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Objective: To determine if a single brain biopsy utilizing a freeze-core needle

harvest system Cassi II under ultrasound guidance provides a diagnostic

sample; to evaluate the technique’s e�cacy in procuring diagnostic samples

in comparison with “open” surgical biopsies; and to describe intraoperative

complications associated with the technique.

Study design: Experimental clinical study.

Animals: Seventeen dogs and four cats with magnetic resonance imaging (MRI)

diagnoses of readily surgically accessible intracranial masses.

Methods: Immediately prior to surgical biopsy (SB), freeze-core biopsy (FCB)

sample was obtained from each patient under ultrasound guidance.

Results: Histopathology results from single FCB samples were found to be in

100% agreement with the SB samples. Freezing artifact was minimal and did

not interfere with histopathologic interpretation. There were no intraoperative

complications specifically attributable to the use of the FCB system.

Conclusion: Based on the results of this small experimental study, the

FCB system is expected to safely yield diagnostic quality intracranial masses

biopsy specimens.

Clinical significance: This system has the potential of obtaining diagnostic

biopsies of more deeply seated brain lesions (i.e., intra-axial tumors considered

inaccessible or with large risks/di�culties by standard surgical means) which

would provide a definitive diagnosis to guide appropriate therapy.
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Introduction

In patients with suspected intracranial disease, it is possible to provide a
presumptive neuroanatomic localization based on history, signalment, and complete
neurologic examination. Cross-sectional advanced imaging (e.g., computed tomography
[CT] or magnetic resonance imaging [MRI]) is needed to confirm and accurately
delineate the localization (1, 2). Although these advanced imaging modalities
have greatly improved the ability to treat small animal intracranial diseases
(neoplastic, inflammatory, and cerebrovascular brain lesions), they are sufficiently
unreliable to provide a definitive diagnosis (3, 4), but the combined examination of
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Cerebrospinal fluid (CSF) analysis may help rule out inflammatory
processes and support a diagnosis of neoplasia (5). Although
both CT and MRI provide valuable detail regarding the presence,
location, and size of intracranial masses, along with effect on
adjacent intracranial structures (e.g., ventricular system), the
superior detail afforded by MRI makes it the preferred choice for
imaging the brain (6). Several studies have shown that MRI can
render a presumptive diagnosis for some canine brain tumors;
however, as in human patients, the accuracy varies substantially
(3, 4, 7–14).

Histopathologic evaluation remains the “gold standard” for
making a definitive diagnosis with an intracranial lesion and is
often a necessary component for accurate treatment planning (12–
15). Unfortunately, permission to biopsy is not always granted
by owners because of financial limitations and the risk of
morbidity. Various brain biopsy techniques in conjunction with
imaging have been described in human and veterinary patients.
These include free-hand vs. stereotactic systems, frame-based vs.
frameless systems, and the use of various imaging modalities such
as ultrasound-guided, CT-guided (12, 16–23) and MRI-guided
(21, 24–26). With each of the aforementioned techniques, the
current recommendation is to harvest multiple tissue samples to
improve success; however, this may result in increased morbidity
(21, 24, 27–29). Morbidity and mortality associated with each of
the aforementioned imaging-assisted biopsy methods are difficult
to compare since some dogs also had surgical removal of the brain
mass immediately following the biopsy procedure. Moissonnier
(19) reported a 27% morbidity and an 8% mortality, while Koblick
(16) reported 12% morbidity and 7% mortality.

One theoretic advantage of the freeze-core biopsy (FCB)
technique is that a single biopsy sample would yield diagnostic
results owing to the enhanced tissue adherence of the tumor
to the frozen sampling needle, thus lowering the risk of patient
morbidity (28, 29). Themain indication for the use of a small biopsy
instrument with ultrasound guidance for brain tumors is for lesions
that are not readily accessible surgically (e.g., deep-seated tumors).
These less accessible lesions are often not biopsied due to fear of
unacceptable morbidity andmortality associated with conventional
surgical biopsy (SB). To validate both the new proposed biopsy
technique and the FCB biopsy instrument, the authors conducted
this initial study on readily accessible intracranial masses so that
the biopsy material attained via conventional SB could be used as a
comparison or “gold standard.” This study describes a new biopsy
technique with ultrasound guidance of a FCB system, Cassi II1,
to obtain samples of brain tumors, along with any immediate
intraoperative complications. We hypothesized that the technique
would provide diagnostic samples and that histological diagnosis
would be similar to that obtained with SB.

