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Cardiac electrical activity is often altered by administration of anesthetic drugs.

While the e�ects of propofol in this regard have previously been described

in dogs, to date, there are no reports of the e�ect of alfaxalone. This study

investigated the impact of both propofol and alfaxalone on the ECG of 60 dogs,

after premedication with acepromazine and methadone. Heart rate increased

significantly in both groups. The PR andQRS intervalswere significantly increased

following propofol while with alfaxalone the QRS duration was significantly

increased and ST segment depressionwas observed. TheQT and JT interval were

significantly shorter following induction with alfaxalone, but, when corrected (c)

for heart rate, QTc and JTc in both groups were significantly greater following

induction. When comparing the magnitude of change between groups, the

change in RR interval was greater in the alfaxalone group. The change in both

QT and JT intervals were significantly greater following alfaxalone, but whenQTc

and JTc intervals were compared, there were no significant di�erences between

the two drugs. The similarly increased QTc produced by both drugs may suggest

comparable proarrhythmic e�ects.
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Introduction

Continuous electrocardiographic (ECG) monitoring is essential in the anesthetized

patient for diagnosis of peri-operative arrhythmias. These arrhythmias may be secondary

to spontaneous or drug-induced changes in the cardiac electrical activity (1). While the

incidence of perioperative arrhythmias in people is extremely high (2, 3), only limited

comparable information is available in dogs, with one study reporting a prevalence of 2.5%

during general anesthesia (4). In particular, changes in the QT interval are associated with

potential arrhythmogenesis. The QT interval is measured from the onset of the QRS to the

end of the T wave, and represents the time taken for ventricular depolarization (QRS) and

repolarization (JT interval). The JT interval is the time between the J point, where the QRS

complex joins the ST segment, and the end of the T wave. Typically, prolongation of the QT

interval reflects an increase in the duration and heterogeneity of ventricular repolarization

(5). This may lead to the development of potentially malignant arrhythmias through
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triggered activity, re-entry or both (6). Torsades de pointes are a

well-reported consequence of QT prolongation in both dogs and

humans (7, 8), and may lead to sudden death. QT prolongation

may be congenital or drug-induced. Although congenital QT

prolongation has been described in dogs (9), it is less frequently

described compared to humans, where the incidence is ∼1 in

2,000 (10). A large number of drugs potentially prolong the

QT interval (11), and the impact of a new drug on ventricular

repolarization still remains a critical step in the overall development

process (12). Propofol and alfaxalone are the most popular

intravenous anesthetics used in small animal anesthesia, and the

former is the most widely used human anesthetic induction agent.

Although relatively few studies have examined the effects of

propofol on the ECG in dogs, it has been described as potentially

arrhythmogenic in this species (13, 14) while, in humans, it seems

to display both pro- and antiarrhythmic effects in a concentration-

dependent manner (15). In both species, the QT interval is

prolonged (14, 16) while no increase in QT dispersion has been

found after propofol administration in dogs (14). Alfaxalone in

conjunction with alfadolone has been previously approved for

use in humans and cats. However, it was removed from the

human market, and later the veterinary market due to a high

incidence of anaphylactic reactions to its excipient, Cremophor

EL (17). Alfaxalone was reformulated in 2-hydroxypropyl-b-

cyclodextrin, a synthetic carbohydrate molecule not associated

with allergic reactions, and is licensed for use in dogs and cats.

The pharmacological and anesthetic properties of alfaxalone in

dogs have been reviewed (18), but no studies have evaluated the

effects of alfaxalone on the ECG parameters in dogs, and very few

studies have assessed the effects on the ECG in humans (19, 20).

A reformulated version of alfaxalone also using a cyclodextrin

excipient, is currently undergoing human trials for re-introduction

as an anesthetic agent in this species, so it would be interesting to

assess the effects of alfaxalone on the canine ECG with particular

reference to the QT interval as a guide to possible effects in humans.

