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Introduction: Extended-spectrum beta-lactamase (ESBL)-producing 
Enterobacteriaceae are on the WHO priority pathogens list because they are 
associated with high mortality, health-care burden, and antimicrobial resistance 
(AMR), a serious problem that threatens global public health and should 
be addressed through the One Health approach. Non-human primates (NHP) 
have a high risk of acquiring these antibiotic-resistant bacteria due to their close 
phylogenetic relationship with humans and increased anthropogenic activities 
in their natural environments. This study aimed to detect and analyze the 
genomes of ESBL-producing Escherichia coli (ESBL-producing E. coli) in NHP 
from the Peruvian Amazon.

Materials and methods: We collected a total of 119 fecal samples from semi-
captive Saguinus labiatus, Saguinus mystax, and Saimiri boliviensis, and captive 
Ateles chamek, Cebus unicolor, Lagothrix lagothricha, and Sapajus apella in 
the Loreto and Ucayali regions, respectively. Subsequently, we  isolated and 
identified E. coli strains by microbiological methods, detected ESBL-producing 
E. coli through antimicrobial susceptibility tests following CLSI guidelines, and 
analyzed their genomes using previously described genomic methods.

Results: We detected that 7.07% (7/99) of E. coli strains: 5.45% (3/55) from 
Loreto and 9.09% (4/44) from Ucayali, expressed ESBL phenotype. Genomic 
analysis revealed the presence of high-risk pandemic clones, such as ST10 
and ST117, carrying a broad resistome to relevant antibiotics, including three 
blaCTX-M variants: blaCTX-M-15, blaCTX-M-55, and blaCTX-M-65. Phylogenomic analysis 
confirmed the clonal relatedness of high-risk lineages circulating at the human-
NHP interface. Additionally, two ESBL-producing E. coli strains were identified 
as EPEC (eae) and ExPEC according to their virulence profiles, and one more 
presented a hypermucoviscous phenotype.

Discussion: We report the detection and genomic analysis of seven ESBL-
producing E. coli strains carrying broad resistome and virulence factors in NHP 
from two regions of the Peruvian Amazon. Some of these strains are closely 
related to high-risk pandemic lineages previously reported in humans and 
domestic animals, highlighting the negative impact of anthropogenic activities 
on Amazonian wildlife. To our knowledge, this is the first documentation of 
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ESBL-producing E. coli in NHP from the Amazon, underscoring the importance 
of adopting the One Health approach to AMR surveillance and minimizing the 
potential transmission risk of antibiotic-resistant bacteria at the human-NHP 
interface.
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antimicrobial resistance, extended-spectrum beta-lactamase, Escherichia coli, 
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sequence typing, phylogenomic

1 Introduction

The emergence and spread of antimicrobial resistance (AMR) 
represent a major threat to global public health, with low and middle-
income countries (LMICs) disproportionately affected (1, 2). The 
AMR challenge in LMICs extended beyond medical treatments for the 
human population, as a high prevalence of antibiotic-resistant bacteria 
is observed in intensive livestock production due to the unregulated 
use of antibiotics as growth promoters, despite being prohibited in 
many countries, along with inadequate veterinary treatments (3). 
Antibiotic-resistant bacteria from healthcare and farm settings may 
run off into natural environments, eventually reaching wildlife. 
Consequently, there is an increased need to promote a One Health 
approach to comprehend and address the emergence and evolution of 
AMR (4, 5).

According to the World Health Organization (WHO), extended-
spectrum beta-lactamase (ESBL) producing Enterobacteriaceae rank 
among the most critical antibiotic-resistant bacteria (6). These bacteria 
produce enzymes that hydrolyze beta-lactam antibiotics, including 
third- and fourth generation cephalosporins. The blaCTX-M gene family, 
the most widespread and clinically relevant ESBL enzyme, can 
be  easily transmitted via plasmids, facilitating rapid spread and 
dissemination (7). There is evidence demonstrating the presence of 
ESBL-producing Escherichia coli (ESBL-producing E. coli) in the gut 
microbiomes of domestic and wild animals, with rapid dissemination 
observed in wildlife around the world (8–10).