Materials and methods

Patient inclusion and data collection

Dogs and cats with an MRI diagnosis of an intracranial
mass treated with craniotomy and mass removal at our hospital
over three consecutive years were admitted into the study. Only

1 Cassi II, Scion Medical Technologies, Newton, MA 02458, USA.

FIGURE 1

The Sanarus Cassi II freeze-core biopsy system utilizes a CO2

cartridge (a) to provide cooling for the quick “stick freeze” and a

combined securing needle and a rotating cutting cannula (b). The

hand piece contains the operational control buttons (c).

patients with masses that were considered readily accessible via a
standard transfrontal or standard/modified lateral (rostrotentorial)
craniectomy were included. The following information was
recorded: signalment, bloodwork (e.g., complete blood count and
serum biochemistry profile), neurologic examination findings,
MRI results, histopathology from the 10g Cassi II freeze-core
biopsy (FCB) and from surgical biopsy (SB), intra-operative
complications, post-operative complications and pre-and post-
operative medical therapy.

Anesthesia and pre-operative preparation

Each patient was anesthetized for surgery in a similar manner.
Patients were pre-medicated with atropine (0.022–0.044 mg/kg
subcutaneously), Maropitant 1 mg/kg IV and hydromorphone (0.1
mg/kg subcutaneously) and induced with propofol (3–6mg/kg IV).
Anesthesia was maintained with isoflurane. Intravenous cefazolin
was administered (22 mg/kg) at the beginning of surgery and
every 90min during surgery. Mannitol (0.5 g/kg IV over 10–
15min) and methylprednisolone sodium succinate (30 mg/kg IV)
were administered pre-operatively. The MRI scans were performed
using a 3.0-Tesla scanner2 within 7 days prior to surgery in all
patients. Sagittal and transverse T2-weighted images (fast spin
echo), sagittal and transverse T1-weighted images with and without
the IV administration of gadolinium (Magnevist

R©
, gadopentate

dimeglumine, Bayer Healthcare Pharmaceuticals; 0.1 mmol/kg)
were obtained. The patient’s head was clipped from the level of
C1 to approximately the level of the infraorbital foramina. The
animal was then placed in sternal recumbency with the head slightly
elevated and head and neck at an ∼90◦ angle to each other and
prepared aseptically for surgery. Care was taken not to compress
the external jugular veins.

2 Achieva, Philips, Andover, MA 01810, USA.
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FIGURE 2

The securing needle (a) stabilizes the specimen using contact freezing (b) while the rotating cutting cannula advances and retracts revealing the

biopsy specimen (c). Typical surgical set-up and positioning for biopsy (d).

The Cassi II freeze-core biopsy system
instrumentation

The Cassi II freeze-core biopsy system (Figure 1) uses an
ultrasound-guided, 19-gauge x 2 cm length securing needle and
a 10-gauge serrated cutting cannula. A CO2 quick “stick freeze”
localizes the target tissue around the securing needle, followed
by advancement of the rotating cutting cannula. The securing
needle stabilizes the specimen using contact freezing while the
rotating cutting cannula minimizes distal displacement of the
biopsy specimen during harvest resulting in the frozen core sample
(Figure 2). The biopsy specimen obtained is ∼1.5–2 cm long and
3–4 mm wide.

Surgical technique

The surgical procedure was performed on all patients by the
same primary surgeon (DJM). Either a transfrontal or a lateral
rostrotentorial craniectomy was performed and access to the
appropriate region of the brain based onMRI findings as previously
described (1, 21, 30, 31). The craniectomy was widened using
a rongeur to allow for the ultrasound probe footprint (1.75 cm)
as well as an additional 0.5 cm “working space” to accommodate
the FCB instrumentation. A dedicated intraoperative ultrasound
system, Afia, E-Technologies3, which includes sterilized 12 and
20 MHz microconvex probes was utilized for the FCB technique.
After successful identification of the mass with intraoperative
ultrasonography, the underlying meninges were incised. Care was
taken to avoid lacerating the dorsal sagittal sinus within the falx
cerebri. Bleeding was minimal and was controlled with bipolar
cautery and Gel Foam (Baxter Healthcare Corp, Hayward CA)
sponge. The FCB stabilization needle was placed intralesionally
using intraoperative ultrasonography (see text footnote 3), the
freeze-core biopsy system activated, the instrument rotated 90◦

and withdrawn. One FCB biopsy was harvested for each tumor
(Figure 3). Mass removal was then achieved as previously described
under 3X magnification using an expanded field telescope4. All
visible tumor and tissue suspected of being abnormal based on
the MRI were removed via manual manipulation and aspiration,
and the empty cavity flushed with saline (31, 32). No attempt

