal mucosal immune system in calves. (44)

Calves Gut microbiota plays an important role in the development of mucosal immune system. (45)

Calves Intestinal microflora plays an important role in the development of host mucosal epithelium and immune system. (46)

Neonatal dairy calves Gut microbes influence the development of the gut immune system. (47)

Neonatal ruminants The colonization of intestinal microorganisms has an important impact on the development of host innate immunity. (48)
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understood, some strategies are known to be used by commensal 
bacteria to avoid the host immune system (51). For instance, 
commensal bacteria can inhibit NF-κB pro-inflammatory responses 
and the production of pro-inflammatory cytokines by mimicking host 
cell membrane proteins (52). Dysbiosis, or changes in the intestinal 
flora, has been linked to increased susceptibility to inflammatory 
bowel disease (IBD). Antibiotic treatments and probiotic 
administration have shown efficacy in improving IBD (53). 
Interestingly, germ-free mice neither develop IBD nor exhibit 
exacerbated IBD symptoms compared to those by wild-type mice (54), 
highlighting the crucial role of gut microbes in maintaining intestinal 
immunity and health.

Gut microbial metabolites, particularly SCFAs, are vital in 
regulating intestinal immunity (55). SCFAs, produced by anaerobic 
microorganisms in the large intestine during the fermentation of 
undigested carbohydrates from the small intestine, include acetic acid, 
propionic acid, and butyric acid. These acids mediate the growth, 
metabolism, and immune response of IECs. SCFAs are recognized by 
free fatty acid receptors on the surface of IECs, activating 
inflammation-related signaling pathways and playing a significant role 
in regulating the intestinal immune response. Kim et al. (56) found 
that SCFAs could significantly increase the expression of inflammatory 
cytokines (IL-1β, IL-6, and TNF-α) and chemokines (CXCL1 and 
CXCL2) in the mouse intestine. SCFAs also regulate intestinal innate 
immune responses by activating the expression of Toll-like receptors 
(57). Research on colonic epithelial cell lines has shown that propionic 
acid and butyric acid increase TLR5 expression on IECs, activating the 
NF-κB signaling pathway and upregulating the inflammatory cytokine 
TNF-α, while downregulating IL-8 and monocyte chemokine 1 (58). 
These findings demonstrate that SCFAs can regulate cytokine 
expression in intestinal IECs through the TLR5-NF-κB signaling 
pathway, mediating the innate immune response. Additionally, SCFAs 
play a role in the adaptive immune response of intestinal immune cells 
(59). Roman et al. (60) discovered that butyric acid could activate the 
FFAR3 receptor on the surface of mouse colon cells, enhancing the 
immune tolerance of regulatory T cells in the colon, thereby mitigating 
cytokine expression increases caused by colonic inflammation.

3 Effects of weaning stress on the 
health of young ruminants

The sudden separation of ewes and lambs prior to weaning can 
induce stress in lambs (61). The primary stressors identified include 
(1) emotional distress due to the separation from the mother; (2) 
environmental changes, as lambs are typically relocated to new 
surroundings; (3) cessation of lactation, stemming from 
neurophysiological shifts induced by lactation; and (4) nutritional 
transitions, occasioned by replacing milk with solid feeds. Post-
weaning, both ewes and lambs exhibit increased frequencies of 
behaviors indicative of mutual search, such as calling, standing, 
walking, and pacing. Damian et al. (62) conducted a comparative 
analysis of stress responses in lambs at weaning. When lambs were 
artificially fed with ewe’s milk through artificial nipples, there was a 
notable increase in pacing, walking, and vocalization, alongside a 
significant reduction in grazing time. Early weaning also triggers 
changes in physiological stress indicators in both ewes and lambs (63), 
such as a rapid surge in serum cortisol levels. Cortisol, a primary 
endocrine indicator of stress response in sheep, is closely linked with 

the regulation of the immune response. Infections with Haemonchus 
contortus and Trichostrongylus colubriformis were found to be more 
prevalent in weaned lambs; these lambs also exhibited reduced 
antibody production compared to that in unweaned lambs. Moreover, 
weaning not only adversely impacts lamb growth but can also impede 
the normal development of the rumen, particularly when lambs are 
not artificially fed. Moreover, the dietary shift from liquid to solid feed 
alters the microbial flora in young ruminants, subsequently affecting 
their growth performance and overall health.

