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Introduction: Spondylosis deformans is a non-inflammatory osteophytic

reaction that develops to re-establish the stability of weakened joints between

intervertebral discs. However, assessing these changes using radiography is

subjective and di�cult. In human medicine, attempts have been made to use

artificial intelligence to accurately diagnose di�cult and ambiguous diseases

in medical imaging. Deep learning, a form of artificial intelligence, is most

commonly used in medical imaging data analysis. It is a technique that utilizes

neural networks to self-learn and extract features fromdata to diagnose diseases.

However, no deep learning model has been developed to detect vertebral

diseases in canine thoracolumbar and lumbar lateral X-ray images. Therefore,

this study aimed to establish a segmentationmodel that automatically recognizes

the vertebral body and spondylosis deformans in the thoracolumbar and lumbar

lateral radiographs of dogs.

Methods: A total of 265 thoracolumbar and lumbar lateral radiographic images

from162 dogswere used to develop and evaluate the deep learningmodel based

on the attention U-Net algorithm to segment the vertebral body and detect

spondylosis deformans.

Results: When comparing the ability of the deep learning model and veterinary

clinicians to recognize spondylosis deformans in the test dataset, the kappa value

was 0.839, indicating an almost perfect agreement.

Conclusions: The deep learning model developed in this study is expected

to automatically detect spondylosis deformans on thoracolumbar and lumbar

lateral radiographs of dogs, helping to quickly and accurately identify unstable

intervertebral disc space sites. Furthermore, the segmentation model developed

in this study is expected to be useful for developing models that automatically

recognize various vertebral and disc diseases.

KEYWORDS

disc instability, intervertebral disc space, artificial intelligence, bony spur, intervertebral

disc disease, canine
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1 Introduction

Spondylolysis deformans is a non-inflammatory degenerative

change characterized by new bone formation in the endplates of

the vertebral body (1). It is relatively common in dogs and can

occur because of disc degeneration and corrected disc instability

(2, 3). The exact mechanism remains unclear, but it is thought

to be primarily due to the age-related destruction of peripheral

annulus fibers (1, 3, 4). This can lead to discontinuity and

weakening of disc attachment, stressing the ventral and dorsal

longitudinal ligaments, which in turn can lead to herniation

of the ventral or dorsal disc and development of spondylosis

deformans (3). Previous studies have shown a correlation between

intervertebral disc protrusion and the location of spondylosis

deformans (2, 3, 5, 6). In addition, spondylosis deformans occurs

on the dorsal aspect of the vertebrae andmay progress to nerve root

impingement or cause meningeal irritation, resulting in neurologic

dysfunction (3).

Radiologically, spondylosis deformans is characterized by

osteophyte formation in the vertebral endplate and can range

from small bony proliferations of the vertebral endplate to

the bridging of the adjacent vertebrae (1, 6, 7). In cases

of obvious lesions, such as spondylosis deformans that form

bridges, the diagnosis can be easily made on radiographs alone;

however, if the lesions are very mild, the diagnosis can be

somewhat subjective.

The use of deep learningmodels, a form of artificial intelligence,

for the objective and accurate diagnosis of various disc and

vertebral diseases is an increasingly active area of research in

medicine and has recently shown promising results in various

medical image analysis tasks such as classification, object detection,

and segmentation (8–12). For image classification tasks, deep

learning models can accurately detect diseases and abnormalities;

however, they cannot accurately localize the exact regions of

interest (ROI) (13, 14). Although object detection models can

localize rough ROIs, semantic segmentation models offer the

most accurate localization of abnormalities through pixel-wise

classification (8, 15). Accurate localization of the ROI provided

by segmentation models can be used to automatically measure

parameters or detect abnormalities with interpretable results (16–

18). In a recent medical study involving humans, a model was

developed to automatically detect spondylolisthesis by accurately

segmenting the lumbar spine in X-ray images (9). However, the

use of deep learning models to diagnose vertebral diseases using

the X-ray images of dogs has not been studied. In this study,

we aimed to develop a novel deep learning-based segmentation

model for thoracolumbar and lumbar lateral X-ray images of

dogs for automatically recognizing vertebral bodies and detecting

spondylosis deformans. Unlike previous studies, we focused on

not only detecting the presence of spondylosis deformans but

also accurately segmenting very small lesions, such as grade 1

spondylosis deformans, to large lesions, such as grade 3 spondylosis

deformans. We also aimed to design a segmentation model that

accurately separates the vertebral body and spondylosis deformans

region with high accuracy by labeling each region accordingly pixel

by pixel.

