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Mycoplasma bovis mastitis in 
dairy cattle
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Mycoplasma bovis has recently been identified increasingly in dairy cows 
causing huge economic losses to the dairy industry. M. bovis is a causative 
agent for mastitis, pneumonia, endometritis, endocarditis, arthritis, otitis 
media, and many other clinical symptoms in cattle. However, some infected 
cows are asymptomatic or may not shed the pathogen for weeks to years. 
This characteristic of M. bovis, along with the lack of adequate testing and 
identification methods in many parts of the world until recently, has allowed the 
M. bovis to be largely undetected despite its increased prevalence in dairy farms. 
Due to growing levels of antimicrobial resistance among wild-type M. bovis 
isolates and lack of cell walls in mycoplasmas that enable them to be intrinsically 
resistant to beta-lactam antibiotics that are widely used in dairy farms, there is 
no effective treatment for M. bovis mastitis. Similarly, there is no commercially 
available effective vaccine for M. bovis mastitis. The major constraint to 
developing effective intervention tools is limited knowledge of the virulence 
factors and mechanisms of the pathogenesis of M. bovis mastitis. There is lack 
of quick and reliable diagnostic methods with high specificity and sensitivity 
for M. bovis. This review is a summary of the current state of knowledge of the 
virulence factors, pathogenesis, clinical manifestations, diagnosis, and control 
of M. bovis mastitis in dairy cows.
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1 Introduction

Mycoplasma bovis, which was formerly known as Mycoplasma agalactiae subsp. bovis (1), 
is a causative agent of several diseases in cattle and other farmed ruminants including mastitis, 
pneumonia, endocarditis, arthritis, otitis, meningitis, and reproductive problems both in bulls 
and cows (2–6). M. bovis mastitis is an emerging dairy cattle disease that poses a significant 
challenge globally due to its highly contagious nature and resistance to antimicrobials (7). 
Despite the isolation of various Mycoplasma spp. from milk samples of cows with mastitis, 
M. bovis is the most common causative agent (8, 9).

In the United States of America (U.S.) alone, economic losses due to M. bovis mastitis is 
estimated to be above $100 million annually (10). This mainly results from increased somatic 
cell counts (SCC), decreased milk production, culling, and treatment costs. Since SCC is an 
indicator of milk quality and udder health, SCC beyond legal limits in the U.S. results in 
regulatory measures such as suspension of operation permits (11). Culling of infected cows 
has proven costly in the U.S. with the rate reaching as high as 70% (12). The prevalence of 
M. bovis mastitis is high in large dairy operations especially in the U.S. dairy industry where 
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several large scale dairy operations exist (13, 14). Currently adopted 
mastitis control programs which involve environmental sanitation, 
proper milking procedures and udder health (15) are partly ineffective 
due to transmission of M. bovis through respiratory route and semen 
or seminal fluid (16, 17) as well as calf to cow or vice-versa (18). Given 
the difficulty in diagnosis due to the fastidious growth nature and 
subclinical infection, with infected cows apparently appearing healthy, 
the disease can remain undetected for long time in dairy farms with 
significant economic losses (19).

Although M. bovis mastitis was first reported in the early 1960s 
(2) and has since been problematic, effective control tools such as 
vaccine or prophylactic therapy or treatment is yet to be developed. 
This is largely attributed to the knowledge gap in the critically 
important virulence factors and pathogenesis mechanisms of 
M. bovis mastitis.

With increasing antimicrobial resistance problem (20), accurate 
diagnosis is crucial to avoid the use of broad-spectrum antimicrobial 
drugs and to conduct targeted treatment. Among the challenges in the 
control and prevention of M. bovis infections is developing effective 
and sustainable control tools and rapid and reliable pen-side 
diagnostic tool with high specificity and sensitivity that can be used at 
farm level (21). This review is a succinct summary of current state of 
knowledge in virulence factors, pathogenesis, clinical manifestations, 
diagnosis, and control measures of M. bovis mastitis in dairy cows.