3.1 Effects of weaning stress on intestinal 
development and flora in young ruminants

The animal gut is a habitat for a vast array of microorganisms (64), 
which are pivotal not only for the growth and development of the 
animals but also for maintaining the dynamic balance of the intestinal 
system. Compared to that exhibited by their non-weaned counterparts 
of the same age, 28-day-old weaned lambs exhibited an increase in 
rumen microbial community richness. However, there were no 
significant changes in diversity and no significant differences in 
microbial community composition at the phylum level by 42 days of 
age (65). Yang et al. (66) discovered that early supplementation with 
alfalfa could align the rumen microbiota of pre-weaning lambs closer 
to the post-weaning composition, thereby reducing genus-level flora 
changes, enhancing rumen microbiota stability, and mitigating the 
weaning stress response. Mechanistically, previous research has 
demonstrated that weaning disrupts the intestinal barrier function in 
young animals, marked by increased permeability of the intestinal 
epithelium (67). Concurrently, a disruption in epithelial barrier 
function and the upregulation of proinflammatory cytokines lead to 
a pronounced activation of the gastrointestinal immune system post-
weaning. The hypothalamic pituitary adrenal axis becomes activated, 
and stress-related mediators, such as cortisol, are elevated in young 
animals. This activation of the hypothalamic–pituitary adrenal axis is 
a crucial mechanism for coping with stressors and reestablishing 
homeostasis. Post-weaning, serum cortisol levels rise, and at the 
intestinal level, weaning stress disrupts gut microbiota homeostasis, 
creating favorable conditions for pathogen proliferation, which in turn 
leads to increased morbidity and mortality among young animals. The 
effects of weaning stress on the intestinal development and flora in 
young ruminants (1, 68–72) are summarized in Table 2.

3.2 Effects of weaning stress on the 
intestinal barrier function in young 
ruminants

Weaning marks a critical stage in the growth of lambs, 
characterized by a transition from breast milk to plant-based feed, 
with carbohydrates supplanting fat as the primary energy source (73). 
This enforced dietary shift and separation from the ewe constitute a 
significant stressor for lambs, potentially hindering their growth, 
development, and health. During the weaning period, issues such as 
reduced feed intake, weight loss, and increased morbidity and 
mortality are common (74), with the effects of weaning stress typically 
manifesting within 1–3 days post-weaning. Research indicates that 
early weaning escalates the permeability of the intestinal mucosa in 
calves (75), allowing bacteria, bacterial toxins, allergens, and other 
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harmful agents to more easily penetrate the intestinal barrier, 
potentially triggering inflammation or immune responses. The 
gut-associated lymphoid tissue is a crucial component of the gut 
barrier. Because of its functional significance and extensive contact 
with antigens, the gut-associated lymphoid tissue plays a vital role in 
the immune system.

Early weaning influences the innate immune responses in calves 
(76). The age of weaning significantly impacts the distribution of 
leukocytes, cytokines, and acute phase proteins in the blood of calves 
treated with lipopolysaccharide, with calf blood neutrophils and 
interleukin-8 serving as potential biomarkers of weaning stress (77). 
As a key part of the body’s immune system, damage to the intestinal 
immune barrier induced by weaning stress can heighten susceptibility 
to diseases. Research has identified stress as a primary contributor to 
the clinical onset of conditions like irritable bowel syndrome, IBD, and 
chronic intestinal infections (78, 79). Post-weaning diarrhea is not 
only a prevalent issue in young animals, typically occurring between 
3- and 10-days post-weaning, but it is also a major cause of mortality 
during the weaning period. Post-weaning diarrhea adversely affects 
post-weaning weight gain and long-term production performance 
(80). While there are limited reports on the effects of early weaning 
stress on the intestinal barrier of lambs, studies on calves and piglets 
have documented significant impacts of early weaning stress on 
intestinal barrier function. Consequently, it is hypothesized that early 
weaning stress may similarly affect the intestinal barrier function of 
lambs. Undertaking experimental studies to definitively ascertain the 
effects of weaning age on the intestinal barrier function of lambs is a 
pressing issue in the rational application of early weaning techniques.

