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Repeated stresses applied to the rider may contribute to the documented physical

and psychosocial outcomes from equine-assisted services. In this brief review,

a summary of neuroendocrine markers of stress, including immunoglobulin A,

serotonin, cortisol, progesterone, and oxytocin, is presented within the context of

the physiology of stress modulation. Results are mixed with regard to the e�ects

of these hormones on rider physiology before, during, and after equine-assisted

services. However, some results from existing studies are promising with regard

to the attenuation of stress. Future research should include a cross-disciplinary

approach when conducting well-controlled studies with proper treatment and

experimental fidelity, while also considering exogenous and endogenous factors

that influence rider physiology.
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1 Introduction

Equine-assisted services (EAS) include various services in which the horse and other

equines are utilized to benefit individuals (1). These services include therapy, learning,

and horsemanship (1). Previous terms used to denote therapy in this unique setting have

included equine-assisted therapy and hippotherapy. Learning and horsemanship have been

previously referred to as equine-assisted activities or therapeutic horseback riding. However,

these latter terms have been recommended to be discontinued in favor of more inclusive

language [for a more detailed summary and consensus on current terminology, see (2, 3)].

During EAS, the rhythmic movement of the horse is used as a tool to improve physical,

emotional, andmental health in the rider (4). The physical (5) and psychosocial (6) outcomes

of EAS in the rider have been summarized previously. While these exogenous effects have

been characterized, the endogenous changes that may allow for improvements in overall

function during EAS have not been summarized to date. More specifically, these changes

include the stress applied to the rider. Stress is defined as the threat, or perceived threat, to

an organism’s homeostasis (7). Repeated stresses on bodily systems can lead to physiological

adaptations and re-establishment of homeostasis, eliciting an improvement in functional

capacity and physical function (7, 8). As the rhythmic movement of the horse elicits repeated

bodily movements in the rider during EAS, it follows that the physical adaptations [e.g., gross

motor function, balance, posture, muscle asymmetry, spasticity; (5)] to EAS occur, in part,

due to the application of acute bouts of stress.
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In humans, this adaptive stress response is influenced by

cellular, molecular, and neuroendocrine factors located in the

central nervous system and periphery (7, 9). When in a stressful

state, a fast and slow response occurs (10). The fast response is

mediated by the sympathoadrenomedullary (SAM) system, which

promotes an increase in epinephrine and norepinephrine from

the adrenal medulla and an additional increase in norepinephrine

from the sympathetic nerves (10, 11). Once released, these

hormones initiate the contraction of muscle cells in the vasculature,

skeletal muscle, heart, and other organs (12, 13), resulting in

increased physiologic responses that include, but are not limited to,

vasoconstriction, blood pressure, heart rate, cardiac output, oxygen

consumption, thermogenesis, arousal, alertness, and vigilance

(10). The slow response is derived form the activation of the

hypothalamic-pituitary-adrenal (HPA) axis, a critical structure

both centrally and peripherally located to mediate the stress

response (7, 10, 14). The activation of the HPA axis causes a release

of corticotropin-releasing factor (CRF) from the hypothalamus

in the brain (10). Interestingly, equines present with a similar

neuroendocrine profile as humans under periods of stress. Both

the SAM system and HPA axis also modulate the release of these

hormones in equines (15, 16).

Changes in neuroendocrine responses can attenuate

stress in humans following animal interaction (17). Other

endogenous markers that have been positively affected in the

rider following human-animal interaction include serotonin (18),

immunoglobulin A (19), and oxytocin (20). In this brief review,

a summary of the neuroendocrine markers of stress is presented.

Concentration changes before, during, and after EAS are provided.

A brief summary of the stress incurred by the equine during EAS is

also presented. Finally, future directions for research are discussed.

2 Immunoglobulin A

Immunoglobulin A (IgA) is the most dominant antibody in

immunity, regulating mucosal homeostasis (21). Once secreted

in the lumen, it binds to antigens and prevents toxins from

entering the submucosa and circulation (22). Acting as the primary

barrier to pathogens and irritants, increased concentrations may

promote immune health (21). As the immune system is integrated

with other organs in the body, including the brain, behavior

and activity (including tactile contact between mammals) can

positively affect immunity (23). Additional lifestyle habits may

increase concentrations of IgA, including listening to music (24),

relaxing (25), or watching a funnymovie (26).Markers of immunity

and the associated physiological stress response have remained

mostly unexplored in the interaction between humans and equines.

However, concentrations of IgA did not change after 15min of

equine-facilitated learning (i.e., moving around a horse while

focusing on the response of the horse with awareness of their own

bodily sensations) in healthy older adults (27).

3 Serotonin

Serotonin, a neurotransmitter in the central nervous system,

is implicated in the function of the cardiovascular, pulmonary,

metabolic, gastrointestinal, and genitourinary systems (28). The

influence of serotonin on gastrointestinal function and gut

microbiome is great, as more than 90% of circulating serotonin

in the periphery is synthesized by cells in the gastrointestinal

tract (29). Metabolically, it contributes to glucose homeostasis and

adiposity, thus influencing the course and progression of chronic

diseases (29).

