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Advances in host-pathogen interactions for diseases in animals and birds

Introduction

Host-virus interactions are complex cross-talk between the virus and its host cell. These
interactions are not limited to causing disease or changing the physiology of host cells but
they also influence viruses. Studies showed bidirectional changes in viruses and their host
which co-evolved together (1, 2). The host body harbors numerous microbes, collectively it
is called the microbiome (3, 4). However, the majority of microbiome studies are focused on
bacterial populations, missing important viral components which is also known as virome
(5). It is estimated that the number of viruses in the host is around ten times more than the
host-inhabited bacterial population (6). Interestingly, virus or bacteriophages significantly
influence bacterial population or their physiology in the host (7). Studies also indicated
that virulence factors in bacteria are acquired from their bacteriophage (8–10). The overall
influence of the virus on the host body and ecosystem is very vast and complex. But
the current topic focuses on the interactions between vertebrate hosts like animals with
their viruses.

The majority of viruses are commensal in the host’s
body

The presence of virus in the host body does not always cause diseases. A majority of
viruses present in the host body are commensal (11). Host body contains both DNA and
RNA virus (12, 13), and these viruses can be localized on the skin (14), peripheral blood
(15, 16), or internal organs such as the lungs, liver, spleen, kidney, or heart (17). The number
and type of virus in the virome are greatly influenced by the environment, dietary practices,
and their location in the body (18, 19). Despite their importance in shaping the overall health
of the host, we have very limited information about our virome and its interactions with host
cells. Themajority of virome study is limited to metagenomic sequencing, which is trying the
uncover the least explored part of virome or “viral dark matter” and its potential role in the
evolution and shaping of the overall health and immune system of the host (20, 21).
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Virus and its symbiotic relation with its
host

There are several pieces of evidence showed that the virus and
its host can benefit each other. A study with tropical panic grass,
fungal endophyte, and fungal virus showed a three-way symbiosis.
Where virus-infected fungus confers heat tolerance to both, tropical
panic grass and fungal endophyte. Virus-free fungi were unable to
confer heat tolerance, but heat tolerance was restored after the virus
is reintroduction to fungi (22). Similarly, a study with parasitoid
wasp showed obligatory mutualism between virus and parasitoid
wasps. Successful development of the parasitoid wasp’s egg within
the host depends on the presence of the virus which suppresses the
host’s immune response (23).

Herpesvirus are important virus family which infect humans
and animals and they could cause lifelong latency in the host
(24–26). It is found that herpesvirus latency provides resistance
to bacterial infections such as Listeria monocytogenes and Yersinia

pestis by activating the host immune response (27). Similarly,
bacteriophage plays an important role in regulating bacterial
population in the host and participating in immune system
development, and maintaining immune homeostasis in the body
organ such as in the intestine (28–30).

Long-term interactions between the
virus and its host left traces in the host
genome

The genome of humans and animals encodes from a few to
100,000 different genes (31, 32). It is estimated that around 8% or
around one-tenth of the human gene contains pieces of viral DNA
(33). These viral DNA fragments incorporated in the host is termed
as endogenous viral elements (EVEs) (34). EVEs provide valuable
information about their evolution over the time, their host, and
geographical distribution (35, 36).

Integration of viral DNA into the host genome is not always
harmful. Evidence showed that the presence of EVEs provides
antiviral defense against viral infection by encoding several genes
such as ribonuclease H (RNase H) or small interfering RNAs
(siRNAs) which silence the viral gene in subsequent infection
(35, 37, 38). Interestingly, several EVEs such as the Arc gene, play
an important role in cognitive function and help to store long-
term memory in the host (39, 40). Another study revealed that
host cells can use EVEs to induce immunity against tumors (41).
Cellular p53 is a nuclear transcription factor with pro-apoptotic
function. Cellular stresses such as DNA damage activates p53
and activated p53 promotes cell cycle arrest that allows time
for DNA repair or causes apoptosis in the damaged cells (42).
Studies showed that p53 activation also increased the expression
of EVEs and EVE’s expression induced host immune response in
the form of higher IFN production, increased T-cell activity, and
reduced allograft tumor (41). However, the presence of EVEs is
not always beneficial to the host. Studies showed that individuals
with inherited chromosomally integrated human herpesvirus 6
(iciHHV-6) gene are more susceptible to angina, a type of chest

pain that happens when heart does not receive enough oxygen-rich
blood (43).