The aim of this study was to compare the effects of propofol and

alfaxalone on ECG parameters in healthy dogs undergoing general

anesthesia, with emphasis on the QT interval.

Materials and methods

This study received ethical approval from the RCVS Ethics

Review Panel (Ref: 2021-34), and an Animal Test Certificate was

obtained from the Veterinary Medicines Directorate (ATC-S-164).

Informed client consent was obtained for all animals recruited to

the study.

Sixty healthy adult dogs (American Society of Anesthesiologists

status I or II) were included. Aggressive animals, those sedated

or anesthetized during the previous 24 h, those with a recent

history of vomiting or regurgitation, or dogs with known structural

or functional cardiac disease or pre-existing arrhythmias, were

excluded. Brachycephalic dogs and dogs which were deemed to be

significantly underweight (BCS <4/9) or overweight (BCS >6/9)

were also excluded.

Each dog received a complete physical examination and were

randomly assigned, using computer-generated random numbers,

to group A for anesthetic induction with alfaxalone (10 mg/ml

Alfaxan; Jurox, UK), or group P for induction with propofol

(10 mg/ml Propoflo Plus; Zoetis, USA). Premedication consisted

of 0.03 mg/kg acepromazine (2 mg/ml Acesedate; Jurox, UK)

with 0.3 mg/kg methadone (10 mg/ml Comfortan; Dechra, UK)

administered intramuscularly in the cervical epaxial musculature.

Following this, the dog was moved to a quiet environment for

30min prior to aseptic intravenous (IV) cannula placement in an

appropriate limb. The dog was then gently restrained in right lateral

recumbency and allowed a short period of acclimatization.

Non-traumatic electrodes were used to obtain a complete 12

lead ECG. Six limb leads (I, II, III, aVR, aVL and aVF) were

used. The precordial lead system (V1, V2, V3, V4, V5, V6) was

utilized, with lead V1 positioned at the costochondral junction

of the right, first intercostal space (21). The six limb leads were

recorded simultaneously with the six chest leads for 30 s at a paper

speed of 50 mm/s and voltage of 20 mm/mV.

Following acquisition of the ECG, the dog was preoxygenated

with 100% oxygen via face mask for at least 3min and then

induced with either alfaxalone or propofol depending on group

assignation, administered IV by hand, to effect. The same

anesthetist (VC) performed all inductions with an end-point of

loss of consciousness, absent palpebral reflex and loss of jaw

tone. A further ECG trace was then taken for 30 s at the same

paper speed and gain, with continued administration of 100%

oxygen via facemask throughout the recording. Once the ECG

recording was completed, the trachea was intubated with an

appropriately sized endotracheal tube and anesthesia continued for

the planned procedure.

All the ECG measurements were made according to a

standardized approach (22, 23). The QT interval was measured

from the earliest QRS onset in any lead of the six simultaneously

recorded leads to the intersection between the maximal downslope

of the terminal portion of the T-wave to the isoelectric baseline (24,

25). All the measurements of PR interval, QRS interval, ST segment

deviation from baseline, T-wave amplitude and QT interval were

taken from lead II, and recorded in each case as the mean values

from three consecutive complexes. The JT interval was calculated

as the QT interval minus the QRS interval. Rate-corrected QT and

JT intervals (QTc and JTc) were obtained by using the formula

QTc = QT − 0.087 (RR – 1, 000) (26) and JTc = QTc − QRS.

The RR interval used in this calculation was taken as the mean RR

interval across the complexes recorded over 6–10 s (9).

QT dispersion (QTd) was calculated as the difference between

the maximum and minimum QT interval observed across all the

12 leads of the ECG (27). All the measurements were made by the

same observer (VC).