2 Virulence factors

2.1 Adhesion and invasion

Mycoplasmas lack cell walls and have exposed membrane 
proteins. The exposed membrane proteins primarily interact with host 
surfaces and enable the bacteria to adhere to the host mucosal surfaces 
and are also necessary for the bacteria to acquire nutrients from their 
surroundings and evade their host’s immune response (22).

Adhesion is an essential virulence attribute in mycoplasmas since 
adhesion mutants are avirulent (23). M. bovis utilizes a 48.8 kDa 
receptor TrmFO that binds to host fibronectin, an extracellular matrix 
glycoprotein (24). Other isolates also express key adhesins such as 
α-enolase, a hypothetical lipoprotein with adhesin activity (P27), 
variable surface lipoprotein A (VpmaX), and fructose-1,6-
biophasphate aldolase (25, 26). A cytoadhesive surface exposed 
protein in certain strains is expressed to surmount the highly tight 
epithelial junctions during infection in organs such as lung (27). 
Attachment only, however, does not constitute internalization as some 
M. bovis cells were shown adhered onto and others internalized into 
calf turbinate cells in a single in vitro infection (28, 29). Burki and 
co-authors showed that M. bovis enters host cells through non-classical 
endocytic pathway (28) which involves invagination of plasma 
membrane to internalize pathogens (30). This pathway is used by host 
cells to uptake various fluids and solutes but M. bovis takes this to its 
advantage. Autophagy is a highly conserved self-destructive process 
in eukaryotic cells aimed to remove faulty organelles, misfolded 
proteins and pathogens (31). However, M. bovis prevents autophagy 
in bovine mammary epithelial cells to replicate in an intracellular 
environment while also avoiding clearance by host immune responses 
and antimicrobial agents (32, 33). M. bovis exerts this effect through 

blocking autophagic flux which involves recognition of intracellular 
M. bovis by receptors, delivery to enzyme-bound membranes and final 
transport to lysosomes, a degradation machinery (33).

2.2 Variable surface proteins

Among the characteristics that increases the virulence of 
M. bovis is the collection of immunodominant variable surface 
proteins (Vsps). These surface lipoproteins are highly variable in 
their size and coding sequences (34, 35). Due to different surface 
lipoprotein variants potentially interacting with the host immune 
system at any given time, immune responses against these Vsps are 
not effective. Furthermore, the pathogenicity of M. bovis is 
significantly increased because these Vsps enable it to avoid 
detection and clearance by a host immune system (36).

2.2.1 Nucleases
Mycoplasmas do not have biosynthetic mechanisms to synthesize 

nucleic acid precursors and depend on cellular nucleases to generate 
nucleotide precursors (37). Nucleases are components of the 
mycoplasmal membrane that hydrolytically cleave the phosphodiester 
backbone of DNA and they play important role in acquisition of the 
host nucleic acids. Various Mycoplasma cellular nucleases have been 
characterized which are believed to be  important for generating 
nucleotides and hence expected to contribute to virulence (38). 
Endonucleases cleave the phosphodiester bond in the middle of chains 
within the polynucleotide whereas the exonucleases selectively cleave 
the polynucleotide chain either at the 5′ or 3′ ends (39).

2.2.2 Biofilm formation
It has been demonstrated that M. bovis produces biofilms; 

however, the level of adhesion and effectiveness of the biofilms vary 
between different strains depending on the surface lipoprotein (Vsp) 
expression. Biofilms of M. bovis increase heat resistance at 50°C and 
desiccation tolerance but are not any more resistant to antimicrobials 
compared to planktonic cells (40).

2.2.3 Nucleomodulin secretion
Nucleomodulins are effector proteins secreted by bacteria that can 

interact with the host DNA and serve to regulate gene transcription 
to favor the pathogenesis of the bacteria (41). The MbovP475 
lipoprotein is secreted by M. bovis and binds the promoters of the cell 
cycle central regulatory genes, CRYAB and MCF2L2 genes and 
downregulates their expression in bovine macrophage cell line (42) 
resulting in decreases in bovine macrophage cell line viability.