3 Afia, E-Technologies, Bettendorf, IA 52722, USA.

4 Designs for Vision, Inc., Ronkonkoma, NY, USA.

to fully close the dural defect was made, and the craniectomy
site was covered with hemostatic material (Gelfoam). The bone
plate was not replaced. The temporalis muscle and subcutaneous
tissues were apposed with simple interrupted sutures using 3-0 or
4-0 polydioxanone (PDS) suture material. Biopsy specimens were
labeled according to method of harvest, SB vs. FCB, and submitted
for histopathologic analysis.

Histopathology analysis

Both SB and FCB tissue samples were fixed in 10% buffered
formalin, processed routinely, and stained with hematoxylin and
eosin. In the assessment of the histology samples, the evaluator
was blinded to the patient origin of the SB and FCB tissue
samples. Diagnosis was based on histologic examination of tissues.
A published scoring system was unable to be used because several
tumor types were assessed. Each biopsy was evaluated on four
components: (1) mitotic rate, (2) cellular atypia, (3) necrosis, and
(4) inflammation. A scoring system was used to assess each of the
components on a scale of 1–3. For mitotic rate: 1 = <2 mitoses/10
high power fields (HPF), 2 = 3–10 mitoses/10 HPF, and 3 = >10
mitoses/10 HPF. For necrosis, cellular atypia, and inflammation the
scoring was as follows: 1=mild, 2=moderate, and 3= severe.

Statistical methods

Descriptive statistics were calculated for the n = 21 animals.
Frequencies and percentages were computed for categorical data
andmean± standard deviation; median, minimum, andmaximum
were computed for continuous data. For continuous outcomes (i.e.,
mitotic rate and inflammation score), the method of Bland and
Altman was used to examine correlations between the pairs, FCB
and SB (33). This method utilizes analysis of covariance techniques
to calculate correlations between pairs of variables collected as
repeated measurements, i.e., if the FCB Mitotic rate is correlated
with the SB Mitotic rate. Bland-Altman plots were constructed but
did not influence the analysis in any way and were therefore, not
reported. The 95% “limits of agreement” were calculated such that
if both the lower and upper limits are small (in absolute value), then
the two measurements can be considered equivalent. On the other
hand, if either of the limits is large, then the two measurements
are not equivalent. Whether a limit is considered small or large
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FIGURE 3

Meningioma removed from the parietal lobe of a 9-year-old DSH. Transverse T1W post-contrast (left) and T2W (right) MR images (A) showing the

large mass (red arrow). In both the surgical biopsy (B) and the Cassi biopsy (C) the mass was diagnosed as a meningioma. The Cassi biopsy samples

have shrunken nuclei with darker staining chromatin and mild loss of nuclear and cytoplasmic detail compared with surgical biopsy samples.
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depends, in part, on clinical judgment and on the size of the limit
relative to the structure or, in this case, distance, being measured.

In a similar way, the kappa (κ) coefficient was used as
the measure of agreement between the FCB and SB separately
for categorical outcomes such as mitotic score, Cellular atypia,
Necrosis, and Inflammation. The corresponding 95% confidence
interval for each of these kappas was calculated and interpreted in
a way analogous to that of the Bland-Altman limits of agreement.
That is, if the lower limit of the kappa confidence interval was
unacceptably low then this was sufficient grounds for stating that
agreement had not been established. The following guidelines
outlined by Landis and Koch (34–36) were used to characterize the
strength of agreement for the kappa coefficient:≤0.20= poor, 0.21–
0.40= fair, 0.41–0.60=moderate, 0.61–0.80= good, and 0.81–1=
very good (34–36). These descriptors also were used for describing
the lower 95% confidence interval.