2 Materials and methods

2.1 Patient dataset

This retrospective study included patients who presented to

Jeonbuk National University AnimalMedical Center between April

2017 and October 2023 and underwent radiographic imaging of

the thoracolumbar or lumbar vertebrae. In 162 dogs, X-ray images

(ECO-BT-525 VET, EcoRay, Gwangju, Korea) were obtained and

used to develop the deep learning models. Patients with and

without specific clinical signs of disc disease were randomly

selected and included in the study. For 152 of the 162 dogs,

we conducted physical and neurologic examinations related to

thoracolumbar and lumbar disc disease. We also investigated the

relationship between spondylosis deformans and clinical signs

associated with thoracolumbar and lumbar disc disease. Dogs were

considered to have clinical signs if any of the following were

identified: proprioceptive ataxia of the pelvic limbs, spinal pain,

loss of the panniculus reflex, and loss of deep pain. This study was

approved by the Institutional Animal Care and Use Committee of

Jeonbuk National University (approval nos. JBNU NON2022-085

and NON2023-023).

2.2 Image dataset

2.2.1 Radiographic image acquisition for deep
learning model development

Spondylosis deformans typically initiates as a ventral or dorsal

bony proliferation and extends adjacent to intervertebral discs

to fill the gap. Consequently, it is more prominently visible on

lateral X-ray images than on ventrodorsal or dorsoventral X-ray

images. Hence, only lateral X-ray images were used in this study

(1, 19). A total of 265 lateral thoracolumbar and lumbar lateral

X-ray images (ECO-BT-525 VET; EcoRay, Gwangju, Korea) from

162 dogs were used for model development. For the training and

validation datasets, we used images acquired under conditions of

66 kVp−70 kVp and 2.6 mAs−3.0 mAs. In thoracolumbar lateral

X-ray images, the beam center was located at T12-T13 with a

field of view (FOV) ranging from approximately T8 to L4, varying

slightly between dogs. For lumbar X-ray images, the beam center

was located at L3-L4, covering images from T12 to the cranial level

of caudal vertebrae. All training and validation dataset images had

the FOV set to best exclude abdominal organs, and these images

were captured by keeping the vertebrae as straight as possible.

The X-ray images used for the test dataset were plane abdominal

lateral images acquired at 61 kVp−80 kVp and 10 mAs−14 mAs;

these conditions depended on the size of the dog, as depicted

by abdomen width measurements for each dog. The beam center

was located around the last rib, the FOV was set to include all

abdominal organs from the liver to the hips, and the images were

cropped to the same area as the FOV of the training and validation

datasets. All digital radiographic images were post-processed to

maintain adequate contrast. Images containing motion artifacts

and rotation of vertebrae in the acquired X-ray images were

excluded from the study. The dataset distribution for training,
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FIGURE 1

Grading of spondylosis deformans. Grade 0: no bony spur at the vertebral endplate; Grade 1: small bony spur at the edge of the vertebral endplate

not extending past the endplate; Grade 2: more developed bony spurs, but not connected to adjacent vertebra; Grade 3: bony spur connected to

adjacent vertebra forming bony bridges.

FIGURE 2

Example of manual segmentations. In the thoracolumbar lateral X-ray images (A), the vertebral body (yellow), intervertebral disc space (green),

intervertebral foramen (pink), and spondylosis deformans (orange) are labeled with separate colors using a segmentation tool (MediLabel software) to

distinguish them (B).

validation, and test followed an approximate ratio of 80:10:10, and

the training and validation data were chosen randomly. A total

of 119 thoracolumbar lateral X-ray images (92 images for training

data, 13 images for validation data, and 14 images for test data) and

146 lumbar lateral X-ray images (124 images for training data, 12

images for validation data, and 10 images for test data) were used

to develop deep learning model.