2.3 Metabolites

M. bovis synthesizes hydrogen peroxide (H2O2) which has the 
potential to react with iron and copper ions to produce cytotoxic 
hydroxyl radicals (43). This is possible through the NADH oxidase 
enzyme expressed by M. bovis which reduce oxygen to H2O2 on top of 
its adhesin role (44). Reactive oxygen species produced by M. bovis 
can cause varying degree of damage in bovine mammary epithelial 
cells including apoptosis (45).
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3 Pathogenesis of Mycoplasma bovis 
mastitis and clinical symptoms

The most common clinical manifestations of M. bovis mastitis 
includes udder swelling and abnormal milk appearance ranging from 
watery and flaky milk to thick purulent inflammatory fluid (46). 
However, some cows may show no outward symptoms although 
having subclinical mastitis with or without shedding the bacterium 
(47–50). M. bovis mastitis causes an increase in SCC. Among the 
initial reactions during intramammary challenge infection include 
high SCC and acute phase proteins (51). These authors reported 
increased production of serum amyloid A and lipopolysaccharide 
-binding protein in experimentally induced M. bovis intramammary 
infection. It is possible that M. bovis spreads from one site of infection 
to another via blood circulation. This was demonstrated by isolation 
of M. bovis from previously uninfected cows which were challenged 
experimentally by the intramammary route (46). Although shedding 
and re-infection is a possibility due to contagious nature of the 
organism, M. bovis from a milk of mastitic cows had identical pulsed 
field gel electrophoresis pattern with those isolated from other body 
parts such as eyes, nasal cavities and ears which is strong indication of 
internal dissemination (52).

Transmission of M. bovis has been linked to colostrum, milk, 
semen, air-borne, and intrauterine routes (16, 53–55). Udder-to-udder 
is thought to be the primary route by which the infection is transmitted 
between cows (12, 56). Although M. bovis intramammary infection is 
widespread in lactating dairy cows, it is also not uncommon in dry 
cows (57).

Several aspects of M. bovis mastitis differs from other major 
mastitis pathogens. Unlike coliform mastitis, which is environmental, 
M. bovis mastitis is contagious which means it can be transmitted 
from infected cows to healthy cows during milking time. The major 
contagious mastitis pathogens include Staphylococcus aureus, 
Streptococcus agalactiae, and Mycoplasma spp. (13). Compared to 
Staphylococcus aureus and E. coli, M. bovis weakly affects mRNA 
expression in bovine mammary epithelial cells (58). According to the 
USDA, M. bovis is more prevalent in large (500+) dairy operations 
compared to other contagious mastitis pathogens such as Streptococcus 
agalactiae (13).

4 Host immune responses against 
Mycoplasma bovis infection

4.1 Innate immunity

Epithelial cells are the major cell types in the bovine mammary 
gland and are the first line of defense. Upon first encounter, M. bovis 
adhere to and invade mammary gland epithelial cells (59) and bovine 
mammary epithelial cells respond by upregulated expression of 
proinflammatory cytokines such as interleukin (IL)-6 and IL-8 and 
TNF-α (58, 60). Autophagy is one of the mechanisms these cells 
employ to eliminate invading bacteria, however under-expression of 
autophagy related proteins has been demonstrated in M. bovis infected 
bovine mammary epithelial cells (32, 33).

M. bovis mastitis is characterized by massive recruitment of 
neutrophils into the milk spaces of the mammary gland (61). 

Similarly, M. bovis has been shown to stimulate production of 
neutrophils extracellular traps (NETs) and possess the membrane 
nuclease, MnuA which degrades the NETs through either exo- or 
endonuclease activity (38, 62). In addition, another membrane 
nuclease of M. bovis (MBOV_RS02825) has been demonstrated to 
degrade NETs and cause apoptosis in macrophages (63). NETs are 
considered part of the innate immune response which have DNA as 
a major structural component to trap and stop pathogenic bacteria 
from spreading (64). Degradation of the NETs by mycoplasmal 
nucleases have a bifold advantage including avoiding the 
entrapment and opsonophagocytic killing by neutrophils and 
scavenging the nucleotide precursors (65). Furthermore, M. bovis 
promote neutrophil apoptosis to ensure its persistence and 
systemic dissemination.