Wild animals, including non-human primates (NHP), are 
generally not exposed to antibiotics; however, they can acquire 
antibiotic-resistant bacteria, such as ESBL-producing E. coli, through 
foraging and drinking in natural environments contaminated by 
anthropogenic sources (11). Moreover, forest fragmentation resulting 
from anthropogenic activities such as agriculture, livestock, and 
forestry, along with changes in the lifestyle of free-living NHP 
transitioning to captive and semi-captive conditions, can increase the 
interaction between humans and NHP and enhance the spread of 
these antibiotic-resistant bacteria (12).

Peru boasts an wide biodiversity of neotropical fauna residing in 
different regions of the Peruvian Amazon (13), including various NHP 
classified into 55 taxa comprising species and subspecies. Around 30% 
of these are designated as “threatened with extinction,” five as “near 
threatened” and five more as “data deficient,” according to the 
International Union for the Conservation of Nature (IUCN) (14). 
However, few studies have investigated AMR in Peruvian Amazon 
wildlife, and only one has reported antibiotic-resistant 
Enterobacteriaceae from semi-captive NHP of Ateles, Callicebus, and 

Lagothrix genus, with E. coli the most prevalent enterobacteria (15), 
but not detected their antimicrobial resistance genes (ARGs).

This study aimed to detect the presence of ESBL-producing E. coli 
strains in captive and semi-captive NHP from two regions of the 
Peruvian Amazon and analyze their genomes. We  performed the 
isolation and identification of E. coli strains using microbiological 
methods, the phenotypic detection of ESBL-producing E. coli through 
antimicrobial susceptibility tests according to the Clinical and 
Laboratory Standard Institute (CLSI), identification of ARGs within 
the resistome, and the analysis of virulence genes using genomic 
approaches. Additionally, we conducted a phylogenomic analysis of 
high-risk lineages.

2 Materials and methods

2.1 Ethics approval statement

This study obtained authorization for scientific research purposes 
on wildlife outside Protected Natural Areas from the National Forestry 
and Wildlife Service of Peru (General Directorate Resolution No. 
RD-000031-2022-MIDAGRI-SERFOR-DGGSPFFS-DGSPFS). All 
procedures have undergone review and approval by the Ethics and 
Animal Welfare Committee of the Faculty of Veterinary Medicine of 
the Universidad Nacional Mayor de San Marcos (Authorization No. 
2022-10).

2.2 Fecal sampling collection

In August 2022, we collected a total of 119 fecal samples from 
semi-captive and captive NHP in two regions of the Peruvian Amazon. 
Of these, 69 samples belonged to semi-captive NHP specimens, 
including Saimiri boliviensis (n = 26), Saguinus labiatus (n = 21), and 
Saguinus mystax (n = 23), that cohabit with humans in rainforests near 
urban–rural areas on Iquitos, Muyuy, and Padre islands, respectively, 
in the Loreto region of the northern Peruvian Amazon. Additionally, 
50 samples were obtained from captive NHP specimens, including 
Ateles chamek (n = 14), Cebus unicolor (n = 11), Lagothrix lagothricha 
(n = 14), and Sapajus apella (n = 11), housed in a Rescue Center and a 
Zoo that are frequently visited by many local and foreign people, in 
the Ucayali region of the eastern Peruvian Amazon.

Briefly, we collected between 5 and 10 mg of recently excreted 
feces using a sterile disposable palette, avoiding the parts that had 
direct contact with the ground and other surfaces to minimize the risk 
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of sample contamination. The samples were placed inside sterile fecal 
containers, labeled according to their characteristics (species, 
sampling region, and living conditions), packed in a cooler container 
with controlled refrigeration temperature (4°C), and sent to the 
Laboratory of the Biology and Molecular Genetics of the Faculty of 
Veterinary Medicine at the Universidad Nacional Mayor de San 
Marcos for processing using microbiological and molecular methods.

