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Pseudorabies virus (PRV) belongs to the Alphaherpesvirinae subfamily and serves 
as an exceptional animal model for investigating the infection mechanism of 
Herpes simplex virus type 1. Notably, PRV has the capability to infect a wide 
range of mammals, including humans, highlighting its potential as an overlooked 
zoonotic pathogen. The attachment and entry steps of PRV into host cells are 
crucial to accomplish its life cycle, which involve numerous cellular factors. 
In this mini review, we  offer a comprehensive summary of current researches 
pertaining to the role of cellular factors in PRV attachment and entry stages, with 
the overarching goal of advancing the development of novel antiviral agents 
against this pathogen.
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Introduction

Pseudorabies virus (PRV), belonging to the subfamily Alphaherpesvirinae, is an enveloped 
double-stranded DNA virus (1). A variety of mammals, such as pigs, wild boars, goats, cattle, 
dogs, cats, and minks, are susceptible to the infection of PRV (2). Only pigs and wild boars are 
the unique nature hosts for PRV, clinical symptoms of pseudorabies (PR) caused by PRV in pigs 
are primarily characterized by central neural disorders in piglets with high morbidity, 
reproductive diseases in pregnant sows (2). Moreover, the prevalence of PRV also poses a huge 
threat to humans, with numerous of human encephalitis or endophthalmitis cases caused by 
PRV infection recently documented in China (3). Unfortunately, effective antiviral agents for 
treating PRV infections in both humans and animals remain limited.

Similar to other viruses, PRV infection involves multiple steps, including viral attachment, 
entry, replication, assembly, extracellular trafficking, and viral egress (4). Among these processes, 
viral attachment and entry are the initial steps in completing the virus’s life cycle. Importantly, 
the virus could interact with or hijack various cellular factors to facilitate its attachment and 
entry efficiency. Thus, understanding the involvement of these cellular factors or their 
interactions with viral proteins during virus attachment and entry is critical for developing novel 
strategies to combat this pathogen. Numerous cellular proteins/factors have been reported to 
play roles in PRV attachment and entry stages, including Human HveC (Nectin-1) (5), Nectin-2 
(6), Neuropilin-1 (NRP1) (7), Niemann-Pick1 (NPC1) (8, 9), porcine paired 
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immunoglobulin-like type 2 receptor α (PILRα) (10) and beta (PILRβ) 
(11), etc. Meanwhile, a variety of cellular factors have been identified 
to inhibit viral attachment and entry, including the cholesterol 
25-hydroxycholesterol (CH25H) (12), IFN-induced transmembrane 
protein 1 (IFITM1) (13), and IFITM2 (14).

In this mini review, we provide a comprehensive summary of the 
latest information focusing on cellular factors involved in PRV 
attachment and entry stages (Table 1; Figure 1). This summary aims 
to offer new insights for developing novel strategies against PRV 
infection, such as antiviral agents.

Cellular factors facilitating PRV 
attachment and entry

Viral attachment and entry steps are pivotal in establishing the 
virus life cycle within host cells, and they also partly determine the 

specificity of tissue or host cell infection (22, 23). These processes 
involve interactions between viral glycoproteins (e.g., gB, gC, gD, gH/
gL, etc.) and cellular factors on the host cell membrane, facilitating the 
viral absorption and entry into host cells (23).

Nectin1 and nectin-2

Nectin-1 or nectin-2 are members of the nectin family, 
characterized by three Ig-like domains in the ectodomain 
(IgV-IgC-IgC), as well as transmembrane and cytoplasmic regions 
(24). These proteins are widely expressed in all tissues of mammals 
and involved in cell–cell adhesion (24). Growing evidence supports 
their roles as primary receptors for various Alphaherpesvirus infection 
in vitro and in vivo. For instance, Krummenacher et al. revealed that 
the C-terminal region of HSV-1 gD interacted with the N-terminal 
region of nectin-1, facilitating HSV-1 entry into host cells (25). Soluble 
nectin-1 protein treatment inhibited HSV-1 entry into different cell 
lines (5). Deletion of nectin-1 in animal experiments prevented viral 
infection and significantly alleviated clinical symptoms caused by 
HSV-1 or HSV-2 infection (26). Nectin-2 plays similar roles in HSV-1 
infection compared to nectin-1 (27).

