AUTHOR=Levallois Pierre , Leblanc-Maridor Mily , Lehébel Anne , Gavaud Solenn , Lieubeau Blandine , Hervé Julie , Fourichon Christine , Belloc Catherine TITLE=Hair cortisol concentration in finishing pigs on commercial farms: variability between pigs, batches, and farms JOURNAL=Frontiers in Veterinary Science VOLUME=10 YEAR=2024 URL=https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2023.1298756 DOI=10.3389/fvets.2023.1298756 ISSN=2297-1769 ABSTRACT=

Hair cortisol is a stress indicator and could be used to assess the pigs’ exposure to stressors in the weeks/months prior to non-invasive hair sampling. The main aim of this study was to describe the hair cortisol concentration (HCC) variability between individuals within a batch, between farms and between batches within a farm. The secondary aim was to determine how the number of sampled pigs influences the characterization of HCC within a batch. Twenty farrow-to-finish pig farms were recruited considering the diversity of their management practices and health status (data collected). Hair was sampled in two separate batches, 8 months apart. The necks of 24 finishing pigs were clipped per batch the week prior to slaughter. To describe the variability in HCC, an analysis of the variance model was run with three explanatory variables (batch, farm and their interaction). To identify farm clusters, a principal component analysis followed by a hierarchical clustering was carried out with four active variables (means and standard deviations of the two batches per farm) and 17 supplementary variables (management practices, herd health data). We determined how the number of sampled pigs influenced the characterization of HCC within a batch by selecting subsamples of the results. HCC ranged from 0.4 to 121.6 pg/mg, with a mean of 25.9 ± 16.2 pg/mg. The variability in HCC was mainly explained by differences between pigs (57%), then between farms (24%), between batches within the same farm (16%) and between batches (3%). Three clusters of farms were identified: low homogeneous concentrations (n = 3 farms), heterogeneous concentrations with either higher (n = 7) or lower (n = 10) HCC in batch 2 than in batch 1. The diversity of management practices and health statuses allowed to discuss hypotheses explaining the HCC variations observed. We highlighted the need to sample more than 24 pigs to characterize HCC in a pig batch. HCC differences between batches on six farms suggest sampling pigs in more than one batch to describe the HCC at the farm level. HCC variations described here confirm the need to study its links with exposure of pigs to stressors.