2.3 Microbiological isolation and 
identification of Escherichia coli strains

The fecal samples were diluted in sterile tubes with isotonic saline 
solution (0.9% NaCl) in a 1:1 ratio and gently mixed through 
vortexing. Subsequently, the samples were streaked onto MacConkey 
agar (Sigma-Aldrich, Germany) and incubated in an Incucell-ecoline 
incubator model (MMM Group, Germany) at 37°C for 24 h under 
aerobic conditions. On the following day, all lactose-positive colonies 
displaying a brick-red to rosaceous color surrounded by a zone of 
precipitated bile were selected and streaked onto Eosin-Methylene 
Blue (EMB) agar, followed by incubation under the same conditions. 
Colonies exhibiting a metallic green luster were then chosen and 
confirmed through IMViC (Indole, Methyl Red, Voges-Proskauer and 
Citrate test) biochemical tests (Merck, Germany). Additionally, a 
“String” test was also conducted on all strains with a mucoid 
appearance using sterile microbiological loops. This test involved 
inoculating our strains onto blood agar (Merck, Germany) with 5% 
sheep blood and incubating them at 37°C overnight, as previously 
described (16).

2.4 Antimicrobial susceptibility testing of 
Escherichia coli strains

Antimicrobial susceptibility testing was conducted using the 
Kirby-Bauer disk diffusion method, following the CLSI 
recommendations (17). In brief, E. coli strains were diluted in sterile 
tubes with distilled water to a turbidity of 0.5 on the McFarland 
standard scale. They were then transferred with sterile swabs onto 
Petri dishes containing Mueller-Hinton (MH) agar (Millipore, 
Germany). To determine the ESBL phenotype, a screening test was 
conducted using ceftazidime (30 μg), cefotaxime (30 μg), ceftriaxone 
(30 μg), and aztreonam (30 μg) antibiotic disks (Oxoid, 
United Kingdom). The plates were incubated for 18 h at 37°C under 
aerobic conditions, and the results were interpreted according to 
CLSI guidelines.

The following day, a confirmation test based on the Jarlier Method 
was conducted on all suspected strains. This involved placing an 
amoxicillin/clavulanic acid (20/10 μg) antibiotic disk in the center of 
a Petri dish with MH agar previously inoculated, surrounded by the 
antibiotic disks tested earlier. The dishes were then incubated under 
the same conditions, and strains that formed a distorted inhibition 
halo were considered ESBL-positive (18).

Additionally, the resistance profile phenotype was evaluated using 
oxytetracycline (30 μg), nitrofurantoin (300 μg), levofloxacin (5 μg), 
gentamicin (10 μg), trimethoprim/sulfamethoxazole (1.25/23.75 μg), 
and chloramphenicol (30 μg) antibiotics disks. Multidrug-resistant 
(MDR) strains were identified as those showing resistance to three or 

more classes of the antibiotics tested, following the definition provided 
by Magiorakos et al. (19).

2.5 Whole genome sequencing and 
assembly of ESBL-producing Escherichia 
coli strains

Total genomic DNA from all ESBL-producing E. coli strains was 
extracted, and paired-end libraries were sequenced on the Illumina 
MiSeq platform (Illumina, San Diego, CA, United States) using kit v3 
(600-cycle) with 2 × 250 bp reads. To ensure data quality, the obtained 
FastQ files were trimmed using Trimmomatic (20), and quality 
assessment was conducted using FastQC (21). The cleaned reads were 
then submitted to the Enterobase database (22) for further analysis. 
Assembly, Multilocus sequence type (MLST), Clermont type, 
Hierarchical Clustering of core genome MLST (HierCC) clusters, and 
serotype statistics were retrieved from the Enterobase platform. The 
seven ESBL strains sequenced in this study have been deposited under 
the BioProject PRJNA992559 of the National Center for Biotechnology 
Information (NCBI).

