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classification of hyperplastic 
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Artificial Intelligence has observed significant growth in its ability to classify 
different types of tumors in humans due to advancements in digital pathology 
technology. Among these tumors, lymphomas are quite common in dogs, 
despite studies on the application of AI in domestic species are scarce. This 
research aims to employ deep learning (DL) through convolutional neural 
networks (CNNs) to distinguish between normal lymph nodes and 3 WHO 
common subtypes of canine lymphomas. To train and validate the CNN, 
1,530 high-resolution microscopic images derived from whole slide scans 
(WSIs) were used, including those of background areas, hyperplastic lymph 
nodes (n  =  4), and three different lymphoma subtypes: diffuse large B cell 
lymphoma (DLBCL; n  =  5), lymphoblastic (LBL; n  =  5), and marginal zone 
lymphoma (MZL; n  =  3). The CNN was able to correctly identify 456 images 
of the possible 457 test sets, achieving a maximum accuracy of 99.34%. 
The results of this study have demonstrated the feasibility of using deep 
learning to differentiate between hyperplastic lymph nodes and lymphomas, 
as well as to classify common WHO subtypes. Further research is required 
to explore the implications of these findings and validate the ability of the 
network to classify a broader range of lymphomas.
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Introduction

Lymphomas are a common type of neoplasm found in canines (1). They typically 
derive from lymphoid tissues, including lymph nodes, bone marrow, and spleen, 
although they can develop within any tissue in the body (2). Lymphomas can arise from 
both B- and T-cell lymphocytes, and the origin of the lymphoma often determines its 
form (2). B-cell lymphomas are the most common in canines, with approximately 
65–75% being B cell and 25–35% being T cell (3). There are multiple forms of 
lymphomas, the most common being multicentric, with a prevalence of 84% in dogs 
(2). Other forms include alimentary, mediastinal, and cutaneous, which are much more 
uncommon (2). Canine lymphomas share many characteristics with human 
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non-Hodgkin lymphomas (NHL) (4). Due to the similarity between 
human NHLs and canine lymphomas, the World Health 
Organization (WHO) system for human NHLs has been adapted to 
classify the types of canine lymphomas (4). Even though considered 
outdated by some authors, the updated Kiel classification is also an 
appropriate and commonly used classification for canine lymphomas 
(5). According to the WHO classification, three of the most 
diagnosed lymphomas are diffuse large B cell lymphoma (DLBCL), 
marginal zone lymphoma (MZL), and lymphoblastic lymphoma 
(LBL). Diffuse large B cell lymphoma (DLCBL) is the most common 
form of lymphoma found in dogs, with 79% of subjects being 
diagnosed with this subtype (3). Histologically, they are defined as 
having a diffuse pattern with uniformly large nuclei (6). These nuclei 
are generally round and infrequently cleaved or indented, with a 
variable mitotic rate (4). Dogs with this type of lymphoma 
commonly present with generalized lymphadenopathy, and they are 
typically classified at stages III to V using the WHO system (7). It is 
unclear if this type of lymphoma is more common in specific breeds. 
However, some studies indicate that Golden Retrievers, Labrador 
Retrievers, Bernese Mountain Dogs, and German Shepherds are 
more frequently affected (6). Marginal zone lymphomas (MZL) are 
the second most common lymphoma in dogs, with 17% of cases 
being classified as MZL (3). It is a B-cell lymphoma that is typically 
found in either the lymph nodes or the spleen (4). They are 
characterized as having a nodular pattern, with intermediate-sized 
cells with a central nucleolus and abundant lightly stained cytoplasm 
compared with other lymphomas (6). Mitoses are prominent only in 
advanced cases (4). This type of lymphoma is characterized 
morphologically by its “fading germinal centers,” which makes it 
resemble the marginal zone of a typical lymph node follicle (3). In 
addition to this, late stage MZL keep their cellular characteristics, 
but they lose their distinctive nodular pattern (6). This makes it 
challenging for pathologists to differentiate between this subtype 
and DLBCL (6). Dogs with this type of lymphoma generally present 
to the clinic with an enlarged submandibular or cervical lymph node 
which remains mobile under the skin. Most often, MZLs are present 
in large-breed dogs (4). Lymphoblastic lymphomas can originate 
from either B or T cell, although T phenotype is much more 
frequently found for this type (8). It is a less common lymphoma 
type if compared with DLBCL or MZL (9). Histologically, they are 
characterized by having uniformly intermediate-sized nuclei with 
evenly distributed chromatin, which conceals nuclear detail and a 
high mitotic rate (4). It is the most aggressive subtype frequently 
found in practices with dogs presenting with one or more enlarged 
peripheral lymphnodes (4). The study by Comazzi and Riondato (9) 
also suggested that this type of lymphoma is more frequently found 
in boxers. Due to their different morphological characteristics, these 
three common types of lymphoma represent a good target to explore 
the ability of Artificial Intelligence to discriminate between them 
and distinguish a lymphoid neoplastic proliferation (for which they 
offer common examples) from hyperplastic lymphoid tissue. In fact, 
reactive lymph node hyperplasia represents the main differential 
diagnosis for an enlarged lymph node. The most used approach for 
image classification is deep learning (DL) implemented with 
convolutional neural networks (CNNs) (10). Deep Learning is a 
form of machine learning where a neural network’s design is 
influenced by the human brain structure (11) and learns by example 
directly from the given data. Examples of types of data include 