Both nectin-1 and nectin-2 are essential cellular factors for PRV 
infection. CHO-K1 cells, which lack Alpherpesvirus receptors, are 
resistant to PRV infection. Li et  al. found that over-expression of 
nectin-1 in CHO-K1 cells promoted PRV entry (5). Further investigation 
revealed that PRV gD directly interacted with both human and swine 
nectin-1, with higher binding affinity observed for human nectin-1 (5). 
Considering the high amino acid homology (96%) between porcine and 
human nectin-1, it is plausible that human nectin-1 may participate in 
PRV cross-transmission from pig to humans (5).

Another study generated nectin-1 or nectin-2 knockout (KO) 
PK15 cells via CRISPR/Cas9 technology, and found that these KO cells 
exhibited greater resistance to PRV infection compared with wild-type 
cells (6). Interestingly, further research showed that the deletion of 
nectin-1 or nectin-2 reduced the cell-to-cell spread ability of PRV, 
without affecting viral absorption and entry steps (6).

Moreover, nectin-1 mutant (F129A) mice presented milder 
clinical symptoms, decreased viral loads in tissue samples, and lower 
mortality rates when infected with PRV (16). Additionally, transgenic 
mice expressing soluble form of porcine nectin-1 protein were 
resistant to PRV infection (15). Consequently, nectin-1 represents an 
ideal target for combating PRV both in vitro and in vivo, through 
developing antibodies and chemical inhibitors against nectin-1, even 
generating nectin-1 gene-modified pigs, which may offer novel 
approaches against PRV infection in the future.

Neuropilin-1

NRP1 is a cell-surface receptor involved in a variety of biological 
processes, including angiogenesis, regulating vascular permeability, 
nervous system development, and tumorigenesis. NRP1 also acts as 
an essential co-receptor promoting the entry and replication stages of 
various viruses, such as Kaposi’s sarcoma-associated herpesvirus 
(KSHV) (21), SARS-CoV-2 (28), Epstein–Barr virus (EBV) (29). 
However, a recent research showed that NRP1 was a restricting factor 
inhibiting HIV attachment of progeny virions to target cells (30).

TABLE 1 Function and antiviral strategies against cellular factors involved 
in PRV attachment and entry.

Factor Function Antiviral strategies

Nectin-1 Entry receptor

Nectin-1 directly interacted 

with PRV gD (5)

Gene-modified mice (15, 16)

Nectin-2 Entry receptor?

Knockout of nectin-2 

suppressed PRV infection in 

vitro (6)

NA

NRP1 Attachment and entry 

receptor

NRP1 directly interacted 

with the gB, gD, and gH (7)

NA

NPC1 Entry receptor?

NPC1 inhibitor treatment 

blocked PRV entry in vitro 

and showed anti-PRV 

activity in vivo (mice) (5, 8)

Inhibitor (5, 8)

THBS3 Attachment and entry co-

receptor

THBS3 directly interacted 

with the PRV gD (17)

Antibody and soluble protein 

(17)

PILRα Entry receptor?

PILRα antibody blocked 

PRV entry (18)

Antibody (18)

PILRβ Attachment or entry 

receptor?

PRV gB directly interacted 

with PILRβ to mediate NK 

cells cytotoxicity (11)

NA

SM Entry receptor?

SM inhibitor suppressed 

PRV entry in vitro (19)

Inhibitor (19)

SMS1 Entry receptor?