Statistical analysis

A power analysis was performed based on a recent study (28)

comparing the effects of methadone or hydromorphone on cardiac

conductivity, and which used a clinically significant difference

of 20ms and demonstrated a pooled variance of 25ms on QT

interval. Using this data, and based on a power of 80% and

alpha of 0.05, 52 dogs were required for our study. Given the

potential for some ECG traces to be unsuitable for final analysis
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TABLE 1 Animal variables in 54 dogs, premedicated using acepromazine

(0.03 mg/kg) and methadone (0.3 mg/kg) intramuscularly and induced to

general anesthesia with alfaxalone or propofol.

Alfaxalone group
(n = 27)

Propofol group
(n = 27)

Age (months) 78.2 (± 44.4) 68.7 (± 36.2)

Weight (kg) 20.3 (± 9.8) 21.0 (±10.8)

Breed distribution Pomeranian (1)

Springer spaniel (2)

Golden retriever (1)

Labrador retriever (5)

Cross breed (3)

Dachshund (2)

Cocker spaniel (4)

Portuguese water dog (1)

Labradoodle (1)

German shepherd (1)

Poodle (2)

Cavachon (1)

Cockapoo (2)

Italian spinone (1)

Cross breed (5)

Cocker spaniel (2)

Dalmatian (1)

Golden retriever (2)

Staffordshire bull terrier

(1)

Jack Russell terrier (2)

Cavalier King Charles

spaniel (1)

Labrador retriever (3)

Shetland sheepdog (1)

Border collie (1)

Sprocker (1)

Dachshund (1)

Bichon frise (1)

Springer spaniel (1)

Irish setter (1)

Pomeranian (1)

Spanish Greyhound (1)

Leonberger (1)

Dose (mg/kg) 1.9 (± 0.5) 2.4 (±0.7)

Age, weight and anesthetic drug dose are presented as mean± SD.

(e.g., due to movement artifact), we elected to recruit 60 dogs in

total, 30 in each group. Data were analyzed in Excel spreadsheet

format (Microsoft Excel for Mac, version 16.16.27) using MedCalc

(version 17.1 64-bit, Ostend, Belgium). All data were tested for

normality using the Shapiro Wilk test and diagnostic plots. Age

and bodyweight between groups were tested using ANOVA. Paired

data for ECG variables before and after induction to general

anesthesia were tested using Student’s t-test. The magnitude of

changes was calculated and compared between the two groups

using independent t-tests. A p-value of <0.05 was considered

statistically significant.

Results

In total, 120 ECG traces were collected with 12 traces excluded

due to the presence of artifacts, and 108 ECG were included

for statistical analysis (27 dogs in each group). All data were

normally distributed. No arrhythmias were detected in the propofol

group. One dog in the alfaxalone group demonstrated isolated

ventricular escape complexes after premedication, that were not

present after induction.

Patient variables, breed distribution and dose of propofol

and alfaxalone are described in Table 1. There were no

statistically significant differences detected for age and body

weight between groups.

Measurements from the ECG analysis are reported in Table 2.

Heart rate was similar between groups following premedication,

but increased significantly in both groups following induction. An

increase in the QRS duration was documented in both alfaxalone

and propofol groups following induction, although this did not

exceed the upper limits of the reported reference interval. A

significant increase in PR interval duration was only documented

in the propofol group post-induction. A significant ST segment

deviation was only observed after alfaxalone administration.

In the alfaxalone group, QT interval was significantly shorter

following induction, but once corrected for heart rate (QTc),

the interval in both groups was significantly greater following

induction (Figure 1). Similarly, JT interval decreased in the

alfaxalone group, in contrast to JTc which increased in both groups

following induction. No significant change to QTd was seen in

either group. In one dog in each group, one of the 12 leads was of

insufficient quality to determine where the T wave ended, and this

lead was excluded when calculating QTd; however, 11 leads were

considered sufficient (14).

The T wave amplitude increased significantly in the alfaxalone

group; however, due to the variation in polarity of the T wave

from animal to animal, the T waves were grouped into positive

and negative polarities and then re-tested, following which there

were no significant differences in T wave amplitude either within

or between the groups.