images, sound, and text. This form of machine learning is known for 
achieving very high accuracies in image classification. These 
networks can achieve high accuracies if trained with a large amount 
of data and a deep network with multiple layers that allow learning 
millions of different features (11). Transfer learning is a common 
method used in DL. In this form of learning, a pre-trained network 
is selected and used as a starting point to train a network to learn a 
new task. Specific features are added or swapped out in order to alter 
the process before the training occurs. This allows the network to 
build from its previous knowledge and achieve the goal more 
successfully (12). This is one of the most used methods of training 
as it is easier to implement and is generally faster as it only involves 
fine-tuning (13). The use of machine learning and DL, in particular 
for processing and analyzing digital images in pathology, has become 
more popular in recent years. This is due to the rise in the use of 
whole digital slide scanners and an increased interest in digital 
pathology, allowing image analysis to be approached more freely 
(14). This project aims to investigate the feasibility of a CNN to 
distinguish hyperplastic lymph node from lymphoma and classify 
three common types of canine lymphoma. This is approached using 
a transfer learning strategy.

Materials and methods

Different cases of lymphoma and reactive hyperplastic lymph 
node slides were selected from the slides archive of the Department of 
Veterinary Anatomy Physiology and Pathology, Section of Veterinary 
Pathology at the University of Liverpool. In total, 4 cases of 
hyperplastic lymph node, 5 cases for each DLBCL and LBL, and 3 
cases of MZL were selected as the classic examples of each category, 
following the criteria present in the WHO classification (4). All slides 
were previously stained with hematoxylin and eosin (HE) staining and 
diagnosed by board-certified pathologists with the use of 
immunohistochemistry for the determination of the phenotype. Slides 
were scanned by an Aperio CS2 (Leica Biosystems, Wetzlar, Germany) 
microscope slide scanner using native 40X magnification. In the 
preview of the slides, the region of interest (ROI) was cropped, and a 
final whole slide image (WSI) was generated. The image analysis 
software QuPath (15) was used to convert all the WSIs into the tiles 
that would later be selected for training the neural network. For each 
lymphoma slide, the area of lymphoma was manually annotated as 
“tumor,” while for reactive lymph node, all the lymph node areas 
(cortex and medulla) were annotated as “lymph node.” The automate 
tab, followed by the script editor, was selected, and a custom script was 
used, which allowed the creation of non-overlapping tiles and 
512x512x3 pixels in size. This was repeated for each type of lymphoma, 
background areas of the slide, and hyperplastic lymph node slides. 
Examples of each classification were selected among the large number 
of tiles generated with this process (range: 2000–18,000 depending on 
the size of the sample). For each lymphoma, 75 tiles of the best 
examples of each DLBCL (Figure  1A), LBL (Figure  1B), MZL 
(Figure 1C), or hyperplastic lymph node (Figure 1D) were manually 
selected and cross-checked by a board-certified veterinary pathologist 
(LR), making sure that they would represent morphological criteria 
mentioned in the WHO classification. For the background, 15 tiles 
from each slide were also selected from areas without any tissue. These 
tiles from each slide were then grouped into their classes and put into 
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folders, resulting in 5 folders of tiles, with a maximum of 375 tiles per 
class to be input into the neural network. The training was achieved 
in MATLAB (R2022a, Natick, Massachusetts: The MathWorks Inc.) 
with Deep Network Toolbox installed, and the learning method was 
transfer learning. GoogLeNet was chosen among possible CNNs as a 
fast network while retaining high depth and accuracy (19). The last 
fully connected layer was deleted and replaced by a new untrained 
fully connected layer, while the output size was changed to five classes 
(DLBCL, LBL, MZL, Hyperplastic, and Background). The 
WeightLearnRateFactor and BiasLearnRateFactor values were also 
increased to 2 to make the overall learning rate faster. All the classified 
tiles were imported into the network. Among 1,530 tiles, each class 
was split randomly between training set (70%) and testing set (30%), 
and a hold-out cross-validation strategy was applied, as the test set was 
considered a good statistical representation of the whole dataset. The 
network automatically resized the images to fit with the pre-trained 
network input layer-accepted format from 512x512x3 to an input size 
of 224x224x3 (downsampling). Tiles were randomized between 
training and test every time the network was run. In the training 
options tab, one of the three solvers (sgdm, adam, or rmsprop) was 
selected (a solver is the stochastic gradient descent algorithm, which 
evaluates the learning gradient and updates the network parameters 
using a portion of the training data during learning of a neural 
network to reduce loss) as well as an initial learning rate. Once the 
deep learning training process was completed, the results for the run 
were recorded. After reviewing and recording the results, the network 
was rerun with a combination of different solvers and/or initial 
learning rate values until a combination with high accuracy and low 
losses was achieved. Once this experiment was run multiple times and 
the best solver was identified, the data were run in a refining 
experiment using Bayesian optimization in order to find the best 
learning rate and get the highest accuracy. In this optimization phase, 
the solver sgdm was used, and since an initial learning rate of 0.0075 
had high accuracy, the learning rate range was set between 0.00075 