2.6 Identification of sequence of interest: 
ARGs, virulence factors, capsule loci, and 
plasmids

To identify ARGs, we employed the AMRFinderPlus database 
(23) within the abriTAMR v 1.0.14 pipeline, applying a 90% identity 
and 90% coverage cutoff (24). Plasmid replicons, virulence genes, and 
Klebsiella capsule synthesis loci (K-locus) were identified from whole-
genome data using the PlasmidFinder database (25), Virulence Factor 
Database (26) and Kaptive 2.0.7 (27), respectively. Additionally, gene 
cluster comparison figures were generated using Clinker v 0.0.27 (28).

2.7 Phylogenetic analysis

The phylogenomic analysis of the E. coli genomes obtained in this 
study and of the genetically related sequences deposited in Enterobase 
was conducted according to the HierCC HC50 or MLST scheme. Core 
alignment was performed using Snippy v 4.6.0.1 Gubbins (29) was 
employed to detect and eliminate recombinant regions. Maximum 
likelihood phylogenetic reconstruction was carried out using 
IQ-TREE v 2.0 (30) with GTR + G + I model and 1,000 bootstrap 
replicates. The resulting tree was visualized using the ggtree package 
(31) in the R environment v4.3 (32). Additionally, the pairwise SNP 
distance between genomes, derived from the free-recombination core 
genome alignment was calculated using SNP-dists v0.6 (see text 
footnote 1).

1 https://github.com/tseemann/snippy
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FIGURE 1

(A) AMR profile of Escherichia coli strains isolated from NHP in Loreto (n  =  55) and Ucayali (n  =  44) regions of the northeastern Peruvian Amazon; ATM, 
Aztreonam; C, Chloramphenicol; CAZ, Ceftazidime; CRO, Ceftriaxone; CTX, Cefotaxime; GEN, Gentamicin; LEV, Levofloxacin; STX, Trimethoprim-
sulfamethoxazole; OT, Oxytetracycline; and F, Nitrofurantoin. (B) Identification map of Loreto (light purple) and Ucayali (dark purple) regions coupled to 
a diagram showing AMR phenotype distribution (gray shades) associated with the presence (color points)/absence (white points) of ARGs in seven 
genomes of ESBL-producing E. coli strains isolated from NHP.

3 Results

3.1 Detection and resistome 
characterization of ESBL-producing 
Escherichia coli strains

Among 119 fecal samples obtained from NHP in two regions of 
the Peruvian Amazon, we  isolated 99 E. coli strains. Of these, 55 
strains were from semi-captive NHP in Loreto, and 44 were from 
captive NHP in Ucayali. Antimicrobial susceptibility tests revealed a 
similar resistance profile in samples from both regions. Approximately 
45% of strains from both Loreto and Ucayali exhibited resistance to 
oxytetracycline and trimethoprim-sulfamethoxazole. Similarly, the 
proportion of strains resistant to chloramphenicol and gentamicin was 

below 10%. Additionally, 7.07% (7/99) of all strains—around 5.45% 
(3/55) from Loreto and 9.09% (4/44) from Ucayali—were identified 
as ESBL-producing E. coli (Figure 1A).

Whole genome sequencing was performed on the seven ESBL-
producing E. coli strains to investigate ARGs (Figure 1B). We identified 
three variants of blaCTM-X: blaCTX-M-15 (two strains), blaCTX-M-55 (four 
strains), and blaCTX-M-65 (one strain). A broad resistome was also 
detected, conferring resistance to chloramphenicol (floR, catA1, and 
cmlA1), aminoglycosides (aac(3″)-IId, aadA, aph(3″)-IIa, aph(6″)-Id), 
quinolones (qnrB19, qnrS1), sulfonamides (sul1, sul2, and sul3), and 
tetracyclines (tetA, tetB, and tetM). Point mutations on the gyr gene 
(gyrA_S83L and gyrA_D87A) associated with quinolones resistance 
were also identified (Figure  1B). Additionally, genes encoding 
resistance against fosfomycin (fos3A) and lincomycin (lnuG), as well 
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as a mutation in the nfsA gene (nfsA_R15C) associated with 
nitrofurantoin resistance, were detected (Supplementary Figure 1).