4 Effects of yeast cultures on the 
intestinal health of young ruminants

4.1 Effects of yeast cultures on the 
intestinal morphology of young ruminants

The small intestine is a critical site for nutrient digestion and 
absorption in ruminants. Within this, the small intestinal villi play a 
pivotal role (81). The height of the small intestinal villi, the depth of 
the crypts, and the ratio of villus height to crypt depth (V/C value) are 
crucial metrics for assessing the digestive and absorptive function of 
the small intestine. The villus height is directly proportional to the 
nutrient absorption area; a decrease in height corresponds to reduced 
absorption capability. The small intestine crypt, a tubular gland at the 

base of the villi, is integral for IEC renewal. Its depth is proportional 
to the rate of this renewal. The V/C ratio is an overall indicator of 
nutrient absorption capacity in the small intestine, with a higher ratio 
signifying increased absorption area and functionality, and a decrease 
in ratio suggesting impaired digestive and absorptive capacity, 
negatively impacting animal growth and development (82). Park et al. 
(83) corroborated that yeast cell walls can safeguard the intestinal 
mucosa from damage. Furthermore, yeast nucleic acid contributes to 
intestinal development by increasing intestinal mucosal protein (84), 
DNA, and RNA content, enhancing the height of intestinal villi and 
the thickness of the intestinal wall, and boosting the activity of 
enzymes like maltase, lactase, and sucrase in the intestinal mucosa. In 
addition, yeast β-dextran can positively influence the intestinal 
development of weaned calves (85). The addition of yeast β-glucan can 
increase the height of intestinal villi in the duodenum, jejunum, and 
middle ileum. In calves supplemented with 75 mg/kg of yeast β-glucan, 
the crypt depth was significantly lower than in other groups, and the 
V/C value was significantly higher than that of the control group. 
Moreover, the thickness of the small intestine mucosa in this group 
was the highest among all experimental groups (86).

4.2 Effects of yeast cultures on the 
intestinal flora of young ruminants

The intestinal flora in the digestive tract of host animals is in a 
state of dynamic equilibrium, with bacterial populations varying in 
response to changes in diet, environment, and other factors. 
Approximately 99% of beneficial microorganisms in the animal gut 
are anaerobic bacteria, while aerobic and facultative anaerobic bacteria 
are less prevalent (87). Certain microecological agents, which are 
aerobic, upon entering the small intestine, rapidly revive and consume 
free oxygen, creating a hypoxic environment. This shift promotes the 
growth and reproduction of anaerobic beneficial bacteria (88) such as 
Bifidobacterium and lactic acid bacteria, while inhibiting the invasion 
and colonization of aerobic pathogenic bacteria like E. coli, thus 
preventing intestinal inflammation, diarrhea, and other diseases in 
animals. Secondary metabolites from some microecological agents 
can inhibit the growth of intestinal pathogens such as E. coli and 
Clostridium perfringens. Additionally, the SCFAs produced during 
their metabolic process can create an acidic environment in the 
intestine, fostering the growth of beneficial bacteria such as 
Lactobacillus, thereby maintaining intestinal health and enhancing 
production performance (89). Yeast culture is known to shorten the 

TABLE 2 Effects of weaning stress on intestinal development and flora in young ruminants.

Animal Conclusion References

Lambs Weaning stress can cause changes in the immune system of lambs. (1)

Lambs
Early weaning significantly increases the bacterial diversity in the ileum of lambs. Simultaneously, it increases the expression of 

TLRs and tight junction protein genes.
(68)

Lambs
Early weaning leads to decreased growth performance and immunity of lambs, impaired intestinal morphology, and disrupted 

intestinal microecological balance.
(69)

Goats
Early weaning can cause intestinal damage, leading to a series of long-term symptoms such as inflammation, malabsorption 

and diarrhea.
(70)

Holstein Calves
Weaning stress can reduce the feed intake of calves, destroy the small intestine structure of calves, and affect their production 

capacity in adulthood.
(71)

Young Goats Mammalian weaning can lead to intestinal dysfunction and intestinal microbial disorders. (72)
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TABLE 3 Effects of yeast culture on ruminant’s production performance and digestion and absorption capacity.

Animal Conclusion References

Nili-Ravi buffaloes Yeast cultures induced significantly more growth and production performance than did live yeasts. (103)

Lambs Yeast culture products can be added to the pelleted total mixed ration to improve the growth performance of lambs. (100)

Lambs Yeast culture improves the growth performance of lambs. (104)

Ruminants
The addition of yeast can increase the feed intake and growth rate of young ruminants, and increase the milk yield and milk 

fat rate of dairy cows
(105)

lag phase, prolong the logarithmic phase, and significantly increase 
the number of flora by promoting the proliferation of beneficial 
intestinal bacteria like Bifidobacterium and Lactobacillus. The 
regulatory effect of yeast culture on animal intestinal flora is evidenced 
not only in the proliferation of beneficial intestinal flora (90) but also 
in inhibiting harmful bacteria, such as E. coli through the production 
of enterotoxins (91). The antibacterial effect of yeast culture partly 
stems from the alteration of the nutrient composition of the flora. 
Additionally, mannan oligosaccharides and β-glucan in the yeast cell 
wall exert bacteriostatic effects (92). Zhaoxiaojing et al. (92) indicated 
that adding 0.1% mannan oligosaccharide to the feed could reduce the 
number of E. coli in calf feces and increase Lactobacillus levels. 
Mannan oligosaccharides function by competitively binding with 
exogenous lectins on the surface of pathogenic bacteria, preventing 
these pathogens from adhering to receptors on the intestinal mucosa, 
thereby inhibiting pathogenic bacteria.