and 0.075. A maximum limit of 30 trials was selected beforehand. All 
30 trials were run. After the optimization was completed, the final 
hyperparameters are shown in Supplementary Table S1. From this 
data, graphs showing the training and validation accuracies and losses 
were generated during the learning process. When the training was 
completed, the network produced a confusion matrix to show how 
well it learned the data and areas of errors (performance) on test 
images (30% of the tiles generated). Parameters such as False Positives, 
Sensitivity, False negatives, and Specificity for each class were 
calculated. All the experimental steps were run on a computationally 
efficient PC equipped with AMD Ryzen Threadripper PRO 3995WX 
CPU, 6x NVIDIA RTX 3090 GPUs, 1.00 TB of RAM, and Windows 
10 Professional. A graphical summary of the workflow of the CNN for 
training and testing is presented in Figure 2.

Results

The network was run three times for each solver, each with a 
different learning rate, to work out a rough range of what learning rate 
would have higher validation accuracy. From these experiments, sgdm 
solver was able to run with a higher learning rate (0.005) while still 
having a high validation accuracy of 99.34%. The average accuracy of 
three different experiments, with a random split of training and testing 
tiles using sgdm solver with different learning rates, was 97.01% 
(Supplementary Table S2). Following Bayesian optimization, 18 out of 
30 trials were identified as the best, which had a learning rate of 0.0057 
(Supplementary Figure S1). The training plots showed that the 
network converged approximately 50 iterations, reaching accuracy 
close to 100% for training and test sets before the 250th iteration 
(Supplementary Figure S2). The results of the test set (examples of 
DLBCL, LBL, MZL, normal lymph node, and background) presented 
in a confusion matrix (Table 1) showed that the CNN was able to 
correctly identify 456 images of the possible 457 of the test set. All the 
LBL, MZL, hyperplastic, and background tiles were correctly 
predicted, while 90 examples of DLBCL out of 91 (98.9) were correctly 
identified, with one example of DLBCL wrongly classified as 
hyperplastic lymph node. Considering the performance of 
distinguishing hyperplastic lymph node from lymphoma 
(DLBCL+LBL + MZL), all the predictions for lymphoma were correct, 
while a single prediction for hyperplastic lymph node out of 90 was 
misclassified as lymphoma.

Discussion

The present preliminary work demonstrated that transfer learning 
applied to the problem of differentiation between hyperplastic and 
neoplastic lymph node and of classification of lymphoid neoplasms in 
dogs can be successful. We also demonstrated that our methodological 
strategy for network learning hyperparameter optimization is 
promising. Our approach used a hold-out cross-validation approach, as 
the test set was considered a good statistical representation of the whole 
dataset. Given the average accuracy of 97.01% in 3 different experiments 
with different learning rates and randomization of training and test tiles, 
the network seems to perform consistently. Despite the study being 
preliminary and focusing primarily on the proof of principle of 
technique application, at present, there are no studies published 

FIGURE 1

Examples of tiles of different classes: DLBCL (A), LBL (B), MZL (C), 
and hyperplastic lymph node (D).
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applying CNNs to canine lymphomas, while machine learning has been 
applied only marginally to clinical data in canine lymphomas (16), with 
no exploration of the potential of CNNs. The accuracy of the network 
was very high. In the one image where the classification of the network 
was incorrect, it mistakenly categorized a DLBCL tile as a hyperplastic 
lymph node tile instead. This is encouraging, as the network was still 
able to correctly classify 99.1% of the DLBCL tiles presented to it, and it 
can be argued that a very high-power view of a germinal center in a 
hyperplastic node can overlap with a small area of DLBCL. Considered 
within a scenario where the outcome of multiple tiles should achieve the 
final diagnosis, this error can be considered almost irrelevant. It remains 
likely a challenge to establish, at tile level, what should be considered as 

normal lymph node, due to the heterogeneity of the lymph node 
structure, and likely a segmentation approach at lower magnification, 
similar to the one we  recently approached on a similarly complex 
anatomical structure (kidney) (17) could prove an effective alternative 
strategy. However, it is interesting to observe that the network seems to 
capture features of different classes without the need for a 
sub-microscopic structure of the lymph node, likely relying on 
cytological features. One limitation of this preliminary study is, 
inherently, the low number of slides used in the experiments, which may 
not simulate fully the complexity of a wider scale experiment using a 
larger number of cases. However, the suggestion that features are 
learned at this accuracy rate using a reasonably low number of examples 