M. bovis has been observed to elicit proinflammatory cytokine 
and chemokine responses in infected hosts which may weaken the 
host and increase the pathogenicity of the bacteria (66). Opsonization 
is necessary for phagocytosis of M. bovis by macrophages and 
neutrophils, but M. bovis can combat this through surface antigen 
variation, and biofilm formation (40). Macrophages kill M. bovis via 
phagocytosis up on opsonization support from IgG1 and IgG2 (67). 
In a study conducted to determine M. bovis-bovine viral diarrhea 
virus (BVDV) synergism during infection, M. bovis induced 
apoptosis and cytotoxicity in bovine macrophages (68). In contrary, 
another study reported significant reduction in apoptosis in 
macrophages induced by M. bovis possibly as a mechanism of 
survival (69).

M. bovis inhibits proliferation of peripheral blood mononuclear 
cells (PBMCs) to evade the immune system and cause chronic 
infections (70). However, in contrary another study reported an 
increase in the expression of TNF-α, IL-12 and IFN-γ and increased 
proliferative responses in PBMCs stimulated with M. bovis (71). 
Following intramammary inoculation with M. bovis, milk from 
infected quarters exhibited increased SCCs, yet there was not a 
significant difference between levels of PBMCs or mononuclear 
cells in the stimulated and unstimulated mammary lymph nodes 
(72). In fact, there was a decrease in the mRNA levels of innate-
immunity related genes from blood mononuclear cells following 
intramammary infection with M. bovis, such as complement factor 
D (CFD), ficolin 1 (FCN1), and tumor necrosis factor superfamily 
member 13 (TNFSF13) (72). This alteration of the host 
transcriptome likely contributes to the chronic nature of many 
M. bovis infections.

4.2 Adaptive immunity

M. bovis antigens activate host CD4+, CD8+, γδ T- cells, B- cells, 
and leukocytosis (73, 74). In addition, M. bovis also induces IgG1and 
IgG2 responses (75). IgG1, however, has a lower opsonin effect which 
does not activate a strong humoral immune response in the host and 
resulting in persistence of M. bovis infections for long periods of time 
(76). The effect of cytokines, such as interferon gamma (IFN-γ), that 
encourage cell death but also cytokines that characterize the Th2 
response and slow recovery of tissues likely contribute to the 
pathogenicity of M. bovis and make it more difficult for the host to 
recover from infections (77).
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5 Diagnosis of Mycoplasma bovis

5.1 Culture

Microbial culture has traditionally been used to definitively 
diagnose M. bovis. However, the longer time it takes to grow makes 
culture unfavorable to make a rapid diagnosis. Most common 
specimens to diagnose M. bovis includes milk, bronchioalveolar 
lavage, deep nasopharyngeal swabs, joint fluids, and semen. 
Mycoplasma plates are incubated at 37°C in 5% CO2 for 7–10 days and 
colonies are typically characterized by a ‘fried egg appearance’ when 
observed under light microscope (78). This is unfavorable where rapid 
diagnosis is needed to isolate infected animals, limit further 
dissemination of infections and commence appropriate antibiotic 
therapy (79). Due to the longer days required by M. bovis, sometimes 
the colonies are overgrown by other bacteria to the extent that they 
cover M. bovis colonies and makes it difficult to observe under 
microscope (80). Not only they are overgrown on the plates, but they 
are also overgrown in the milk since mycoplasmas have limited 
capability to multiply in milk (81).

Mycoplasmas have one of the smallest genome sizes (0.58–1.38 
Mbp) which likely renders them needy of nutrients such as amino 
acids and fatty acids (22, 82). Another challenge with M. bovis culture 
is its detection limit which is greater than or equal to 272 CFU/mL 
(83) meaning any number of mycoplasma cells less than the detection 
limit could possibly be overlooked. Culture also fails to differentiate 
other non-pathogenic mollicutes such as Acholeplasma which exhibit 
same ‘fried egg’ appearance as M. bovis and can potentially 
contaminate M. bovis samples (84).