Host-virus interaction and its outcome

Translocation of virus particles to the host cell is the first
step in virus infection. This translocation is initiated by the
interaction of distinct molecules present on the outer layer of
the virus with specific receptors on the host cell (44). This initial
interaction provides signals to the cells which further enhance the
virus translocation to the host cell either by receptor-mediated
endocytosis or membrane fusion, these mechanism varies widely
among different virus families (45, 46). In the host cell, virus
releases its genetic material for replication by fusing the viral
capsid with the host cell’s phagosome or creating pores in the
viral capsid by utilizing cellular or viral machinery (47, 48).
During this process host immune system recognize the virus by
its pattern recognition receptors (PRRs) which specifically interact
with pathogen-associated molecular patterns (PAMPs) present in
the virus. This recognition triggers a cascade of innate immune
responses, including the secretion of interferons/cytokines and the
activation of immune cells (49). The outcome of this host–viral
interaction depends on several host or viral factors (50). These
outcomes can result in the clearing of virus by host immune
response (51–53), or host immune evasion by virus (54), or
establishing acute, chronic, persistent, or latent infection (55–57).
It is found that a high mutation rate in viruses helps them to
evolve, survive and escape from the host’s immune response. While
these changes may also be responsible for shifting in virus host
range (58–60).

Damage in viral disease

The outcome of viral disease is greatly influenced by viral
factors such as virulence and host factors like susceptibility.
Broadly, damage in the host during virus infection can be divided
into two, (A) direct damage by the virus when virus replicates
in the host cell and cause damage in cells either by hijacking
cellular machinery, changing cellular physiology, or damaging
cellular components by its structural or non-structural proteins
(61–63). (B) The virus can also cause indirect damage to the
host cell by virus-induced hyperinflammation (64, 65). Virus-
induced uncontrol-hyperinflammation has been associated with
higher mortality in several virus infections (66–68).

Cellular factors in restricting
virus replication

Host cells have several inherent antiviral factors such as
antiviral proteins which control virus replication. A few of the
antiviral proteins are APOBEC3G (Apolipoprotein B mRNA
Editing Enzyme, Catalytic Polypeptide-like 3G), ZAP (Zinc Finger
Antiviral Protein), SAMHD1 (SAM domain and HD domain-
containing protein 1), 2′-5′-Oligoadenylate Synthetase (OAS), Mx
Proteins and Tetherin, which is also known as BST-2 (bone marrow
stromal antigen 2) (69–75).
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APOBEC3G exhibits its antiviral effect by inducing
hypermutation in viral genomes. APOBEC3G catalyzes the
deamination of cytosine (dC) to uracil (dU) in single-stranded
DNA, leading to non-functional viral DNA and prevents virus
replication (76). While ZAP degrades the viral RNA by binding
with its poly A tail. This binding leads to deadenylation of viral
RNA and viral RNA is further degraded by exosomes (77). ZAP
also selectively recognizes CG-rich viral RNAs and degrades viral
RNA by exosomes (70). Additionally, ZAP could suppress virus
replication by inducing an antiviral immune response in the
host (78).

SAMHD1, another cellular protein exhibits its antiviral effect
by hydrolyzing nucleotide triphosphates (dNTPs), dNTPs are
needed by the virus to synthesize its genome while the lower
concentration of dNTP in cells suppress the virus replication (79).
However, a recent study also showed that SAMHD1 can suppress
the antiviral host immune response by inhibiting NF-κB (Nuclear
factor kappa-light-chain-enhancer of activated B cells) activation,
suppressing IFN-I (type-I interferons) response and potentially
interfering in virus-specific antibody production (80).

2′-5′-Oligoadenylate Synthetase (OAS), activates RNase L,
an endoribonuclease that cleaves single-stranded viral RNAs
and suppresses its replication (81), while Mx proteins, upon
activation, interact with viral nucleocapsid proteins and disrupts
viral replication complexes and thus inhibits the viral life cycle (82).
Tetherin, on the other hand, exhibits its antiviral effect by physically
“tethering” newly synthesized virus and present its release (83).
Above mentioned proteins are a few of the cellular proteins which
play an important role in suppressing virus replication. Potentially,
there may be numerous more cellular molecules including small
interfering RNA (siRNA) which suppress virus replication in the
host cell. Thesemolecules need to be studied in detail to understand
the underlying pathways and their role in host-virus interactions in
suppressing virus replication.

Summary

Host-virus interaction studies provide valuable information
about viruses, and their molecular characteristics which facilitate
them to mutate, change their virulence, and shift host range.
Additionally, these studies help in understanding the effect

of virus infection on host cells, cell organelles, and the
physiological/metabolic activity of the cells. These studies also help
in identifying the cellular molecules which could have antiviral
properties. These molecules could be used to suppress the broad
range of pathogenic viruses.

Author contributions

MR:Writing—original draft, Writing—review and editing. NT:
Writing—original draft, Writing—review and editing.

Acknowledgments

Authors thank Dr. Christopher Chase, South Dakota State
University, Brookings, SD for providing valuable information for
writing this article. We also thank all the authors who contributed
their valuable work to this Research Topic. We appreciate all the
reviewers and Research Topic editorial team for their valuable
time in reviewing the manuscripts and providing constructive
comments. We also want to show our gratitude to the editorial
board for approving this topic and we hope this Research Topic
will further improve our understanding of host-virus interaction,
its effect host body, and on the virus.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Bohálová N, Cantara A, Bartas M, Kaura P, Štastný J, Pečinka P, et al. Tracing
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