FIGURE 2

Workflow for training and testing the convolutional neural network (CNN): the process starts with histological slides representing various classes, such 
as DLBCL, LBL, MZL, and Hyperplastic lymph nodes (A). These slides are scanned using a digital slide scanner, creating a Whole Slide Image (WSI) (B). 
The WSI is divided into smaller tiles (C). These tiles from different classes are used as examples to train the input layer of the CNN (D). The CNN 
processes the input tiles (E) and predicts the probability of each class (F). The error in these predictions is then used to adjust the neuron weights 
through back propagation (G). This process continues until the error is minimized to an optimal value (H). The result is a “trained” network (J). This 
trained network can now be used to analyze never-before-seen tiles obtained through the same tiling process (K). When fed with these new tiles, the 
network accurately predicts the class (L).

TABLE 1 Confusion matrix for the 5 different classes.

FN SE

True class Background 76 0.0 100.0

DLBCL 111 1 0.9 99.1

LBL 112 0.0 100.0

MZL 67 0.0 100.0

Hyperplastic 90 0.0 100.0

Background DLBCL LBL MZL Hyperplastic

Predicted class

FP 0.0 0.0 0.0 0.0 1.1

SP 100.0 100.0 100.0 100.0 98.9

DLBCL: Diffuse Large B cell Lymphoma; LBL: LymphoBlastic Lymphoma; MZL: Marginal Zone Lymphoma; FN: False negatives; SE: Sensitivity; FP=False Positives; SP=Specificity. 
FN,SE,FP,SP parameters are expressed as percentages.
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(hundreds per class) in the context of a transfer learning approach is 
promising for future larger experiments, which should include a larger 
and more diverse set of training and test datasets. In an ideal scenario, 
the development of a comprehensive CNN for facilitating AI-assisted 
diagnosis on a large scale would also gain significant advantages through 
the incorporation of diverse slide scanners and staining protocols 
sourced from various laboratories. It is important to note that, at 
present, this aspect remains one of the foremost limitations in the 
context of histology CNN approaches (18). The results from this 
experiment have shown that the GoogLeNet network is a highly reliable 
network to use for deep learning when applied to lymphoma histological 
images using a transfer learning approach. This strongly suggests that 
the basic patterns learned in the early layers during the original training 
on 1.2 million images and 1,000 different classes, representative of 
common objects and living beings (19), represent a solid starting point 
to refine the features for histological images of canine lymphomas. A 
smaller number of tiles were used for one of the neoplasm categories 
(MZL). However, despite this, there was no effect on the performance, 
suggesting that lymphomas are, in the “eyes” of the CNN, a reasonably 
homogeneous type of tumors, where a relatively low number of 
examples can result in successful training. There are many studies that 
discuss the similarities between canine and human lymphomas and how 
canine models may contribute to lymphoma research. Due to the 
similarities and use of a derived classification system, this preliminary 
result appears likely translational to human medicine. DLBCL 
lymphomas in both humans and canines are especially similar, as they 
resemble each other in many features, including that they are the most 
common subtype of B cell lymphoma in both dogs and humans (6). The 
workflow proposed uses easily accessible software: MATLAB and 
QuPath are both open-source software or offer free versions, making 
them accessible to researchers with limited budgets. Moreover, this 
software is commonly used in academic settings and has a wide base of 
users, which promotes transparency, reproducibility, and collaboration 
within the scientific community. In conclusion, this study has 
successfully shown that a convolutional neural network can be used to 
differentiate between hyperplastic and neoplastic lymph nodes, as well 
as classify specific subtypes of canine lymphomas. The integration of 
AI-aided diagnosis in canine lymphoma histology, among other areas, 
promises to revolutionize veterinary diagnostics, but potential benefits 
and challenges we might encounter as this technology becomes more 
prevalent are still to be  unraveled; therefore further studies are 
encouraged. These findings not only demonstrate the potential of deep 
learning in distinguishing canine lymphomas from normal lymph 
nodes but also lay the groundwork for larger scale studies encompassing 
different species and a broader range of lymphoma subtypes.
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