Bulk tank milk samples were used in several studies to estimate 
prevalence and other research purposes (85–88). The major problem 
with bulk tank milk sampling is collecting a representative amount of 
sample out of 200 to 2,600 gallons of tanks which could massively 
dilute the amount of Mycoplasma cells. Usually, about 10–40 mL of 
milk sample is collected (85, 87), centrifuged and only 100–200 μL are 
spread on the Mycoplasma plates. Some laboratories culture milk 
samples directly (12), however it has been demonstrated that 
centrifugation and resuspension can potentially increase the rate of 
recovery (89). Occasionally, enrichment of milk samples in 
Mycoplasma broth before culture is practiced (90). Milk samples need 
to be  processed immediately after collection to maximize the 
likelihood of positive diagnosis or need to be frozen although freezing 
has been shown to cause 1–2 log10 reduction (91). In addition, multiple 
sampling is greatly advised due to intermittent shedding behavior of 
the pathogen in mastitis cases (49, 92). However, there are also studies 
which were conducted based on one-time bulk tank milk sampling 
(85, 93).

5.2 Polymerase chain reaction

PCR is such a sensitive method in M. bovis diagnosis that it 
detects as low as 10 CFUs from broth cultures (94, 95). Compared to 
culture, enzyme-linked immunosorbent assay (ELISA), sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and 
nucleic acid hybridization, PCR was found to be superior in terms of 
high specificity, sensitivity and rapidity (96). However, expensive 
reagents and equipment are the major setbacks to apply in small-scale 
laboratories and farm environments. The application of PCR in 

M. bovis diagnosis brought about several advantages. It bypasses the 
tiresome culturing and samples can directly be screened for M. bovis 
DNA. In comparison to the culture method which only detects live 
organisms, PCR can detect the DNA from dead microorganisms 
which can have several implications. This is true, for instance, perhaps 
if milk samples are stored in a freezer for long time and M. bovis cells 
are no longer viable (91). In some cases, pre-enrichment is 
recommended before performing PCR assays for as many as 4 days 
(97). This might save time and resource in terms of avoiding culturing 
negative samples, however is not helpful when rapid diagnosis 
is needed.

UvrC gene has widely been used as a target in conventional and 
real-time PCR in M. bovis detection in bulk tank milk and lung 
samples (87, 98, 99). It is one of housekeeping genes in M. bovis which 
encodes an enzyme that mediates excision DNA repair system (82, 
100). Furthermore, this gene has been recommended for use in 
routine laboratory diagnosis of M. bovis (101). Realtime PCR has been 
shown to be more sensitive than conventional PCR and was able to 
amplify as low as 40 copies of the target gene (98). The CT values in 
real-time and quantitative PCR (qPCR) can be used as a predictive 
tool for M. bovis isolation (97).

A multiplex PCR which separately detects different species such 
as M. bovis, M. bovigenitalium, and M. californicum in a same sample 
which would greatly reduce efforts and time spent to perform multiple 
reactions (102). Furthermore, bacterial species such as Mannheimia 
hemolytica are usually isolated alongside M. bovis in respiratory 
diseases (103). Multiplex quantitative PCR has been proven to 
specifically detect and quantify these respiratory pathogens (104, 105). 
Nested-PCR, where two sets of primers are employed, is preferred to 
increase sensitivity and specificity of Mycoplasma detection (106, 107). 
PCR has also been employed to identify antibiotic resistance genes in 
M. bovis (108, 109).