When comparing the magnitude of change between groups

(Table 3), the change in RR interval was greater in the alfaxalone

group. The change in both QT and JT intervals were significantly

more in the alfaxalone group compared with the propofol group.

However, when the corrected QT and JT intervals were compared,

there were no significant differences.

Discussion

This study expands previous knowledge of the ECG effects of

propofol in dogs, and is the first to investigate those of alfaxalone

in this species. Given the potential for the latter to receive licensing

authorization for use in humans, our results provide a preliminary

basis for assessing the potential proarrhythmic effects of alfaxalone

in this species.

In this study, a positive chronotropic effect was observed

following administration of both propofol and alfaxalone, with

higher heart rates observed with alfaxalone. In healthy dogs, clinical

doses of alfaxalone have minimal cardiovascular effects: cardiac

output (CO) is usually well maintained (29, 30), while arterial

blood pressure (ABP) and systemic vascular resistance (SVR)

may decrease (29–32), but usually remain in the physiological

range. It has been hypothesized that, due to the preservation

of the baroreceptor reflex, alfaxalone administration results in

a greater increase of heart rate (HR) compared with propofol.

This represents a compensatory mechanism to maintain CO and

ABP following the decrease in SVR (30, 31). Drugs used for

premedication can influence this response, and depending on

the protocol used, HR in dogs was reported to increase (32,

33), decrease (34) or remain unchanged (32, 35, 36) following

induction with alfaxalone. While propofol is generally reported in

humans to cause a reduction in HR (37), other investigators have

demonstrated positive chronotropism (38), albeit not as marked

as with other drugs such as alfaxalone and thiopentone as shown

in some studies in dogs (14, 29). This was observed in our study

and is thought to be a result of the differing effects of the drugs

on baroreceptor sensitivity, as propofol is reported to cause a
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TABLE 2 Electrocardiogram variables (mean ± SD) in 54 dogs, 30min after premedication using acepromazine (0.03 mg/kg) and methadone (0.3 mg/kg)

intramuscularly and after induction to general anesthesia with alfaxalone or propofol.

ECG variable Alfaxalone group (n = 27) Propofol group (n = 27)

Pre-induction Post-induction p-value Pre-induction Post-induction p-value

Heart rate (bpm) 61.5 (±18.1) 94.1 (±29.5) <0.0001 69.8 (±18.6) 84.6 (±24.4) <0.0001

RR interval (ms) 1048.95 (±272.86) 693.86 (±196.27) <0.0001 919.05 (±241.18) 764.23 (±204.53) <0.0001

PR interval (ms) 109.36 (±19.42) 109.00 (±18.53) 0.9 98.75 (±15.72) 103.41 (±15.28) <0.001

QRS width (ms) 62.99 (±5.5) 64.06 (±6.25) 0.02 61.04 (±5.54) 62.21 (±5.97) <0.01

ST segment deviation (mV) −0.05 (±0.07) −0.08 (±0.08) 0.04 −0.08 (±0.08) −0.10 (±0.09) 0.15

T wave amplitude (mV) −0.06 (±0.35) 0.05 (±0.36) <0.01 0.04 (±0.32) 0.04 (±0.41) 0.98

Positive T wave amplitude 0.23 (±0.12) 0.30 (±0.17) 0.08 0.26 (±0.14) 0.26 (±0.23) 0.92

Negative T wave amplitude −0.36 (±0.23) −0.22 (±0.32) 0.05 −0.34 (±0.13) −0.33 (±0.39) 0.94

QT interval (ms) 248.53 (±21.57) 235.37 (±24.78) <0.0001 239.93 (±22.17) 240.11 (±22.28) 0.9

QTc interval (ms) 244.27 (±20.85) 262.00 (±15.58) <0.0001 246.97 (±17.62) 260.62 (±13.74) <0.0001