Among our seven ESBL-producing E. coli strains, five sequence 
types (ST) were identified: ST10, ST117, ST752, ST7176, and ST12254 
(Table  1). Three of these strains (ECIM19, ECPI13, and SMJ6A) 
belong to the ST10 sequence type, a high-risk pandemic lineage 
previously reported in other hosts from South America. Additional 
genomic characteristics are detailed in Table  1 and 
Supplementary Table 1.

3.2 Phylogenomic analysis of 
ESBL-producing Escherichia coli strains

Phylogenomic analysis of the HC50_37 cluster, which includes the 
ECIM19 strain from S. labiatus and the ECPI13 strain from S. mystax, 
revealed a SNP distance ranging from 0 to 519 SNPs between strains 
within this cluster. The majority of strains (n = 58/99) in this cluster 
harbored blaCTX-M genes, indicating the presence of a high-risk 
CTX-M-producing E. coli sublineage with a broad host and geographic 
distribution (Figure 2A). Interestingly, the genomes of the ECIM19 
and ECPI13 strains were remarkably similar, differing by only one 
SNP in the core genome alignment. This close genetic proximity 
suggests that both strains belong to the same transmission cluster, 
despite being recovered from two different monkey species (S. labiatus 
and S. mystax, respectively) on islands located 26.5 km away from 

each other (Figure 2B). Differences in genetic content between both 
strains rule out possible laboratory contamination; the ECIM19 strain 
differentially presents an IncFII plasmid and aph(3)-Ib and aph(6)-Id 
resistance genes that ECM13 strain lacks (Figure 2C).

Furthermore, within the subclade (highlighted in red) that 
includes monkey strains, there are two additional closely related 
strains: one from a human and one from a dog isolated in Quito, 
Ecuador, in 2021 (33). The SNP distance between our strains and 
Ecuadorian strains ranged from 16 to 19 SNPs, respectively, 
(Figure 2C). All members of this subclade contained the blaCTX-M-15 
gene and other ARGs such as qnrS1, sul2, and tet(A). These data 
provided compelling evidence that a CTM-M-15-producing E. coli 
clonal strain is widely disseminated among different hosts, including 
NHP and humans, in geographically separated locations from 
South America.

Phylogenetic analysis of the SMJ6A strain from S. apella and 19 
genomes from HC50_71429 cluster shows that the SMJ6A strain was 
the most related to FP209CP strain from a pigeon (Columba livia) 
recovered in Oceania, with a distance of 506 SNPs 
(Supplementary Figure  2A). Similar results were obtained for the 
HC50_29176 cluster, where the ECPI21 was closely related to 
Ecuadorian strains from domestic dogs and swine with SNP distance 
of 94 and 96 SNPs, respectively, and shared the blaCTX-M-55 gene 
(Supplementary Figure 2B).

Finally, the phylogenetic analysis of the ST7176 lineage revealed 
that the ECLLAH2A strain from L. lagothricha was related to two 

TABLE 1 Metadata summary of the seven ESBL-producing Escherichia coli genomes isolated from semi-captive and captive NHP in Loreto and Ucayali 
regions of the Peruvian Amazon.