Serotonin receptors are expressed in many regions of the

brain, and thus help to regulate the nuclei in these regions

involved in behavioral output. In addition to well-known attributes

such as mood, sleep and appetite, there are multiple behavioral

attributes that are regulated by serotonin, including perception,

reward, anger, aggression, memory, and attention (28). More

specifically, serotonin may play a key role in emotional regulation

and behavioral flexibility, social cognition and control of social

interactions, anxiety, and learning and memory (30, 31). The

influence of serotonin may therefore be very important to quantify

before and after the administration of EAS. There are no known

studies that include the measurement of serotonin following

an acute or long-term EAS intervention in chronic disease

populations. However, serotonin concentrations increased by 5%

following 8 weeks of horseback riding in a therapeutic setting in

older adults (32).

4 Cortisol

When secreted from the hypothalamus, CRF stimulates the

nearby anterior pituitary gland to release adrenocorticotropin

(ACTH), eliciting the release of cortisol from the adrenal cortex

into the circulation (33). Its metabolic effects include lipolysis,

protein catabolism, and an increase in blood glucose by stimulating

liver enzymes, although this glucose is blocked when delivered

to working tissues (34). However, this mobilization of energy is

thought to be the primary function of cortisol during periods of

stress (35).

Cortisol responses to EAS have been mixed. Morning salivary

cortisol concentrations did not change over the course of 6 weeks

of equine therapy in veterans with PTSD (36), or after 10 weeks

of therapeutic horseback riding in children with autism spectrum

disorder [ASD; (37)]. However, a 20 and 24% decrease in salivary

cortisol concentrations were observed after 1 month (38) and

12 weeks (39) of weekly hippotherapy sessions, respectively in

male children with ASD. There are positive results reported in

healthy populations. Cortisol concentrations decreased by 6%

following 8 weeks of horseback riding in a therapeutic setting in

older adults (32). In addition, cortisol levels were decreased in

these participants when compared to a control group following

the riding protocol (32). Finally, 11 weeks of equine-facilitated

activities performed once per week, 90min per session, decreased

salivary cortisol concentrations by 20% in healthy adolescents

(40). In healthy adults without horseback riding experience, no

change in cortisol concentrations was observed in healthy adults

following a 2-h horse-riding lesson program (41). However, among

healthy adults with horseback riding experience, a 61% and 64%

decrease in cortisol concentrations were observed immediately

following, and 1 h following, a 2-h horse-riding lesson program,

respectively (41). The observed decrease in cortisol concentrations
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following EAS may be expected, as many of those who participate

in these interventions experience relaxing effects during the

treatment (42).

5 Progesterone

Traditionally thought of as a female sex hormone, progesterone

is produced in the corpus luteum in the ovaries and metabolized

primarily in the liver in women (43). In men, progesterone is

secreted by the adrenal cortex, and can be metabolized to other sex

hormones, including testosterone and estradiol (44). Progesterone

also influences mood and behavior via emotion processing (43).

Inclusive to emotion processing are emotion recognition accuracy

and emotional memories (45). When progesterone concentrations

are high, there is a faster response to negative stimuli, which

typically presents as a heightened sensitivity to physical threats

(46–49). Emotional memories are mediated by the HPA axis, and

elevated progesterone levels are correlated with emotional free-

recall and recognition memory (50, 51). To date, these phenomena

have been only observed in women. However, due to the influence

of progesterone on the HPA axis and the brain, the hormone may

have positive effects on mood, cognition, and neuronal growth in

men and women (52–54).

Acute assessments of progesterone have been completed in

male children with ASD after one session of hippotherapy.

An increase of 80% in salivary progesterone was observed

after 30min of therapy (38). Longer-term assessments have

also been made, with a 21% and an 83% increase in salivary

progesterone after 1 month (38) and 12 weeks (39) of weekly

hippotherapy sessions, respectively, in the same population. Based

on these results, the regulation of mood may be enhanced

with EAS in children with ASD due, in part, to the release of

progesterone derived from the rider’s motivation to bond with the

horse (55).

6 Oxytocin

Oxytocin is primarily synthesized in the hypothalamus and

released from the pituitary gland (56). Once activated, its presence

in the blood affects other organs, including the mammary glands

and kidneys (57). Oxytocin may therefore play a crucial role

with stress-related behaviors due to its influence within the

HPA axis (57). More specifically, the release of oxytocin may

elicit decreases in glucocorticoids and concomitant increases in

parasympathetic nervous system function, thereby decreasing

heart rate and blood pressure (BP) responses (17, 58). Indeed,

the active form of oxytocin is related to reduced anxiety and

relaxation in children (59). Oxytocin is also implicated in the

underlying mechanisms of the development and maintenance of

attachment in mammals (60). More specifically, tactile contacts

(e.g., touch, warmth, vibration), which are critical for social

bonding, may be facilitated by oxytocin (61). The human-

animal interaction and, specifically, tactile contact, stimulates

the release of salivary, plasma, and urinary oxytocin (62, 63).

The validation of salivary oxytocin has recently been shown in

mammals (62, 64).