Knockout of SMS1 inhibited 

PRV entry in vitro (20)

NA
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The involvement of NRP1 in PRV infection has been elucidated 
recently. Chen et al. first demonstrated that over-expression of NRP1 
increased the production progeny viruses in PRV-infected cells, while 
inhibiting the endogenous expression of NRP1 suppressed viral 
replication in SK-N-SH cells (7). Further analysis revealed that over-
expression of NRP1 enhanced viral attachment and entry efficiency 
into CHO cells, indicating that NRP1 might promote PRV entry (7). 
Furthermore, a cell-to-cell fusion assay revealed that NRP1 over-
expression promoted viral glycoprotein-mediated cell-to-cell fusion 
(7). Co-immunoprecipitation (Co-IP) and BiFC assays indicated that 
NRP1 directly interacted with the gB, gD, and gH, suggesting that 
NRP1 promoted PRV attachment and entry by interacting with these 
viral glycoproteins (7). Moreover, PRV gB was found to accelerate 
NRP1 degradation via a lysosome-dependent pathway and this 
process was dependent on its furin-cleavage activity (7). Collectively, 
these findings underscore the essential roles of NRP1  in PRV 
attachment and entry into host cells, and suggest that NRP1 inhibitors 
could be effective agents for PRV prevention and treatment.

Niemann-pick C1

NPC1 belongs to the cholesterol family that is essential for the 
lysosomal cholesterol transport from late endosomes to cellular 
membrane (31). Abnormal expression of NPC1 is associated with 

various cancers (32, 33). Recently, the contribution of NPC1 to virus 
infection has garnered attention, and the NPC1-specific inhibitor, 
U18666A, has been widely used to explore the potential roles of 
NPC1 in viral infection (34).

Li et al. first investigated the antiviral activities of inhibitors 
targeting proteins involved in lipid metabolism against PRV 
infection and found that U18666A inhibited PRV proliferation in 
vitro (8). Furthermore, viral replication ability was significantly 
suppressed in NPC1-knockout PK15 cells, while this effect was 
reversed by the over-expression of wild-type NPC1  in NPC1-
knockout cells (8). However, no significant difference in PRV 
proliferation was observed between wide-type and NPC1-knockout 
cells after U18661A treatment, indicating that U18666A inhibited 
PRV infection via a NPC1-dependent pathway (8). Further 
investigation revealed that U18666A treatment primarily blocked 
viral entry by decreasing cholesterol aggregation in the plasma 
membrane, thus inhibiting the biological activities of clathrin-
coated pits (8). Importantly, U18666A treatment improved the 
survival rates of PRV-infected mice by decreasing cytokines 
production and viral loads in different tissues (8). Overall, these 
results suggested that NPC1 is involved in PRV entry. However, 
another study suggested that U18666A treatment suppressed PRV 
infection by inhibiting the release of PRV particles (9). Thus, 
cellular NCP1 might participate in multiple stages of PRV life cycle, 
warranting further investigation.

FIGURE 1

The involvement of cellular factors in PRV attachment and entry steps. (A) In the process of viral attachment, the interaction of cellular TSHB3 and PRV 
gD promoted viral attachment (17); BRD4 might promote viral attachment (21); CH25H and IFITM2 were restricted factors limiting viral attachment (12, 
14). (B) In the process of viral entry, the interaction of cellular TSHB3 (gD) (17), nectin-1 (gD) (5), NRP1 (gD, gH/gL, and gB) (7), and PILRβ (gB) (11) and 
PRV glycoproteins promote viral entry into host cells; nectin-2 (6), NPC1 (5, 8), PILRα (18), SM (19), and SMS1 (20) were potential factors promoting viral 
entry; CH25H (12) and IFITM1-3 (13, 14) were restricted factors inhibiting viral entry.
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Thrombospondin 3

Thrombospondin 3 (THBS3) is a member of the THBS family 
involved in cell–cell and cell-matrix interactions, and participating in 
the development of skeletal muscle. Additionally, the knockout of 
THBS3  in mice increases the stability and production of integrin 
membranes, providing protection against disease-causing stimuli for 
the heart (35).