Post-operative care and follow-up

After recovery, patients were monitored in intensive care
for 48 h and were administered intravenous (IV) isotonic fluids
(0.45%NaCl/2.5% dextrose, 66mL/kg/day) supplemented with 10
mEq potassium chloride/500mL, until each patient was drinking
and eating on their own. No intracranial pressure monitoring
system was used in this study. Recovery time was monitored
prospectively, but could not be retrieved accurately at the time of
writing of this manuscript (due to a change in hospital software).

Postoperatively, IV buprenorphine (0.3 ug/kg, q 8 h) and
IV cephalexin (22 mg/kg, q 8 h) were administered for 24 h.
Temperature was monitored hourly until normal for 3 or more
readings. Electrolyte analyses were performed at the surgeon’s
discretion. Methylprednisolone sodium succinate (30 mg/kg IV)
was administered 6 h after the preoperative dose and prednisone
administration was begun (0.5 mg/kg) every 12 h subcutaneously if
the patient was not eating and orally when the patient was eating.

Results

Seventeen dogs and four cats had ultrasound assisted FCB
mass biopsy and subsequent SB mass removal, thus meeting the
criteria for study inclusion. The 17 dogs included the following
breeds: three Labrador retrievers, three Golden retrievers, and one
each of Pitbull, Cocker spaniel, mixed-breed, miniature Schnauzer,
Dachshund, Australian Shepherd, Shetland Sheepdog, Cockapoo,
German Shepherd dog, Boston terrier, and Maltese. The four cats
were domestic short hair cats. The mean age of the dogs at the time
of surgery was 9.4 years (range: 4–14), while the mean age for cats
was 15.3 years (range: 14–18). There were 10 male castrated, seven
female spayed dogs and two male castrated, and two female spayed
cats. The mean weight of the dogs was 23.2 kg (range: 8.6–36.8 kg)
and 5.1 kg (range: 2.7–9.0 kg) for the cats.

Neuroanatomic localization based on MR imaging, mass
dimensions, and FCB and SB histopathology results are
summarized (Table 1). There were no intraoperative or post-
operative deaths or complications noted.

A single FCB sample of an intracranial mass is of diagnostic
quality. The FCB system histopathology results agreed with
SB histopathology results in 100% of the 21 samples. Tissue
architecture in the Cassi samples was very similar to that in the
traditional biopsy samples. There were no tissue clefts, suggestive
of ice crystal formation. Cells in the Cassi samples often had
slightly shrunken nuclei with darker staining chromatin and mild
loss of nuclear and cytoplasmic detail compared to the traditional
samples. These changes were subtle and did not interfere with
diagnosis. The Cassi biopsies were incisional biopsies, and therefore
did not allow complete evaluation of invasiveness and surgical
margins. The mitotic score agreement for the FCB and SB was
very good [κ = 0.87 (95% CI: 0.61, 1.00)]. For cellular atypia,
the agreement between the FCB and the SB was good [κ = 0.61
(95% CI: 0.29, 0.93)]. For cellular necrosis between the FCB and
the SB, the agreement was good [κ = 0.72 (95% CI: 0.44, 1.00)]
and for inflammation, the agreement for the FCB and the SB was
good [κ = 0.68 (95% CI: 0.37, 0.98)]. The mitotic rate average
difference was−0.89 (95%CI:−6.27, 4.48). The limits of agreement
for the mitotic rate ranged from −6.27 to 4.48 on a measurement
that averaged −0.89. The inflammation score average difference
was −0.37 (95% CI: −1.89, 1.15). The limits of agreement for the
inflammation score ranged from −1.89 to 1.15 on a measurement
that averaged−0.37.

Discussion

All the image-assisted brain biopsy techniques reported in
literature and mentioned in the introduction of this manuscript
utilized side-cutting aspiration biopsy needles, with a diagnostic
accuracy ranging from 73 to 97% (27). Variable accuracy rates
have been reported with different imaging-assisted biopsy methods
in clinical cases ranging from 91 to 95% (16, 19). In the study
published by Koblick (16), there was a wide variation in diagnostic
yield for particular histologic subgroups, ranging from 50% for
non-contrast enhancing lesions to 100% formeningiomas, however
low case numbers were reported. The Cassi II freeze-core biopsy
system was successful in producing brain biopsy samples that
were of sufficient size and diagnostic quality to be evaluated
histologically in all 21 cases (100%). This system demonstrated
obtaining a diagnostic sample with a single biopsy.