4.3 Effects of yeast culture on diarrhea in 
young ruminants

Young animals, with their underdeveloped intestines and limited 
stress resistance, are prone to diarrhea, which can lead to malnutrition 
or even death. Supplementing their diet with yeast cultures has shown 
effectiveness in alleviating this issue. Brewer et al. (93) demonstrated 
that incorporating yeast culture into calf diets could significantly 
reduce the incidence of diarrhea. Magalhaes et al. (94) found that 
adding yeast to calf diets not only improved feces consistency, but also 
decreased the duration of watery feces and fever, reduced diarrhea 
rates, and lowered the incidence of disease in calves the first 13 days 
after birth, thereby improving survival rates. Additionally, Ozsoy et al. 
(95) indicated that adding 4.5% active yeast culture to the diet of 
fattening goats increased their body weight gain and reduced the total 
number of coliform bacteria present. Similar studies have also found 
that Saccharomyces cerevisiae fermentation products can be used to 
reduce diarrhea in growing calves (96).

4.4 Effects of yeast culture on the 
production performance and digestion and 
absorption capacity of young ruminants

With the rapid advancement of the farming industry, numerous 
innovative products, including enzyme preparations, herbal medicine 
preparations, acidifiers, and microecological preparations, have 
emerged to reduce costs and increase efficiency. Among these, 
microecological preparations, particularly yeast cultures, have 
demonstrated positive effects. Zhang et al. (97) revealed that adding 

yeast culture to the diet of beef cattle not only promotes their growth 
and development but also enhances nutrient digestibility and average 
daily gain. Maamouri et al. (98) supplemented yeast culture in the diet 
of weaned Holstein calves, leading to improved dry matter intake and 
average daily gain. This addition also beneficially affected cellulase 
activity and volatile acid concentration in the rumen fluid, thereby 
enhancing nutrient digestion and absorption rates in the calves. 
Another study by the same group showed that including yeast culture 
in the diet of fattening cattle improved their growth performance and 
feed digestibility (99). Supplementing total mixed rations with yeast 
culture products can improve the growth performance of lambs, 
primarily due to enhanced digestive and absorptive utilization of fiber 
(100). Additionally, when switching from a high to a low concentration 
diet, the addition of yeast culture can improve feed efficiency without 
affecting growth, which can be attributed to the yeast culture making 
the diet more digestible, reducing fecal output, and enhancing feed 
absorption and utilization (101). Ovinge et al. (102) highlighted that 
live yeast can improve the digestion, absorption, and utilization rates 
of dry matter, crude protein, crude fat, and fiber. The introduction of 
yeast and yeast products into the industry has significantly improved 
breeding efficiency, facilitated green breeding strategies, alleviated the 
food crisis, and made substantial contributions to the development of 
the human and animal husbandry industries. The effects of yeast 
culture on ruminant production performance and digestion and 
absorption capacity (100, 103–105) are summarized in Table 3.

5 Discussion

The animal intestine is colonized by a large number of 
microorganisms that play important roles in maintaining host 
nutrition metabolism, intestinal tissue development, and intestinal 
immune function. Ruminants at a young age go through a period of 
rapid establishment of ruminant intestinal tissue, physiological 
function, intestinal immune system, and microbiota. At this stage, 
they are susceptible to weaning stress, which destroys the balance of 
intestinal flora and the development of intestinal tissue morphology, 
leading to intestinal disease and consequently serious economic losses 
to the livestock industry. With the continuous development of science 
and technology, it has been discovered that the incorporation of yeast 
culture to ruminant diet could significantly alleviate the damage 
caused by weaning stress to the intestinal health of young ruminants. 
This is an effective strategy to promote the balance of intestinal flora, 
the development of intestinal tissue, and the establishment of the 
mucosal immune system (Figure 1). This study provides a scientific 
basis for green and healthy breeding, a foundation for reducing animal 
diseases and ensuring animal health, and a theoretical basis for the 
application of yeast culture to the diet of young ruminants.
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