5.3 Indirect and direct ELISA

Unlike culture and PCR, ELISA detects the anti-M. bovis 
antibodies in the host serum or milk from past or recent infections as 
a result of humoral immune responses. ELISA has widely been used on 
bulk tank milk samples to detect anti-M. bovis antibodies in the milk 
for diagnostic, prevalence, and retrospective studies (85, 88, 110, 111). 
A MilA ELISA with a specificity and sensitivity as high as 94.2 and 
96.6%, respectively, has been used to estimate M. bovis mastitis 
prevalence from bulk tank milk samples (112). This ELISA, in which 
MilA membrane protein was used as a coating antigen, was first 
developed in Australia (113). Furthermore, the milA gene was 
expressed on the surface of a phage and was used as antigen in indirect 
ELISA which was reported to be inexpensive and convenient compared 
to the MilA peptide protein (114). However, bulk tank milk is not a 
fully representative sample for a herd since M. bovis can cause various 
disease manifestations in various age groups (115). This necessitates 
considering blood samples in certain cases where the young stock is 
suspected to harbor the infection or they are being newly introduced 
to herd. ELISA might not necessarily indicate active M. bovis infection 
as positive ELISA results turns negative in PCR when both methods 
were used in same herds (85, 116). Thus, ELISA can be used as a 
biosecurity tool before introducing newcomers to the herd (110) and 
as a surveillance tool to monitor and confirm eradication of M. bovis 
infections in some nations (117). It also plays role in testing 
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immunogenicity of novel proteins in a study conducted to investigate 
M. bovis pathogenesis and its protective antigens (118).

The use of Indirect ELISA to detect anti-M. bovis antibodies is 
challenged by cross-reactivity from other Mycoplasma spp. such as 
M. agalactiae (119). Indirect ELISA might not be as rapid as desired 
sometimes, since it takes 1–2 weeks for the animal to mount humoral 
immune response (seroconversion) and results could possibly turn 
negative in this time window (78), thus it needs to be  used in 
conjunction with other tests. Once antibodies are produced by the host, 
however, ELSIA is not affected by the intermittent shedding behavior 
of M. bovis in the milk which indicates it is important to use culture, 
PCR and/or ELISA together, whenever possible, since they complement 
each other. Unlike indirect ELISA, the use of direct ELISA in M. bovis 
diagnosis is limited. There are not many direct ELISAs reported, 
however one study reported membrane protein P48 based monoclonal 
antibodies has been shown to specifically detect M. bovis without cross-
reactivity with related species such as M. agalactiae (120).

5.4 MALDI-TOF MS

Matrix-Assisted Laser Desorption Ionization – Time of Flight Mass 
Spectrometry (MALDI-TOF MS) has lately been adapted as a rapid tool 
to accurately diagnose microbes. The principle behind the method is 
formation of ions from intact bacterial cells using laser light ionization 
(121). Samples are obtained from colonies on agar plates, mixed with 
matrix solution, and introduced to a mass spectrometer ion source. 
Results are analyzed against archived references or with colonies from 
known bacteria. Following a comparison with the 16S rDNA PCR as 
gold standard, MALDI-TOF has been in agreement for 97.8% species-
level and 99.6% genus-level for aerobes and 95.3% species-level and 
100% genus-level for anaerobes which shows that it is a preferable 
method to diagnose bacteria of veterinary interest (122). The suitability 
of MALDI-TOF to distinguish between phylogenetically closest 
sub-species in human and ruminant mycoplasmas has been confirmed 
(123). Although some studies recommend MALDI-TOF as promising 
test for routine diagnosis of M. bovis, the disadvantage lies in its 
dependence on enrichment which can take 2 to 4 days (124, 125). The 
starting material for MALDI-TOF could also be a secretome extraction 
or a protein from M. bovis. Zubair et al. used extracted secretome from 
M. bovis HB0801 strain to predict 8 proteins related to a virulence which 
signifies the importance of MALDI-TOF in identifying potential 
diagnostic and vaccine targets (126).

Limited library of mycoplasmas in the MALDI-TOF databases 
has been reported as one of the challenges in using this method to 
detect M. bovis (125). Initial MALDI-TOF installation and 
instrumentation is also believed to be expensive which makes its 
application at large scale level difficult (127). Therefore, MALDI-TOF 
is commonly used more as a confirmatory technique rather than a 
routine diagnostic tool.