Since our study was expected to include multiple tumor types,
considering the reported interobserver variability in assessing brain
tumor grades (e.g., gliomas) (37), and to be able to compare FCB
specimen vs. SB specimen across this range of different tumors,
specific tumor grades were not a criterion initially retained (criteria
were mitotic rate, cellular atypia, necrosis, and inflammation).
Hence, the diagnostic yield evaluated in our study was tumor type
and the four criteria specified, not tumor grade. Although common
to previous brain biopsy studies (16, 17), this is a limitation of
our study and future studies on evaluation of FCB on deep-seated,
non-readily accessible tumors should ideally include tumor grades
in their report. Using our scoring system, we found very good
agreement between the FCB and the SB for mitotic score, and
good agreement for cellular atypia, necrosis, and inflammation
[κ = 0.68 (95% CI: 0.37, 0.98)]. On histopathologic examination
of the “stick-freeze” specimens, freezing artifact was minimal and
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TABLE 1 Cassi II freeze-core biopsy and surgical biopsy histopathology results, neuroanatomic localization based on MR imaging, and mass dimensions

are summarized.

Number Cassi II
freeze-core
biopsy

Surgical
biopsy

MR localization Height/cm Width/cm Length/cm

1 Pituitary Adenoma Pituitary Adenoma Midline extra-axial contrast-enhancing
diencephalic mass contiguous with the
pituitary gland and extending into the
third ventricle.

1.8 1.5 2.3

2 Meningioma Meningioma Extra-axial contrast-enhancing masses
in the right olfactory bulb region
associated with the falx.

1.5 0.8 1.1

3 Oligodendroglioma Oligodendroglioma Intra-axial contrast enhancing mass on
the floor of the left cranial and middle
fossa extending from the caudal aspect
of the olfactory bulb to the rostral aspect
of the diencephalon.

1.4 1.3 2.2

4 Meningioma Meningioma Multi-cystic contrast-enhancing mass
on either side of the rostral falx in the
region of the olfactory bulb and frontal
lobe regions.

2.6 1.1 2.9

5 Meningioma Meningioma Multilobulated mass extending from the
olfactory bulb region to
mid-diencephalon on the left side with
patchy contrast enhancement.

2.0 1.3 2.8

6 Adenocarcinoma Adenocarcinoma Extra-axial olfactory bulb mass
extending into the right ethmoid
regions.

3.0 1.8 2.6

7 Hemangiosarcoma Hemangiosarcoma Intra-axial olfactory bulb mass
extending into the frontal lobe, and
rostral diencephalon.

1.9 1.6 4.4

8 Meningioma Meningioma Extra-axial mass in the dorsal left
temporal and rostral occipital regions of
the cerebrum extending to the level of
the falx medially.

1.6 1.5 2.0

9 Meningioma Meningioma Extra-axial contrast-enhancing mass
with medial cystic component in right
cerebellar hemisphere extending to the
dorsal aspect of the tentorium.

1.5 1.8 1.4

10 Ependymoma Ependymoma Intra-axial contrast-enhancing mass
extending from the left frontal through
temporal lobes with left lateral ventricle
being obscured.

2.5 2.2 3.2

11 Astrocytoma Astrocytoma Intra-axial contrast-enhancing left-sided
cerebral mass, extending from the
parietal through occipital lobes.

1.4 1.2 1.5

12 Meningioma Meningioma Extra-axial contrast-enhancing mass
associated with the right cingulate gyrus,
falx and dorsal aspect of the frontal lobe.

1.1 0.8 1.2

13 Adenocarcinoma Adenocarcinoma Extra-axial, contrast-enhancing mass
involving the right olfactory bulb and
frontal lobe region.

3.1 1.8 3.2

14 Meningioma Meningioma Extra-axial contrast-enhancing mass in
dorsolateral aspect of parietal lobe

0.6 0.7 0.8

15 Meningioma Meningioma Extra-axial olfactory bulb/frontal lobe
mass

2.1 0.9 1.6

16 Meningioma Meningioma Extra-axial, contrast-enhancing mass in
the olfactory bulb and right frontal lobe

1.9 1.2 2.7

17 Meningioma Meningioma Extra-axial contrast-enhancing mass
involving the falx cerebri and the L
olfactory bulb, frontal, temporal, and
parietal lobes.