2.2.2 Evaluation of radiographic images
On thoracolumbar lateral radiographs, the vertebral body from

T10 to L3 was evaluated, while on lumbar lateral radiographs, the

vertebral body from L1 to L7 was evaluated. Spondylosis deformans

was classified into three grades, as shown in Figure 1 (1, 6, 20). The

area where spondylosis deformans occurred was checked, and the

most frequently affected area was evaluated.
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FIGURE 3

Example of data augmentation during the training phase. (A) The original image is randomly augmented by (B) adaptive histogram equalization, (C)

horizontal flip, (D) vertical flip, (E) rotation, (F) zoom-in, and (G) zoom-out. All spatial augmentations were performed using cropping or

zero-padding to match the original dimensions. The rotation angle was randomly selected between −45 and 45 and the zoom range was selected

between 0.5× and 1.5× of the original dimensions.

2.3 Deep learning model development

2.3.1 Manual segmentation
The X-ray images used in this study were manually labeled

by 13 veterinary clinicians (residents in the Veterinary Medical

Imaging Department of the Teaching Hospital of Jeonbuk

National University) using MediLabel software (Ingradient, Inc.,

Seoul, South Korea). In thoracolumbar and lumbar lateral X-

ray images, separate colors were used for labeling to distinguish

spondylosis deformans, vertebral bodies, intervertebral disc space,

and intervertebral foramen. To label the areas of spondylosis

deformans, two veterinarians analyzed the radiographs and selected

areas of common agreement. Figure 2 shows an example of manual

segmentation of a lumbar lateral X-ray image.

2.3.2 Data preprocessing
Owing to the varying resolutions of the dataset used in this

study, all images were resized to a uniform dimension, and the

subsequent predictions were interpolated back to their original

resolutions. To maintain the aspect ratio and detailed information

of the images, we set the input resolution to 1024 pixels in

height and 512 pixels in width. To increase data diversity and

robustness, the images were augmented by flipping (horizontal,

vertical), rotation, adaptive histogram equalization (21), zooming

in with random cropping, and zooming out with a zero pad.

Each augmentation was utilized during the training phase with a

probability of 0.5. Figure 3 shows an example of the augmented

samples. In addition, the image intensity was normalized into the

range of 0 to 1 as shown in Eq. 1, where I is the original image, and

Imax and Imin represent the maximum and minimum values of the

image intensity, respectively.

Inorm =
I − Imin

Imax − Imin
(1)

2.3.3 Network architecture
In this study, a convolutional neural network (CNN)

segmentation network was employed (Figure 4). The architecture
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FIGURE 4

Structural diagram of the employed deep learning model. In the encoding stage, the features were downsampled (indicated by the orange arrow),

whereas the feature dimensions were expanded using convolution blocks (highlighted by the green arrow). Each convolution block comprised a 3 ×

3 convolution and an activation function. In the decoding stage, the features from the encoding stage were concatenated with the upsampled

features after the implementation of a skip connection and an attention gate. Subsequently, the features were sequentially upsampled to their

original resolutions. The final prediction included three channels, each representing a di�erent pixel class.

FIGURE 5

Examples of manual vs. automated segmentation of vertebrae, intervertebral disc space, and foramen. Results of manual segmentation (A, C) of

vertebral body, spondylosis deformans, intervertebral disc space and intervertebral foramen; automatic segmentation (B, D) in thoracolumbar and

lumbar lateral radiographs.

of this model is based on attention U-Net (22), which has shown

promising results in medical image segmentation tasks. To cope

with the large variance in dog size (range: 1.64 kg−36 kg), the

modified attention U-Net in this study was designed to have

deeper feature extraction (i.e., multiscale features) than the original

attention U-Net (22) architecture. The designed network extracts

features at 7 levels, reducing the spatial resolution from (1024, 512)

to (8, 16) for height and width, respectively. The filter dimensions

of the model (F1, F2, F3, F4, F5, F6, F7) were selected as

16, 32, 64, 128, 256, 512, and 1024, respectively. The attention

gate introduced in the attention U-Net retained in its original

structure (22).