Isolate Host Region AMR 
profile

MLST ST 
complex

HierCC 
HC50 

scheme

O 
Antigen

H 
Antigen

Clermont 
Type

ECIM19 Saguinus 

labiatus

Loreto CTX, CRO, 

OT, LEV, 

STX

ST10 ST10 Cplx 37 O9 H9 A

ECPI13 Saguinus 

mystax

Loreto CTX, CRO, 

OT, CN, 

LEV, STX

ST10 ST10 Cplx 37 O9 H9 A

ECPI21 Saguinus 

mystax

Loreto CAZ, CTX, 

CRO, OT, 

LEV, CN, 

STX, C

ST12254 ST10 Cplx 29,176 O89 H4 A

ECACA6MA Ateles 

chamek

Ucayali ATM, CTX, 

CRO, LEV, 

STX, C

ST117 - 31,974 O45 H4 F/G*

ECCUA8AM Cebus 

unicolor

Ucayali ATM, CTX, 

CRO, OT, 

LEV, CN, 

STX

ST752 ST10 Cplx 242,851 - H40 A

ECLLA2HA Lagothrix 

lagothricha

Ucayali CTX, CRO, 

OT, STX

ST7176 - 242,852 O162 H27 B1

SMJ6A Sapajus 

apella

Ucayali CTX, CRO, 

OT, LEV, 

CN, STX, C

ST10 ST10 Cplx 71,429 O89 H10 A

ATM, Aztreonam; C, Chloramphenicol; CAZ, Ceftazidime; CRO, Ceftriaxone; CTX, Cefotaxime; GEN, Gentamicin; LEV, Levofloxacin; STX, Trimethoprim-sulfamethoxazole; and OT, 
Oxytetracycline. *Before phylogroup F, now update to phylogroup G.
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FIGURE 2

(A) Phylogenetic tree of Escherichia coli ST10 HierCC HC50_37 group downloaded from Enterobase, including ECIM19 and ECPI13 genomes (names 
in red), showing the source of strains (points), continent reported (squares), and presence (dark pink square)/absence (light pink square) of of blaCTX-M 
variants. (B) Map of the sampling locations of ECIM19 and ECPI13 isolates in the Loreto region. (C) Subclade highlighted in “A,” including ECIM19 and 
ECPI13 genomes with closely related genomes, coupled to binary heatmaps, indicating the presence/absence of ARGs and plasmid replicon types, and 
an SNPs distance heatmap, specifying the divergent SNPs number and the isolation year.

poultry strains from the United States (Supplementary Figure 2C). 
Unlike the other strains, ECLLAH2A strain was the only one carrying 
the blaCTX-M-65 gene, while the other strains in the cluster showed the 
blaCTX-M-55 variant.

3.3 Genetic context of blaCTX-M genes

The genetic context of the blaCTX-M genes is illustrated in Figure 3. 
The ECIM19 and ECPI13 strains carrying the blaCTX-M-15 variant were 
associated with the ISEcp1 insertion sequence, identical to the one 
found in the chromosome of the E. coli 10R strain obtained from a 
turkey cloacal swab in China (Figure  3A). Additionally, the 
ECACA6MA, ECCUA8AM, ECPI21, and SMJ6A strains showed the 
presence of the blaTEM-1 gene adjacent to the ESBL-coding gene blaCTX-

M-55 (Figure 3B). Unfortunately, due to the limitations of short-read 
sequencing, we could not assemble full plasmid sequences and explore 

the presence of mobile genetic elements surrounding the blaCTX-M-55 
and blaCTX-M-65 variants in our strains.

3.4 Detection of virulent and 
hypermucoviscous ESBL-producing 
Escherichia coli strains

We identified 33 virulence genes in all seven ESBL-producing 
E. coli strains (Figure 4A). The genome of the ECCUA8AM strain 
from C. unicolor harbored the locus of enterocyte effacement (LEE) 
pathogenic island, containing eae, tir, espA, and espB genes that are 
associated with the Enteropathogenic E. coli (EPEC) pathotype (34). 
Additionally, we detected ireA, iroN, iss, iutA, astA, and tsh genes in 
the genome of ECACA6MA isolated from A. chamek, genes previously 
associated with Extraintestinal Pathogenic E. coli (ExPEC) pathotype 
in NHP (35).
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The ECPI21 strain from S. mystax exhibited a hypermucoviscous 
(HMV) phenotype, as evidenced by the “string” effect of approximately 
6 cm when adherent to a microbiological loop (Figure  4B). This 
characteristic resembles the HMV phenotype observed in certain 
virulent Klebsiella pneumoniae strains, providing an advantage for 
invasive infections (16, 36). While the identification of HMV strains 
in E. coli is uncommon, it has been described in livestock and clinical 
strains (37, 38). Analysis of the ECPI21 genome identified a highly 
conserved Klebsiella-capsule type K31 (98.86% identity; Figure 4C).