7 Other stress-related measures

Cardiopulmonary measures, including heart rate, BP,

pulmonary function, and heart rate variability (HRV), have been

characterized as stress-related markers during EAS. Overall,

hippotherapy and EAT does not alter heart rate in children

with neurologic disorders (65–67) or adults (68), respectively.

However, heart rate responses may change based on the level of

disability of the rider. Indeed, therapeutic horseback riding may

elicit increases in heart rate in children with a moderate to severe

pathophysiology (69), particularly when compared to youth with

less motor impairment (70). Heart rate responses are lower when

riders are grooming and petting horses when compared to walking

and leading them (71). A single session of, or training over time

involving, EAT or hippotherapy also does not alter BP (65–67, 71)

or respiratory responses (67, 69, 71) when assessed after sessions

have ended vs. baseline. Fifteen minutes of equine-assisted learning

may, however, increase respiratory responses in older adults

(27). Finally, based on HRV measures during EAS, there may

be an attenuation of sympathetic nervous system activity and an

increase in parasympathetic nervous system activity [see (72), for

a comprehensive review], thereby resetting balance during periods

of perceived stress, and promoting improvements in cognitive and

emotional control (73, 74).

8 Considerations of the horse

The stress level of the horse should be considered to ensure the

health and welfare of these animals are maintained (75). Because

horses are prey animals, they have a heightened awareness to

their environment, unlike dogs or cats (36). As such, they are

able to perceive, respond, and learn from subtle stimuli in a

therapeutic setting (76). Equines can respond to a human presence

through changes in the rider’s physiology, body language, and vocal

tones (76). This response may be accompanied by acute stress in

the horse, either from the rider or from another environmental

stimuli. Confusion and related conflict behaviors in the horse, when

accompanied by stress, can then lead to injury to horse riders and

handlers and perpetuate the idea that horses exhibit unpredictable

behavior (77). Indeed, if the rider is stressed, this may increase

the likelihood of a startled reaction in horses via a transmission

of stress, thus increasing the risk of injury (78). Elevated stress

levels can elicit negative effects on immunity in horses, which may

lead to an increased incidence of colic and gastric ulcers (79–81).

Also, strong emotional reactions may impair learning performance

in equines (82–84). Taken together, these effects may decrease

equine performance and attenuate the benefits received by the rider

during EAS.

Although stress responses can be variable, the therapy setting

typically does not add stress to the horse. No difference in

cortisol concentrations was found between modes of riding [i.e.,

therapeutic vs. traditional; (85)] or between time points within

and across EAS sessions (41, 71). This is significant, as serum-

free cortisol concentrations increase within 10min after exposure

to acute stress in equines (86). Furthermore, cortisol, ACTH, and

glucose maintained normal ranges over time, and between riders

with andwithout posttraumatic stress disorder (75). Alternatively, a
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decrease in cortisol levels in the horse by up to 45%may occur when

children with psychomotor disabilities participate in EAT (87).

Stress can also be objectively measured in horses using

cardiovascular measures, including HRV. Similar to measurements

in humans, HRV measures in horses are sensitive and reliable

indicators of fear or anxiety (27). Basal HRV variations can be

influenced by genotype, behavior, environment, temperament, and

dietary habits (88). During a 15-min equine-facilitated learning

session with older adults, very low frequency (VLF) ranges of HRV

were recorded (27). Power within the VLF band is consistent with

improved health (89), with the activity of the parasympathetic

nervous system contributing most to VLF power (90). In another

study, no changes in HRV were found in horses after several phases

and sessions of EAT with riders who had varying health statuses

(68, 71, 91). However, HRVmeasures were different between horses

who performed equine-assisted activities and therapies and horses

who performed dressage, jumping, and eventing activities (92).

9 Conclusion and future directions

In this review, IgA, serotonin, cortisol, progesterone, and

oxytocin were summarized in the context of rider physiology

during EAS. Although the characterization of the concentrations

of these hormones is mixed throughout the literature, results

from existing studies are promising with regard to the attenuation

of stress in the rider during EAS. The positive outcomes in

stress modulation may contribute to the physical and psychosocial

benefits observed across populations of varying age, diagnoses, and

horseback riding experience. However, it appears that periods of

chronic stress, physiologically manifesting as high concentrations

of glucocorticoids and catecholamines, can influence the ability

for horses to perform during EAS and can negatively impact the

human-animal bond.

Due to the cross-disciplinary nature of this topic, and the

difficulty in obtaining and analyzing blood and saliva samples,

future research teams should include biologists, biochemists, or

some healthcare practitioner (e.g., nurse, phlebotomist, exercise

physiologist). More well-controlled studies with proper treatment

and experimental fidelity to allow for accurate quantification

of stress-related hormone concentrations are needed in this

area. A number of physiological factors in the rider should

be considered, including method of data collection (salivary vs.

plasma and/or serum), time of day (i.e., circadian rhythm), timing

of data collection before, during, and after EAS sessions based

on knowledge of peak hormone concentrations, and unique sex

characteristics (e.g., male vs. female, timing of female menstrual

cycle), as any of these can influence neuroendocrine responses to

stress (93–95). With these future directions, the next steps can

be made in the process of seeking to make EAS more affordable

and accessible.
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