Pan et al. first identified THBS3 as a novel co-receptor for PRV 
entry into cells (17). Following a strategy similar to the exploration of 
NPC1’s role in PRV infection, Pan et al. investigated the effects of 
THBS3 knockdown, knockout, and over-expression on PRV 
proliferation. The results revealed that siRNA targeting THBS3 or 
THBS3 knockout effectively inhibited PRV-GFP (a recombinant PRV 
strain expressing GFP) infection in different cell lines (17). Moreover, 
both THBS3 antibody and soluble THBS3 protein treatment 
demonstrated similar antiviral activities against PRV-GFP infection, 
while THBS3 over-expression promoted PRV-GFP infection in PK15 
cells (17).

Co-IP and pull-down assays demonstrated that both the N and C 
terminals of THBS3 directly interacted with PRV gD, but not gC and 
gB (17). And THBS3 over-expression promoted PRV binding/
attachment to PK15 and CHO cells, with no impact on the expression 
and cellular location of nectin-1 (17). However, over-expression of 
THBS3 enhanced nectin-1 mediated viral fusion and entry efficiency 
(17). Considering the direct interaction between gD and THBS3 
during PRV infection, and the multiple roles of THBS3  in viral 
infection, the potential of THBS3 as an antiviral target in vivo needs 
further exploration in the future.

Porcine paired immunoglobulin-like 2 
receptor alpha and beta (PILRα and PILRβ)

Porcine paired immunoglobulin-like 2 receptors (PILRs) belong 
to the member of the immunoglobulin superfamily, consist of two 
subtypes, PILRα and PILRβ. The genetic sequences of PILRα and 
PILRβ are conserved among different mammal species, yet their 
regulatory activities in the innate and adaptive immune systems differ. 
PILRα and PILRβ are widely expressed in various immune system-
related cells, including the dendritic cells, NK cells, monocytes, etc. 
Importantly, these receptors have drawn significant attention due to 
their involvements in Alphaherpesvirus infection.

Satoh et al. found that CHO-K1 cells with PILRα over-expression 
were effectively infected with HSV-1 and PRV, while the infection 
abilities of HSV-1 and PRV were completely inhibited after PILRα 
antibody treatment (10, 18). Further investigation revealed that PILRα 
participated in HSV-1 infection by interacting with gB during viral 
entry step (10).

Concerning PILRβ, Pelsmaeker et al. found that expression of 
PRV gB accelerated the NK cell-mediated killing of gB-transfected 
swine kidney cells, which was also observed in PRV-infected cells (11). 
Further flow cytometric analysis demonstrated that PRV gB increased 
the binding activity of recombinant PILRβ protein to the 
gB-transfected cells (11). These results underscore the essential roles 
of PILRβ in PRV infection-mediated NK cell toxicity.

Sphingomyelin

Sphingomyelin (SM) is a primary component of the 
phospholipids found in the mammalian plasma membrane, actively 
contributing to the formation of lipid rafts in conjunction with the 
cholesterol (36). Pastenkos et al. made the noteworthy discovery that 
treatment with Staphylococcus aureus-derived sphingomyelinase 
(SMase) resulted in robust inhibition of PRV entry, as SMase 
treatment significantly reduced SM staining intensity, signifying the 
crucial role of SM in PRV entry (19). Furthermore, a recent study 
demonstrated that the knockout of sphingomyelin synthase 1 (SMS1) 
led to a significant inhibition of PRV entry into the rabbit PK13 
cells (20).

Cellular factors inhibiting PRV 
attachment and entry

During viral entry, PRV glycoproteins (such as gB and gH) 
mediate membrane fusion processes that facilitate the penetration of 
viral capsid into the cytoplasm (37). Subsequently, the viral DNA 
genome is transported to the host nucleus, where it replicates, 
triggering host antiviral immune responses, as thoroughly 
summarized in recent reviews (38, 39). Some cellular factors involved 
in the innate immune response exhibit antiviral activities during PRV 
attachment or/and entry step.