4 Discussion

We report the detection and genomic analysis of seven ESBL-
producing E. coli strains in semi-captive and captive NHP from two 
regions of the Peruvian Amazon. ESBL-producing Enterobacteriaceae 
are critical priority resistant pathogens and were not previously 
reported in NHP from South America. A recent study found 
MDR-Enterobacteriaceae in samples taken from free-living black 
capuchin monkeys (Sapajus nigritus) in Brazil, identifying resistant 

strains to beta-lactam antibiotics, but no ESBL-production was 
detected (39). Our ESBL-producing E. coli strains were found to have 
broad resistome to relevant antibiotics (Table 1). These findings are 
consistent with previous reports of MDR and ESBL-producing 
Enterobacteriaceae isolated from fish, soils and aquatic environments 
in the Amazon ecosystems (40–42).

The most prevalent lineage in our dataset was the ST10 clone, a 
well-known high-risk pandemic lineage associated with infections in 
humans and has been found in livestock and meat in Peru (43, 44) 
Other STs identified in this study, such as ST117, have been found in 
emerging ExPEC strains of foodborne E. coli, posing a risk to human 
health (45, 46). ST752 has been associated with poultry in Europe and 
the United  States and is considered predominant in chicken 
populations (47, 48). ST7176 has been detected in porcine E. coli 
strains carrying the blaCTX-M-55 variant (49).

The CTX-M family is the most widespread and clinically relevant 
ESBL enzyme (7). We identified three blaCTX-M variants in our ESBL 
strains, with blaCTX-M-55 gene being the most common. Interestingly, 
recent surveillance studies have reported that this variant is also 
predominant in E. coli strains from pigs, cows, and chickens in 

FIGURE 3

Genetic context of the blaCTX-M variants in ESBL-producing Escherichia coli from NHP. (A) Genetic environment of blaCTX-M-15 and its neighboring mobile 
genetic elements. (B) Genetic environment of blaCTX-M-55. The ARGs, insertion sequences, and hypothetical proteins are represented by pink, blue, and 
gray arrows, respectively.
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FIGURE 4

(A) Phylogenetic tree of seven ESBL-producing Escherichia coli strains from NHP coupled to a binary heatmap of presence (dark gray)/absence (light 
gray) of virulence genes (n  =  33). (B) HMV phenotype of the ECPI21 strain isolated from Saguinus mystax represented by a positive “string test” (> 6  cm). 
(C) Capsule locus structure of HMV phenotype ECPI21 strain (O89:H4). The gray shading indicates the level of identity between ECPI21 and Klebsiella 
K31 reference capsule locus, which ranges from 98.10 to 100% nucleotide identity.

Lima-Peru (43, 44, 50), suggesting that anthropogenic activities may 
serve as potential drivers of CTX-M-producing E. coli strains into the 
Amazonian wildlife. Conversely, blaCTX-M-15 and blaCTX-M-65 variants 
were found to a lesser extent in CTX-M-producing E. coli strains from 
livestock and bats in Peru (43, 50).

Strikingly, we identified two CTX-M-15-producing E. coli ST10 
differed from each other by only one SNP across the entire 
recombination-free core genome. This genetic similarity is noteworthy, 
as both strains were sampled from two different monkey species, 
S. mystax and S. labiatus, located 26.5 km apart. The phylogenetic 
analysis also revealed that two CTX-M-15-producing E. coli from 
Quito, Ecuador (33), were, on average, 18 SNP distant from our 
strains. Several studies have demonstrated clonal expansion as a key 
mechanism for understanding the spread of MDR E. coli in diverse 
hosts and environments. The evidence suggests that specific MDR and 
CTX-M-producing E. coli lineages can spread among subjects 
geographically separated over an extended period with minimal 
variation in the core genome (51–53).