JT interval (ms) 185.54 (±19.67) 171.31 (±22.59) <0.0001 171.07 (±19.77) 177.90 (±20.65) 0.49

JTc interval (ms) 181.28 (±21.56) 197.94 (±14.58) <0.0001 185.93 (±15.38) 198.41 (±11.81) <0.0001

QT dispersion (ms) 21.94 (±6.15) 22.17 (±7.81) 0.85 21.79 (±10.12) 21.48 (±6.47) 0.86

FIGURE 1

QT and QT corrected (c) interval (mean ± SD) before and after induction to general anesthesia with alfaxalone or propofol. All values are expressed

as milliseconds (ms).

complete resetting of the baroreceptor reflex (39). Preservation

of the baroreceptor reflex may explain a marked sympathetic

response to vasodilation when alfaxalone is administered compared

to propofol.

The PR interval reflects the time taken for conduction through

the atrioventricular (AV) node, and tends to increase with

decreasing HR and shortens as HR increases (40). Prolongation

of the PR interval, known as first-degree atrioventricular block

(1AVB), is usually well tolerated, but may be exacerbated by

drugs or diseases that alter autonomic tone (23). One dog in the

propofol group and four dogs in the alfaxalone group demonstrated

1AVB pre-induction, but normalized in two dogs in the alfaxalone

group after induction. One further dog in the alfaxalone group

developed mild 1AVB post-induction. It is possible that this may

have been caused by the drugs used for premedication. There

are no published studies assessing the effects of acepromazine on

conduction through the AV node. Full mu opioid agonists are

known to result in vagally mediated bradycardia (41). In addition,
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TABLE 3 Electrocardiogram variables (mean ± SD) in 54 dogs, 30min after premedication using acepromazine (0.03 mg/kg) and methadone (0.3 mg/kg)

intramuscularly and after induction to general anesthesia with alfaxalone or propofol.

ECG variable Mean di�erence alfaxalone group (n = 27) Mean di�erence propofol group (n = 27) p-value

RR interval (ms) 355.1 (±207.4) 154.8 (±129.0) 0.0001

PR interval (ms) 0.36 (±15.1) −4.7 (±6.5) 0.12

QRS interval (ms) −1.1 (±2.2) −1.2 (±2.1) 0.87

ST segment deviation (mV) 0.02 (±0.06) 0.01 (±0.05) 0.43

T wave amplitude+ve (mV) −0.07 (±0.15) 0.002 (±0.14) 0.15

T wave amplitude –ve (mV) −0.14 (±0.23) −0.008 (±0.37) 0.29

QT interval (ms) 13.2 (±11.9) −0.19 (±7.8) <0.0001

QTc interval (ms) −17.7 (±17.8) −13.7 (±9.6) 0.30

Jt interval (ms) 14.2 (±11.8) 0.24 (±7.7) <0.0001

Jtc interval (ms) −16.7 (±17.4) −13.2 (±11.2) 0.39

QT dispersion (ms) −0.24 (±6.4) 1.04 (±15.8) 0.70

For each variable, results are reported as mean difference before and after induction, with a positive number indicating a decrease post-induction compared to the pre-induction value.

the chemical structure of methadone resembles that of calcium

channel blocking agents (42, 43), resulting in functional L-type

calcium channel blockade. These characteristics of methadone

create the potential for 1AVB, and this has been shown in dogs

(28). Following induction with propofol, the PR interval was

significantly prolonged compared to pre-induction values. As 5

dogs demonstrated 1AVB pre-induction, we decided to re-analyse

the data with these animals excluded to remove any potential

influence of premedication on the induction agent effect. However,

induction with propofol still resulted in a significantly prolonged

PR interval. This is in contrast to the findings of Dennis et al.