IFN-induced transmembrane proteins

The IFITMs family, comprising five subtypes (IFITM1, IFITM2, 
IFITM3, IFITM5, and IFITM10) in humans, is conserved and 
mainly localized in the endo-lysosomal and plasma membranes. 
IFITMs are involved in various processes, including stem cell 
properties, DNA damage, and the activation of innate immune 
processes (40). Swine IFITMs family (IFITM1, IFITM2, and 
IFITM3) have been shown to inhibit multiple virus infections, 
including PRV (13, 14).

Wang et  al. demonstrated that IFITM1 transcription was 
significantly up-regulated in PRV-infected cells (PK15 and 3D4/21 
cells) (13). Knockdown of IFITM1, but not IFITM2 and IFITM3, 
enhanced PRV replication in PK15 cells, while over-expression of 
IFITM1 displayed antiviral activity (13). Further analysis revealed that 
IFITM1 knockdown promoted PRV entry into the target cells, 
suggesting that IFITM1 acts as a restricting factor limiting PRV entry, 
although its impact on PRV attachment requires further 
investigation (13).

Another study indicated that PRV infection significantly 
up-regulated the transcription of IFITM1, IFITM2, and IFITM3 at 
12 h post-infection (hpi) and 24 hpi (14). Over-expression of IFITM1, 
IFITM2, or IFITM3 inhibited PRV replication, while knockdown of 
these IFITMs enhanced PRV replication efficiency (14). Further 
research demonstrated that all three IFITM subtypes restricted PRV 
entry into cells, with IFITM2 specifically interfering with PRV 
binding efficiency, a process that depends on cholesterol 
accumulation (14).
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Cholesterol 25-hydroxylase

CH25H is a multi-transmembrane endoplasmic reticulum-
associated enzyme responsible for catalyzing cholesterol into 
25-hydrocholesterol (25HC) (41). CH25H belongs to the interferon-
stimulated genes and broadly resists viral infection via different 
pathways (42).

Wang et al. reported that PRV infection increased the CH25H 
mRNA levels at 12 hpi and 24 hpi. Subsequent research showed that 
CH25H overexpression or 25HC treatment suppressed PRV 
replication (12). Further investigations, utilizing TCID50 and western 
blot assays, revealed that 25HC treatment suppressed PRV attachment 
and entry steps (12). Collectively, the results suggest that CH25H 
negatively affected PRV replication by interfering with viral 
attachment and entry (12).

Bromodomain protein 4

Bromodomain protein 4 (BRD4), a member of the bromodomain 
and Extra-Terminal domain (BET) family, possesses a bromodomain 
that can bind to acetylated histones, participating in various cellular 
processes such as DNA repair, replication, and transcription (21). 
Moreover, the functions of BRD4 on PRV infection have received 
attention recently (21).

Wang et  al. initially found that BRD4 inhibitors exhibited 
anti-PRV infection ability through GFP-reporter assays. Inhibition of 
BRD4 did not affect the transcription of viral genes but significantly 
suppressed PRV attachment (21). BRD4 inhibitor treatment or 
knockdown significantly inhibited PRV attachment, as revealed by 
RT-qPCR and western blot assays (21). Moreover, pre-treatment of 
JQ-1, a BRD4 inhibitor, increased the survival rate of PRV-infected 
mice compared to the control group (21). Mechanistically, BRD4 
inhibitor treatment induced chromatin decompaction and double 
DNA damage, subsequently activating cGAS-dependent innate 
immune responses (21).

Perspective and concluding remarks

As of now, PRV continues to be a significant pathogen, causing 
substantial financial losses in the global swine industry. Furthermore, 
the potential for PRV transmission from pigs to other animal species 
has raised concerns, even prompting public alarm regarding the virus’s 
potential risk to humans. Like other Alphaherpesvirueses, PRV can 
establish latency in swine, thus making it challenging to eradicate 
through vaccination efforts.