5.5 Loop-mediated isothermal 
amplification

The LAMP is a high sensitivity method which utilizes a set of 2 to 
3 primers that can produce several copies (108) of target DNA in less 
than an hour since it bypasses the denaturation step (128). As the 
name indicates, LAMP amplification occurs within a constant 

temperature. Unlike the conventional PCR, LAMP does not need 
thermocyclers and can easily be  done in heating block (129). 
Following amplification, results can be  read in 2% agarose gel 
electrophoresis; using SYBR green I staining or based on turbidity of 
the reaction mixture (129, 130). UvrC-based LAMP in M. bovis has 
been demonstrated to have 10-fold higher sensitivity compared to 
PCR with 100 and 74% sensitivity and specificity, respectively, (129), 
however later on other researchers improved the specificity to 90.9% 
(130). Other M. bovis genes such as oppD (encodes oligopeptide 
permease D), gltX (glutamate transfer RNA ligase), gyrB (gyrase B 
subunit) and 16 s rRNA were also employed to show sensitive and 
specific detection of M. bovis using LAMP (131, 132).

6 Control and prevention measures

Globally, DNA amplification techniques used for detection and 
identification of bacteria have only become widely globally accessible 
within the last 30 years, making it difficult to trace the exact time and 
route by which M. bovis first spread around the world (94). The first 
definitive identification of M. bovis infection was in 1961  in the 
U.S. (2). From there, the pathogen was thought to have been spread to 
other countries through movement of cattle and cattle products (7).

The strategy toward the control and prevention of M. bovis 
mastitis, or M. bovis infection in general, depends on the country. 
New Zealand, which is the latest country to report M. bovis mastitis 
in 2017, prefers a nationwide complete eradication program (117). 
However, other endemic countries endeavor to contain infections 
at the farm level through culling or isolating infected animals (133). 
Finland, for example, pursues a voluntary control program 
involving farmers since M. bovis is regarded as one of less serious 
diseases (134).

Currently, the best-known method for controlling M. bovis is 
mere prevention of exposure to the pathogen and other infected cows. 
Screening of original herd before purchasing new cows is worthwhile 
as well as quarantine of new cows which adds extra layer of security. 
In addition, isolation and culling of infected cows are necessary 
measures to effectively control the disease and minimize outbreaks 
(42). However, advances in rapid and accessible tests to detect M. bovis 
on dairy farms are necessary to control and prevent outbreaks from 
occurring more effectively.

6.1 Use of antimicrobials

There are currently no known effective treatments against M. bovis 
available for use. One of the main reasons for this is the growing 
incidence of antimicrobial resistant bacterial strains. Drugs such as 
tiamulin, enrofloxacin, danofloxacin, and florfenicol has been 
reported to have low minimum inhibitory concentration against 
M. bovis (20). However, in the last 2 decades, M. bovis have shown less 
susceptibility to antimicrobial agents like fluoroquinolones (135). 
Furthermore, lack of cell wall makes the organism resistant to 
commonly used antimicrobials such as penicillin and cephalosporins. 
Macrolides such as tylosin and tilmicosin which were traditionally 
used to treat Mycoplasma infections has gradually become less 
effective (136). Recent trends indicate that antimicrobial resistance 
against other common antimicrobials, such as tetracyclines, has been 
increasing as broadly reviewed elsewhere (20). Some natural 
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compounds have been shown to be  promising and may further 
be developed to produce effective therapeutic options (137).