(14) where the PR interval was unchanged following propofol

administration and the reasons for these dissimilar results are

unclear. Previous animal studies have examined the effects of

propofol on sinus and AV nodal function with conflicting results

(44–46). The majority of studies in human medicine did not

find any direct effects of propofol on the activity of the AV

conduction (47, 48). In contrast, some electrophysiology studies

in children, scheduled for radiofrequency ablation, confirm a

statistically significant prolongation of the AV node conduction

caused by propofol (49, 50). Further studies may be warranted to

investigate this effect in dogs.

The QRS complex reflects depolarization of the ventricular

myocardium, and in dogs, a wide QRS is defined as >70ms

(22, 23). An increased QRS complex duration pre-induction was

observed for four dogs that was still present post-induction, with

one dog having a QRS duration of 70.33ms following alfaxalone

administration. Although there was a statistically significant

increase in QRS duration in both alfaxalone and propofol groups,

all remaining dogs demonstrated values pre- and post-induction

that were within the normal range. A number of pathological

conditions may cause QRS prolongation, and although we cannot

completely exclude the presence of mild subclinical cardiac

disease, it is unlikely in this population of dogs. Methadone and

acepromazine do not influence QRS complex duration in studies

conducted in dogs (51, 52). Therefore, it is unlikely that the drugs

used for premedication in our study were responsible for the

QRS prolongation observed before induction. Again, data were

reanalyzed when these dogs were removed to account for any

influence from premedication and this did not change our results.

Evidence of a possible interaction between alfaxalone and cardiac

ion channels and electrical conductivity is lacking. Although the

effects of propofol on inward/outward ion currents have been

described (15, 53, 54), no change in QRS duration was observed in

a human study that evaluated the effects of propofol on electrical

activity in the heart (55). Furthermore, propofol did not affect

the QRS interval in healthy dogs premedicated with acepromazine

and pethidine (14), which is in contrast with the findings from

our study. The reasons for these differences are not immediately

apparent but it is important to reiterate that the QRS prolongation

found in our study remained within the normal range reported

for dogs.

This study showed a significant decrease of QT and JT intervals

in dogs induced with alfaxalone. The duration of the QT and JT

interval varies with HR: the faster the heart rate, the shorter the

interval (56). Therefore, the more marked chronotropic effect of

alfaxalone is the reason why these intervals decreased significantly

in this group. Due to the effect of HR on the QT and JT

intervals, it is more appropriate to calculate corrected intervals.

This is a correction based on the R–R interval or average HR,

depending on the formula used. Many different formulae have

been developed (6), but there is no accepted gold standard in

dogs. In this study, Van de Water’s linear formula was used (26)

as it has been shown to be the most appropriate formula in dogs

(57), provides the most consistent correction across a wide range

of HR (58), and is simple in comparison with others. Our study

demonstrated a significant increase in the QTc interval in both

propofol and alfaxalone groups following induction of anesthesia,

with no significant difference between the drugs. However, with

a reported reference interval between 150 to 240ms in dogs

(23), ∼60% of the dogs (33 out of 54) showed an increased

QTc interval following premedication but before induction. This

finding might suggest either a pre-existing abnormality in these

animals, or an effect of the agents used for premedication. Given

Frontiers in Veterinary Science 05 frontiersin.org

https://doi.org/10.3389/fvets.2023.1330111
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Casoria et al. 10.3389/fvets.2023.1330111

the high incidence of this phenomenon, it is very unlikely to be

related to underlying pathology, and more probably drug-induced.

Methadone has previously been shown to increase the QT interval

in humans (59), and, more recently, in dogs (28). Methadone

blocks cardiac potassium channels and subsequently interrupts

the delayed rectifier potassium current, which prolongs the action

potential and delays ventricular repolarization, manifesting as a

prolonged QT interval on the ECG (60). It is also possible that

acepromazine may have played a role. An experimental study

in humans reported that acepromazine may have a potentially

arrhythmogenic action through the inhibition of human ether-à-

go-go-related gene (hERG) potassium channels in cardiac tissues

and the prolongation of QT intervals (61). We elected to use

methadone as premedication in the dogs in this study as it is

the only full opioid agonist currently licensed in this species in

the U.K. and Europe, and we wanted to produce data relevant to

clinical veterinary practice. The observed prolongation of the QTc

interval in both groups can be traced back to the extension of its

constituent components: the QRS and JTc intervals, representative

of ventricular depolarization and repolarization, respectively.