2.3.4 Loss function and implementation details
Recent studies proposed various loss functions for successful

segmentation under various conditions (23, 24). To successfully

train the designed model to simultaneously segment the

vertebral bodies and detect spondylosis deformans, we utilized

a combination of two loss functions. The utilized loss function

consists of a region-based loss function and a distribution-based

loss function (23, 24). The region-based loss function allows the

deep learning model to successfully segment the vertebral bodies

from images, and the objective of the distribution-based loss

function is to create a deep learning model to detect spondylosis

deformans pixel-wise. The weighted categorical cross-entropy loss
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TABLE 1 Cohen’s kappa analysis between a veterinary clinician and deep learning model for detection of spondylosis deformans.

Kappa value Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Validation dataset 0.813∗ 87.5 98.5 77.8 99.3

Test dataset 0.839∗ 98.4 86.3 86.1 98.4

95% CI, 95% confidence interval; PPV, positive predictive value; NPV, negative predictive value.

Experimental values were considered significant at p < 0.01∗ .

TABLE 2 Detection rate based on the grade of spondylosis deformans by

deep learning.

Grade Sensitivity
(%)

No. of detected
spondylosis
deformans by
deep learning

Total no. of
spondylosis
deformans

1 96.2 25 26

2 100 26 26

3 100 11 11

(25) and focal Tversky loss function (26) were used. The total loss

function is expressed as follows:

TI(y, ŷ) =
1+ yŷ

1+ yŷ+ β(1− y)ŷ+ (1− β)y(1− ŷ)

LFTL(ŷ, y) =

3∑

c=1

(1− TIc)
γ

LWCE(ŷ, y) = −

3∑

c=1

w(c) × y(c) log ŷ(c)

LTOTAL(ŷ, y) = LWCE(ŷ, y)+ LFTL(ŷ, y)

where y, ŷ represent the prediction and ground-truth probability

map, c is the corresponding class (i.e., background, normal

vertebral body, spondylosis deformans), w is the class weighting

factor, and β , γ are hyperparameters. The w was set to 1, 1, and

5 for the background, normal vertebral body, and spondylosis

deformans. β , γ were set at 0.3 and 0.75. The weighting factors

and hyperparameters were determined empirically to obtain the

best results. To optimize the utilized loss function, the Adam

optimiser (27) with a learning rate of 1e−4 was used, and early

stopping criteria were used to obtain the best result. The proposed

methods were implemented using MONAI (28) and PyTorch

(29) frameworks.

2.4 Time measurement

For the 25 lateral thoracolumbar and lumbar X-ray images used

as validation data, the time required per image to detect spondylosis

deformans by a veterinary clinician and by the deep learning model

through auto-segmentation was recorded and compared.

2.5 Model accuracy and statistical analysis

Dice similarity coefficient (DSC) was used to confirm whether

auto-segmentation and manual segmentation were in close

agreement for the vertebral body, intervertebral disc space, and

foramen. The DSC is a relative measure of the percentage of pixels

that overlap between auto-segmentation and manual segmentation

images (30). The closer the DSC is to 1, the better the match

between the two segmentations. DSC was performed using the

following equation (30):

DSC = 2 (Intersected region)/(sum of region segmentations)

To evaluate how closely matched spondylosis deformans were

detected by the deep learning model and veterinary clinicians,

Cohen’s kappa analysis was performed to check sensitivity and

specificity. Additionally, Cohen’s kappa test was used to determine

inter-veterinarian agreement on the areas determined to have

spondylosis deformans. Cohen’s kappa results were interpreted

as follow: values ≤ 0.00–0.20 indicated non- to slight, 0.21–0.40

indicated fair, 0.40–0.60 indicated moderate, 0.60–0.80 indicated

substantial, and 0.80–1.00 indicated almost perfect agreement (31).

To identify the relationship between the presence of

spondylosis deformans and the occurrence of thoracolumbar

disc disease-related neurologic signs, a Chi-square test was

performed. The values were determined to be statistically

significant at p < 0.05.

SPSS version 29.0 (SPSS Corp., Armonk, NY, USA) was used for

statistical analyses.