Intracellular oblige pathogens, including viruses, depend on 
cellular components to accomplish their life cycles (8). Among the 
critical stages for viral infection, attachment and entry represent ideal 
targets for the development of antiviral strategies, akin to generating 
CD163 gene knockout pigs for PRRSV control (43). In the case of 
PRV, nectin-1 has been extensively studied as a cellular receptor for 
PRV entry and/or cell-to-cell spread, and genetic modification 
targeting nectin-1 holds promise for antiviral activities against PRV in 
mouse models. Thus, it is reasonable to expect that nectin-1 gene-
edited pigs would be resistant to PRV infection, although ongoing 
monitoring of the clinical performance of these gene-edited pigs is 

essential, given the multiple roles of nectin-1. Moreover, the 
development of antibodies and inhibitors against nectin-1 could 
be effective approach for PRV treatment, since the antiviral activity of 
antibodies against PRV or HSV-1 has been observed in vitro (39, 44).

Apart from nectin-1 and nectin-2, various cellular proteins 
involved in the promotion of PRV attachment and entry have been 
identified, partly due to the extensive research into the infection 
mechanisms of other herpesviruses and public concerns about 
PRV. However, it remains unclear which PRV-encoded proteins are 
involved in binding or interacting with the newly identified cellular 
factors, such as NPC1, SM, and SMS1 (8, 19, 20). Addressing these 
concerns will deepen our understanding of viral pathogenesis, and 
facilitate the development of vaccines and antiviral agents.

Additionally, this review has summarized four cellular factors 
negatively regulating PRV attachment and entry steps, including 
interferon-stimulated genes (IFITM1, IFITM2, and CH25H) and 
BRD4. However, several questions require clarification: (1) Further 
investigations should be performed to confirm the antiviral activities 
of these cellular factors against PRV in vivo. (2) It has been reported 
that PRV tegument proteins and glycoproteins can suppress the innate 
immune responses induced by virus infection (45). Such as PRV 
UL24, which can directly inhibit the transcription of multiple 
interferon-stimulated genes (e.g., OASL and ISG20 genes) (46). 
Therefore, further research is needed to determine whether 
PRV-encoded proteins can directly interact with or reduce the 
expression level of these cellular proteins (IFITM1, IFITM2, CH25H, 
and BRD4).

Functionally, cellular factors played similar roles in Herpesvirus 
infection, such as NRP1, which was identified as an entry factor 
promoting different Herpesvirus infection, including PRV (7), EBV 
(29), and KSHV (21). While NRP1 was recently identified as an 
antiviral agent inhibiting HIV infection, mainly via suppressing the 
infectivity of HIV-1 progeny virions and the viral transmission ability 
(30). NRP1 inhibitors effectively suppressed PRV infection in vitro, 
however, the co-infection of PRV and other pathogens were frequently 
detected in clinical samples (47). Further efforts will explore the roles 
of PRV attachment or entry-related cellular factors in other swine 
virus’ infection, to comprehensively assess the possibility of these 
cellular factors in developing antiviral agents.

Conclusion

In summary, the prevalence of PRV remains a global concern, 
posing significant risks to human health. Recent researches have shed 
light on the roles of cellular factors in PRV attachment and entry 
steps, providing valuable insights for the development of novel 
antiviral approaches. However, our current understanding of PRV 
attachment and entry mechanisms is still incomplete. Therefore, 
further efforts are required to identify additional cellular factors 
involved in PRV attachment and entry, and explore their effects. 
Moreover, there is an urgent need to develop innovative antiviral 
agents such as chemical inhibitors, antibodies, and peptides, that can 
effectively target cellular factors like nectin-1 and nectin-2, which 
play crucial role in PRV attachment and entry. These advancements 
will undoubtedly contribute to the prevention and control of PRV in 
the future.
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