Induction to general anesthesia led to the lengthening of both

intervals across both groups. A proposed cellular mechanism for

this QT prolongation implicates the inhibition of delayed rectifier

potassium currents, causing a diminished potassium efflux from

cardiomyocytes and subsequently increasing the ventricular action

potential (AP) duration (62). A causative role in QTc prolongation

with propofol administration has been demonstrated in vivo and

in vitro human studies (63, 64). Propofol has been reported to

affect the activity of several ion channels. Some of these interactions

are thought to contribute to its anti-arrhythmic and cardio-

protective properties, particularly evident in mitigating damage

during myocardial ischemia (65–67). Experimental investigations

on human (68), rat (69), dog (70) and guinea pig (71–73)

cardiomyocytes have demonstrated that propofol reduces calcium

Ca2+ influx by inhibiting L-type voltage-dependent Ca2+ channels.

However, this reduction results in the shortening of the phase 2

of the cardiac AP, leading to a decrease in the AP duration (71–

73). Inhibition of the slowly and rapidly activating delayed rectifier

K+ current (IKr, IKs) has also been confirmed in both animal and

human experimental studies (73–75). This phenomenon results

in the prolongation of the phase 2 and 3 of the cardiac AP,

thereby increasing the AP duration. Notably, genetic mutations

affecting these ion channels represent the most common cause

of Long QT Syndrome (LQTS) in humans (73, 76). Moreover,

propofol demonstrates an inhibitory effect on the cardiac Na+

channel Nav1.5 (54), a membrane protein responsible for the

INa current triggering cardiac cell depolarization. Mutations in

this channel have been identified as causal factors for a variant

of LQTS in humans (76). This intricate network of interactions

sheds light on the multifaceted impact of propofol on cardiac

electrophysiology. Despite the vast body of literature on interaction

between propofol and ion channels, to the authors’ knowledge,

there are no electrophysiology studies in either the human or the

veterinary literature describing relationships between alfaxalone

and ion channels, or any other mechanisms that could interfere

with the ventricular action potentials. Similarly, there are limited

clinical data regarding the ECG effects of alfaxalone in human

medicine (77). While our study reports for the first time a

prolongation of the QTc in dogs following alfaxalone, the precise

mechanism for this effect remains unclear, and further studies are

also required to establish if a similar situation occurs in humans.

Alfaxalone administration caused a statistically significant ST

segment depression; however, this resulted in a value out with the

reference (±0.2mV) in only one dog (−0.27mV). In veterinary

medicine this parameter has been given very little attention because

of the low incidence of myocardial infarction and coronary artery

disease in domestic species (78). However, during anesthetic

procedures, changes in the ST segment can have important clinical

implications, possibly indicating impaired myocardial oxygenation

(79). Alfaxalone (in combination with alphadolone) has been

reported to cause ST segment depression in humans (19), but

the underlying mechanism has not been elucidated. It is possible

that the significant increase in HR observed with alfaxalone might

increase myocardial oxygen consumption, causing ST segment

depression, although the clinical relevance is unknown.

The T waves analyzed in this study follow the qualitative and

quantitative features of the normal canine population T waves (80).

The T wave is one the most variable waves in the electrocardiogram

and may change under several pathological conditions (81)

or in association with altered autonomic tone, with variable

and opposing effects reported (82–84). A reduction in T-wave

amplitude has been observed after thiopentone administration in

humans (85) and dogs (14). Initial data analysis from this current

study showed a significant increase in the T wave amplitude in

the alfaxalone group. However, due to the variation in polarity of

the T wave from animal to animal, the T waves were subsequently

grouped into positive and negative polarities and then re-analyzed,

which revealed no significant differences in Twave amplitude either

within or between the groups.