3 Results

3.1 Animals

A total of 29 breeds were enrolled in the study:Maltese (n= 39),

Pomeranian (n= 18), Poodle (n= 16), Dachshund (n= 13), mixed

breed (n= 11), Shih Tzu (n= 9), Pekingese (n= 9), Cocker Spaniel

(n= 8), Miniature Poodle (n= 5), Chihuahua (n= 4), Bichon Frise

(n= 4), Beagle (n= 3), Yorkshire Terrier (n= 3), Golden Retriever

(n = 2), German Shepherd (n = 2), Old English Sheepdog (n = 2),

Jindo (n = 2), Boston Terrier (n = 1), Labrador Retriever (n = 1),

Miniature Pinscher (n = 1), Pompitz (n = 1), Samoyed (n = 1),

Siberian Husky (n = 1), Schnauzer (n = 1), Shetland Sheepdog (n

= 1), Spitz (n = 1), Welsh Corgi (n = 1), Sapsaree (n = 1), and

Whippet (n = 1). The average weight was 7.42 kg (range: 1.64–

36 kg), and the average age was 8.81 years (range: 0.7–17 years), and

for seven dogs, there were no information regarding body weight.

This study included 91 male dogs (24 intact, 67 castrated) and 71

female dogs (20 intact, 51 spayed).
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TABLE 3 Relationship of the presence or grade of spondylosis and clinical signs related to the disc disease in 152 dogs.

Grade 0 Grade 1 Grade 2 Grade 3 Total

No. of dogs with neurologic signs 32 (21.1%) 11 (7.2%) 8 (5.3%) 7 (4.6%) 58 (38.2%)

No. of dogs not presenting neurologic signs 64 (42.1%) 13 (8.6%) 9 (5.9%) 8 (5.3%) 94 (61.8%)

Total 96 (63.1%) 24 (15.8%) 17 (11.2%) 15 (9.9%) 152 (100%)

3.2 Deep learning model shows
considerable similarity compared to
manual segmentation in recognizing
vertebral body

To evaluate the performance of the model, the DSC between

manual and automated segmentation was calculated for a

validation dataset of 25 dogs. Post-processing, the average DSC

value for the vertebral body was 0.910 ± 0.038 (mean ± SD).

The DSC values of the intervertebral disc space and foramen

were 0.787 ± 0.056 and 0.779 ± 0.083, respectively. Figure 5

shows an example of manual and automated segmentation of the

vertebral body, spondylosis deformans, intervertebral disc space,

and intervertebral foramen.

3.3 Deep learning model shows a high
capability of detecting spondylosis
deformans in a short time

The interclass correlation kappa value between veterinary

clinicians for the evaluation of spondylosis deformans in

thoracolumbar and lumbar lateral X-ray images was 0.889,

confirming almost perfect agreement. In addition, when the

deep learning model recognized spondylosis deformans on

thoracolumbar and lumbar lateral X-ray images in validation

dataset, the kappa value with identification by a veterinary clinician

was 0.813, indicating an almost perfect agreement. The sensitivity

was 87.5%, specificity was 98.5%, positive predictive rate was

77.8%, and negative predictive rate was 99.3% (Table 1). Upon

checking the ability of the deep learning model on abdominal

lateral X-ray images in the test dataset, the kappa value was 0.839,

indicating an almost perfect agreement. The sensitivity was 98.4

%, specificity was 86.3%, positive predictive rate was 86.1%, and

negative predictive rate was 98.4% (Table 1).When we checked how

well deep learning recognized 63 sites with spondylosis deformans

identified by veterinary clinicians in the test dataset, it detected

spondylosis deformans in 96.2% of the cases in grade 1 and 100%

of the cases in grades 2 and 3 (Table 2).

The relationship between spondylosis deformans and clinical

signs associated with thoracolumbar and lumbar disc disease

was examed in 152 dogs. If a dog displayed multiple grades of

spondylosis deformans, we selected the highest grade lesion for

comparison. In this study, ∼33.3% of dogs without spondylosis

deformans, 45.8% with grade 1, 47.1% with grade 2, and 46.7% with

grade 3 exhibited clinical signs associated with thoracolumbar and

lumbar disc disease (Table 3).

TABLE 4 Number of spondylsis deformans cases and grading of dogs in

119 thoracolumbar lateral X-ray images.