1.2 0.8 0.7

(Continued)
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TABLE 1 (Continued)

Number Cassi II
freeze-core
biopsy

Surgical
biopsy

MR localization Height/cm Width/cm Length/cm

18 Meningioma Meningioma Extra-axial contrast-enhancing right
sided cerebral mass from parietal to
occipital lobe.

1.4 2.2 2.5

19 Meningioma Meningioma Extra-axial, contrast-enhancing, mass in
dorsal and medial aspect of the left
occipital lobe.

1.4 1.3 1.5

20 Meningioma Meningioma Extra-axial contrast-enhancing mass in
left olfactory bulb region.

1.4 0.8 1.8

21 Meningioma Meningioma Extra-axial contrast enhancing mass on
the dorsal aspect of the right parietal
and occipital lobes.

1.3 2.1 2

did not compromise interpretation. Histopathologic results are an
essential component of devising treatment plans in both human
and veterinary patients with brain tumors (6, 10, 32). A surgical
biopsy may not be possible for many reasons including financial,
risk of morbidity, or “deep-seated” tumor locations.

MR imaging was initially responsible for the neuroanatomic
localization and surgical planning, however expensive or rare
equipment such as MRI or CT-guided stereotactic system were
not required for the procedure. Stereotactic systems utilize three
dimensional coordinates to identify biopsy targets within the brain.
The use of stereotactic frames has been described in both human
and veterinary patients (18–21, 25, 26). Because of the cost and
technical demands of stereotactic frame systems, frameless and
ultrasound assisted free-hand techniques have been developed and
found to be successful in both human and veterinary medicine (38–
40). Intraoperative brain ultrasound is a less expensive imaging
modality, requires no sophisticated shielding for the operatory
theater, offers visualization of brain tissue in real time (including
perioperative changes such as brain shift and tumor size reduction)
andmay bemore readily attainable at veterinary specialty hospitals.
Ultrasonographic imaging and interpretive skills are required
to successfully utilize this modality, as well as a familiarity
with intracranial ultrasonographic anatomy (38). Our results are
consistent with the successful findings of a previous report of an
ultrasound assisted free hand brain biopsy technique (39).

The technique described herein requires two distinct skills to
complete the FCB specimen harvest. Once the operative portal
is created, the brain mass is imaged utilizing the intraoperative
ultrasound and maintained in real time while the securing needle
of the Cassi II freeze-core biopsy system is placed intralesionally.
Although one surgeon can perform both tasks, it is preferable to
have one surgeon or assistant generate the image while the other
operates the biopsy system (see Figure 2d).

No intraoperative complications were noted with the Cassi
II freeze-core biopsy system being utilized on brain tissue;
hemorrhage was considered minimal.

Another limitation of our study, specifically if attempting a
morbidity/mortality comparison with other biopsy techniques,
is the fact that surgical removal/debulking of the tumor was
performed during the same procedure, following the FCB.
The craniectomies performed, having to accommodate for both

ultrasound probe placement and sufficient manipulation of brain
tissue to allow macroscopic debulking, were hence larger than burr
hole approaches classically used for biopsy. Although this may have
resulted in longer anesthetic and procedure time, subjectively large
craniectomies have been advocated by experienced veterinary brain
surgeons to allow better visualization, hemostasis, and overall easier
surgical removal of tumors (41, 42). Intraoperative ultrasound also
allows for real-time imaging without concern for intra-operative
brain shift and detection of hemorrhages, possibly improving
patient safety (43). Although our study did not include post-
operative ICP direct monitoring nor post-operative MRI (due to
cost associated), recovery in all patients was uneventful and all
survived discharge from the hospital.

Based on the results of this study, the Cassi II freeze-core biopsy
system safely yields diagnostic quality brain biopsy specimens.
The clinical usefulness and safety of this system in obtaining
biopsies of more deeply seated brain lesions (i.e., intra-axial
tumors considered inaccessible or with large risks/difficulties by
standard surgical means) is currently being investigated by the
authors. Most of the tumors in this investigation (14/21) were
meningiomas. Considering both the surgical challenges and more
variable histologic nature of intracranial glial tumors, we are
specifically interested in the utility of this biopsy system for the
diagnosis of gliomas.

Data availability statement
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in the article/supplementary material, further inquiries can be
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