The remarkable genome similarity of CTX-M-15-producing 
E. coli ST10 supports the idea of clonal expansion of this lineage 
among semi-captive monkey populations in the Peruvian Amazon 

rainforest and other hosts in South America. The source of this clonal 
spread in the primate population remains unknown, with the most 
plausible explanation being transmission from humans to NHP 
populations. Due to the expansion of human settlements in natural 
NHP habitats in Loreto (Muyuy and Padre islands), the interaction 
between both hosts has become frequent, increasing the probability 
of pathogen transmission. Alternatively, there is growing evidence that 
antimicrobial resistance has impacted Amazonian soils and aquatic 
ecosystems (40, 42, 54); these environments could serve as reservoirs 
for AMR that wildlife such as NHP may acquire.

Two ESBL-producing E. coli strains isolated in captive NHP from 
the Ucayali carried virulence factors typically associated with the 
EPEC and ExPEC pathotypes. The EPEC pathotype is characterized 
by its ability to cause attaching-effacing (A/E) lesions, leading to 
diarrhea and dysentery in humans and livestock (55). We found genes 
associated with the locus of enterocyte effacement (LEE) pathogenic 
island in the ECCUA8AM strain isolated from C. unicolor. Previously, 
the EPEC pathotype was identified in captive young Aotus sp. 
specimens in Loreto, exhibiting diarrhea in some cases and apparently 
healthy in others, supporting the hypothesis of NHP as an important 
reservoir of pathogenic E. coli (56).

https://doi.org/10.3389/fvets.2023.1340428
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Bazalar-Gonzales et al. 10.3389/fvets.2023.1340428

Frontiers in Veterinary Science 09 frontiersin.org

On the other hand, ExPEC is known to cause extraintestinal 
diseases in humans and has been isolated from NHP, although it 
remains unclear whether it causes disease in NHP (35). The 
ECACA6MA strain isolated from A. chamek, an endangered species 
according to the IUCN (57), contains genes associated with the 
ExPEC pathotype. Despite being pathogenic forms of E. coli, these 
strains were obtained from apparently healthy animals, suggesting that 
these NHP could act as reservoirs for those E. coli pathotypes and 
negatively impact the health of naïve NHP and Amazonian 
human populations.

The HMV phenotype observed in the ECPI21 strain from 
S. mystax may be  associated with the conserved Klebsiella-K31 
capsular sequence in its genome, since K31 capsular type has been 
linked to HMV K. pneumoniae in various hosts (16, 58, 59). Functional 
assays are necessary to confirm the association between K31 capsule 
type and the HMV phenotype observed in ECPI21. The coexistence 
of ESBL and HMV phenotypes should be a significant concern for 
public health due to their potentially enhanced virulence (16, 36–38).

In conclusion, we  report the isolation of MDR and ESBL-
producing E. coli from semi-captive and captive NHP in two regions 
of the Peruvian Amazon. Genomic analysis revealed three different 
blaCTX-M gene variants (blaCTX-M-15, blaCTX-M-55, and blaCTX-M-65) and a 
wide resistome conferring resistance to relevant antibiotics. 
Furthermore, two strains were characterized as EPEC and ExPEC 
pathotypes according to their virulence factors, and one more 
presented HMV phenotype. Most ESBL-producing E. coli strains were 
assigned to the high-risk pandemic ST10 sequence type, and two of 
these were closely relatedness to high-risk pandemic lineages 
previously reported in humans and domestic animals.

This diversity suggests potential environmental pollution 
resulting from human activities associated with the use of 
antimicrobial compounds. The presence of pathogenic strains 
carrying a broad resistome in NHP facilitates the persistence and 
rapid spread of critical priority ESBL-producing E. coli, which 
may have a negative impact on the conservation of the Amazonian 
wildlife and their natural environments. This underscores the 
importance of adopting the One Health approach in the AMR 
surveillance, with the aim of minimizing the potential risk of 
transmission of antibiotic-resistant bacteria and anticipating the 
emergence and spread of zoonotic and anthroponotic diseases at 
the human-NHP interface.
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