T10-
T11

T11-
T12

T12-
T13

T13-
L1

L1-
L2

L2-
L3

Grade 1 0 (0) 5 (0) 11 (0) 8 (0) 6 (2) 7 (0)

Grade 2 2 (0) 3 (1) 6 (0) 1 (0) 6 (1) 7 (0)

Grade 3 0 (0) 0 (0) 4 (1) 2 (0) 6 (1) 3 (1)

T, thoracic; L, lumbar; Numbers in parentheses indicate number of dorsal spondylosis

deformans cases.

TABLE 5 Number of spondylsis deformans cases and grading of dogs in

146 lumbar lateral X-ray images.

L1-
L2

L2-
L3

L3-
L4

L4-
L5

L5-
L6

L6-
L7

Grade 1 11 (3) 11 (0) 5 (1) 6 (3) 1 (1) 2 (2)

Grade 2 5 (1) 7 (0) 4 (2) 7 (3) 2 (1) 2 (1)

Grade 3 5 (0) 5 (2) 4 (2) 4 (1) 3 (0) 2 (0)

L, lumbar; Numbers in parentheses indicate number of dorsal spondylosis deformans cases.

Themean time taken by deep learning to automatically segment

vertebral bodies and detect spondylosis deformans was found to be

0.052 s per image, while the time taken by a veterinary clinician to

evaluate spondylosis deformans was found to be 17.92 s per image.

3.4 Spondylosis deformans was more
common at T12-T13 and L2-L3 in
thoracolumbar and lumbar X-ray images

A total of 265 thoracolumbar and lumbar lateral radiographs

of dogs were evaluated for spondylosis deformans. Of these, 163

dogs exhibited spondylosis deformans (thoracolumbar vertebrae:

77 sites, lumbar vertebrae: 86 sites), of which 30 (18.4%) had dorsal

spondylosis deformans (Tables 4, 5). Within the thoracolumbar

vertebrae (T10-L3), the most commonly affected sites included

T12-T13 (36.7%) (Figure 6). In the lumbar vertebrae (L1-L7), the

most commonly affected sites were L2-L3 (26.7%) (Figure 7). In

contrast, T10-T11 (2.6%), L5-L6 (7.0%), and L6-L7 (7.0%) were

identified as the least affected areas.

4 Discussion

This study is the first to develop deep learning models to

automatically segment the vertebral body and detect spondylosis

deformans in the thoracolumbar and lumbar lateral radiographs

of dogs. Recently, models to detect specific diseases in X-ray
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FIGURE 6

Distribution of sites for spondylosis deformans and grading of dogs in 119 thoracolumbar lateral X-ray images. T, thoracic; L, lumbar.

FIGURE 7

Distribution of sites for spondylosis deformans and grading of dogs in 146 lumbar lateral X-ray images. L, lumbar.

images of dogs have been developed and commercialized, and

studies have been conducted to auto-segment gross head and

neck tumors for radiation therapy and automatically detect kidney

calculi and measure kidney volume in CT images in dogs; however,

there have been no studies in the literature on a deep learning

model to automatically recognize disc diseases in X-ray images of

dogs (32–34).

First, a segmentation model was developed to automatically

detect the vertebrae and disc space and was then compared to deep

learning models developed for lumbar vertebrae detection in prior

human literature. The mean intersection over union value, a term

similar to DSC for vertebral bodies, was found to be 0.8–0.88 in a

human study, and when the DSC value of the vertebral body (0.910)

in this study was converted to the mean intersection over union

value, it was found to be 0.835, showing the ability to recognize

the vertebral body at a similar level to the previous human

research (9).

However, in this study, the DSC for the intervertebral disc

space and intervertebral foramenwere slightly lower, reaching up to

0.787 and 0.779 respectively. The DSC value for the intervertebral

disc space and foramen were unavailable in the aforementioned

human study, which is likely because the size of the disc space and

intervertebral foramen is relatively smaller than that of the vertebral

bodies. Inconsistent imaging of the vertebral endplates can cause

disc space distances to appear shorter than they actually are or

results in unclear margins. Moreover, intervertebral foramen may

have ambiguous borders with adjacent structures. Additionally,

the substantial relative weight difference between breeds in dogs

compared to humans might have also affected this value. We

assume that training with a larger number of images will be

required to improve the recognition rate of disc spaces and

intervertebral foramen.