6.2 Vaccines

Many potential vaccine candidates have been developed but are 
not available for widespread commercial use. For example, autogenous 
vaccines have been developed (138); however, such vaccines are useful 
only for a single farm, limiting their potential for large-scale use. Other 
vaccines showed efficacy in studies but failed to elicit any protective 
effects in field trials as they failed to reduce the incidence of M. bovis 
cases (139, 140). There are currently no commercially available effective 
vaccines that prevent the incidence of M. bovis infection. Given the fact 
that M. bovis causes pneumonia in the feedlot cattle (141), considerable 
number of vaccine works has been done using feedlot cattle as a model. 
Prysliak and co-authors developed a sub-unit vaccine using the highly 
conserved glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
protein; however, subsequent controlled experimental efficacy 
evaluation showed that it did not confer protection against 
experimental challenge (142). Similarly, intranasal inoculation of total 
protein extract and membrane fractions from M. bovis triggered strong 
humoral immune responses but failed to protect against experimental 
challenge infection (143). Another challenge in vaccine development 
against M. bovis mastitis is strain variations of M. bovis (6). M. bovis 
also expresses antigenically variable surface proteins (34, 144) and thus 
necessitates developing vaccines from highly conserved immunogenic 
proteins. Despite several trials in the past, conserved immunogenic 
molecules which can elicit protective immune responses against 
M. bovis mastitis are yet to be identified.

7 Perspectives and future directions

In summary, effective control tools such as vaccine or prophylactic 
or therapeutic drugs against M. bovis mastitis are not available. Currently 
adopted mastitis control programs which involve environmental 
sanitation, proper milking procedures, and udder health are partly 
ineffective due to transmission of M. bovis through the respiratory route, 
semen or seminal fluid as well as calf to cow or vice-versa.

Rapid diagnosis is extremely important for the identification and 
culling of infected animals before infection spreads through the herd. 
This is particularly true in farm settings where purchased animals 
need to be  screened or where segregation and culling of infected 
animals is much needed. Therefore, rapid and accurate pen-side 
diagnostic tests or combination of tests are needed. Given the difficulty 
in diagnosis due to the fastidious growth nature and subclinical 
infection, the disease can remain undetected for a long time in dairy 
farms with significant economic losses. Accurate diagnosis and 
antimicrobial susceptibility tests are also important to conduct 
targeted treatment which reduces the emergence of antimicrobial 
resistance. Whenever microbial culture is used for diagnosis, 
suspected animals awaiting results should be segregated from other 
herd members. Immediate culturing of milk samples is highly 
encouraged to increase the likelihood of detection since refrigeration 
and freezing lowers the survival of Mycoplasma cells (145). Cows with 
mastitis are usually asymptomatic and sometimes M. bovis is detected 
from healthy animals (146). This is also best exemplified by sudden 

occurrence of infection signs such as lameness and mastitis in yet 
closed dairy herds (147). Therefore, multiple sampling and regular 
screening of existing herd members is extremely important depending 
on how often new heifers are purchased. To overcome the problem of 
intermittent shedding of the Mycoplasma in the milk, indirect ELISA 
could be of great help since it depends on the antibodies rather than 
the detection of the antigen itself. MALDI-TOF is an advanced, rapid, 
and accurate method to detect M. bovis from various clinical samples. 
Its expensiveness and requiring sophisticated instrumentation and 
expertise renders it difficult to recommend for large-scale use. Finally, 
uniform recommendation should be put forward regarding which 
tests can be bundled together and yield complete diagnosis of M. bovis 
for different clinical samples collected from the animal body 
organs affected.

One of the major reasons for the failure to develop an effective 
control tool is limited knowledge of the virulence factors of M. bovis 
and the pathogenesis of M. bovis mastitis in dairy cows. Therefore, 
developing effective and sustainable control tools such as vaccines or 
prophylactic or therapeutic drugs, or any other innovative intervention 
tool using advanced molecular biology and cellular and molecular 
immunology approaches is required.

The combined economic and welfare impact of M. bovis infections 
prompted extensive search for effective and sustainable control tools 
such as vaccines, prophylactic and therapeutic solutions (21) while 
also antimicrobial resistance is increasing (20). Vaccine attempts has 
been futile due to mainly the knowledge gap in the pathogenesis and 
virulence mechanism of M. bovis. Novel vaccine or antimicrobial 
drugs will be out of reach if conserved immunogenic antigens or 
therapeutic agents are not discovered.

Hygienic husbandry practices during milking, feeding, and overall 
rearing is of paramount significance.
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