Different leads of the standard 12-lead ECG project the

repolarization signals of different regions of the myocardial tissue

(86). The QTd has been proposed as a measure of the range

of this interlead variability (87). Indeed, it is hypothesized that

the QTd reflects regional differences of ventricular repolarization

(88). Intrinsic differences in the action potential duration

of endocardial, mid-myocardial (M cells) and epicardial cells

contribute to a physiological phenomenon known as ventricular

transmural dispersion of repolarization (TDR). This heterogeneity

of action potentials across different layers of the ventricular

myocardium is due to a variable expression of ion channels

and explains the reason why the repolarization process occurs

unevenly in the heart (89). Even in the absence of abnormal

anatomical substrates, cardiomyocytes exist in different states

of excitability and refractoriness across the ventricular wall,

generating different excitable myocardial areas, resulting in an

increased TDR. This translates to an exaggerated heterogeneity

and predisposes to arrhythmias because of trigger activity (via

early afterdepolarization) and functional re-entry (90). Re-entrant

circuits allow the generation of abnormal impulse conduction

and are believed to be the main mechanisms of ventricular

tachyarrhythmias and sudden cardiac death (91, 92). No significant

difference in QTd was found either within groups (pre-

to post-induction), or between groups, suggesting that both

propofol and alfaxalone might have minimal impact on the
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inhomogeneity of ventricular repolarization and refractoriness.

Lack of impact of propofol on QTd has previously been reported

in dogs (14), although the values documented in our study

are slightly higher compared to those reported by Dennis

et al. (14) (17.21ms pre-induction, 16.99ms post-induction).

However, is difficult to fully interpret these differences as there

is no reported reference interval currently available for QTd

in dogs.

Our study has some potential limitations. Ideally, when

evaluating the effects of an anesthetic induction agent on the

ECG, no premedication should be administered, so it is solely

the impact of the hypnotic agent, itself, being assessed. Drugs

used for premedication probably exerted some influence on

the ECG parameters, which might have affected the results

obtained. However, the absence of premedication would have

resulted in an increased dose requirement for the induction

agent, with consequent greater cardiorespiratory depression

and is unacceptable in client-owned animals. Given that the

premedication protocol was identical for all the dogs, any changes

observed between the ECG values obtained pre-induction (post-

premedication) and post-induction, should, theoretically, be in

response to the hypnotic agent itself, therefore minimizing bias

between the groups. Measurement bias is an important limitation

of this study as the method used can strongly influence the QT

interval (93). Identifying the intersection between the descending

branch of the T wave and the isoelectric line can be challenging

for trained eyes and also computer algorithms (22, 94). Despite

the fact that all measurements were performed by the same

operator after a period of training under direct supervision

of an EBVS Specialist in Veterinary Cardiology, we cannot

completely rule out a degree of intra-individual variability in

measurement technique. We also cannot completely exclude the

presence of pre-existing structural/functional heart disease or

transient arrhythmias in the dogs included in the study, as their

absence was based solely on clinical examination and no Holter

monitoring or echocardiographic examination was performed.

Lastly, the lack of significant difference in QTd in both groups

may simply reflect the inability of this parameter to correlate

to the electrical and spatial inhomogeneity of the myocardium.

More studies are needed to better characterize this parameter in

veterinary medicine.

In conclusion, this study demonstrates, for the first time,

that alfaxalone, similar to propofol, causes QTc prolongation

in dogs, and may, therefore, exhibit arrhythmogenic properties.

No significant difference in QTd could be demonstrated with

either drug, suggesting that both propofol and alfaxalone might

have minimal impact on the inhomogeneity of ventricular

repolarization, although more research in this area is required.
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