In this study, the most affected areas of spondylosis deformans

in thoracolumbar and lumbar lateral radiographs of dogs were
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identified as T12-T13 and L2-L3, with T12-L5 being more affected

overall. Previous studies (3, 4, 35) have found that the most

affected area was somewhat different (L1-L3); however, the overall

commonality of occurrence in the vertebral region (T12-L5) was

similarly confirmed.

Of the total 163 cases of spondylosis deformans identified

in 265 animals, 30 cases of dorsal spondylosis deformans

(18.4%) were identified. However, of the total 63 spondylosis

deformans in the test dataset, only 3 cases of dorsal spondylosis

deformans (2 sites for grade 1 and 1 site for grade 2) were

identified, but the deep learning model accurately recognized

all of them as spondylosis deformans. Although the number

of images with dorsal spondylosis deformans in the test

dataset is insufficient to evaluate accuracy, in the training and

validation datasets, the deep learning model also demonstrated

accurate recognition in the training and validation datasets,

identifying 26 out of 27 dorsal spondylosis deformans. This

suggests a high likelihood of accurate recognition for dorsal

spondylosis deformans.

Even for very small lesions such as grade 1 spondylosis

deformans, the model successfully detected 25 out of 26

sites, achieving a remarkably high sensitivity of 96.2% and a

very high negative predictive value of 98.4%. The specificity

and positive predictive values were also high, at 86.3% and

86.1%, respectively. These results suggest that the deep learning

model in this study exhibited higher sensitivity toward very

small spondylosis deformans than two clinicians. This may

likely be attributed to the criteria of the model, which that

considered a site as true spondylosis deformans only if both

clinicians identified it as spondylosis deformans. Notably, when

we identified 10 sites in our test dataset as spondylosis

deformans using the deep learning model alone, 6 of them

were sites judged as spondylosis deformans by one of the

two clinicians.

In addition, the time taken by the deep learning model

to auto-segment spondylosis deformans in radiographic images

was significantly faster than that by a veterinary clinician to

visually evaluate them, which we believe could ultimately save the

interpretation time of veterinary clinicians.

In case of the test dataset, images of the vertebral region

cropped from the lateral abdominal X-ray were used, when

checked ability of the deep learning model to detect spondylosis

deformans, observed that the sensitivity, specificity, positive

predictive rate, and negative predictive rate were all higher

than 86%. These results mean that the deep learning model

can detect spondylosis deformans highly accurately not only in

thoracolumbar and lumbar lateral X-ray images taken with precise

vertebral endplate alignment but also in lateral abdominal X-ray

images taken routinely for general medical examinations, which

is expected to be useful in veterinary clinical practice. However,

when applying the deep learning model to uncropped plane

lateral abdominal X-ray images, detection capability of vertebral

bodies and spondylosis deformans is slightly lower than applying

cropped images. Therefore, additional advancements training are

considered necessary to fully apply it to general plane lateral

abdominal X-ray images.

When the association between the presence of spondylosis

deformans and thoracolumbar and lumbar disc disease-related

clinical signs was examined, no statistical significance was found.

However, dogs with spondylosis deformans were more likely to

exhibit clinical signs associated with disc disease. However, no

association was found between clinical signs and the grade of

spondylosis deformans, and the presence of spondylosis deformans

did not differ by breed in this study. Previous studies also

have similarly shown that spondylosis deformans is detected on

radiographic images in 17.8%−32.8% of normal dogs without

specific clinical signs related to disc diseases (35–37). However

a higher rate of prevalence of spondylosis deformans (∼47%) is

identified in patients with intervertebral disc protrusion, a form of

intervertebral disc disease (IVDD) (38). Hence, while the presence

of spondylosis deformans is not specific for IVDD, it can be useful

in the diagnosis of disc disease when considered in conjunction

with radiologic findings such as intervertebral space narrowing.

In conclusion, the deep learning model developed in this

study is expected to help clinical veterinarians accurately and

rapidly evaluate spondylosis deformans by determining sites of

disc instability. Moreover, the vertebral body segmentation model

developed in this study can be applied to develop deep learning

models that automatically detect vertebral body diseases such as

tumors, discospondylitis, dislocation of vertebrae, and abnormal

narrowed intervertebral disc space.
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