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Porcine circoviruses (PCVs) are members of the genus Circovirus of the family 
Circoviridae, and four species of PCVs have been discovered and named PCV1–
PCV4, respectively. With the first report of PCV3 in America in 2016, the pathogenic 
variant was found to be associated with various clinical features, called porcine 
circovirus associated disease (PCVAD), including multisystemic inflammation, 
porcine dermatitis and nephropathy syndrome (PDNS), reproductive disorders, 
respiratory or digestive disorders. Increasing experimental data have shown 
that PCV3 is widespread around the world, but the failure of virus isolation 
and propagation has put obstacles in the way of PCV3 research. Moreover, a 
large number of reports demonstrate that PCV3 usually co-infects with other 
pathogens in pigs. Thus, whether PCV3 alone causes clinical manifestations 
needs to be  fully discussed. In addition, the host cell immune response was 
activated during PCV3 infection, and PCV3-encoded proteins may regulate 
immune responses to facilitate its replication. An in-depth understanding of PCV3 
pathogenesis and immune regulation strategies is critical for PCVAD prevention. 
In this review, the advances in pathogenicity and innate immune modulation of 
PCV3 were summarized, which could deepen the understanding of this virus and 
PCV3-related diseases.
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1 Introduction

Porcine circoviruses (PCVs), the smallest known DNA viruses in mammals, are members 
of the genus Circovirus of the family Circoviridae. At least four species of PCVs have been 
discovered in pigs and named PCV1 to PCV4, respectively, based on the genome homology 
analysis. In the 1970s, PCV1 was first found in PK-15 cells and then proved non-pathogenic in 
subsequent studies (1, 2). Subsequently, a variant strain of PCV2 was found in North America 
and Europe and thought to be responsible for multiple clinical presentations, such as post-
weaning multisystemic wasting syndrome (3–5). Therefore, extensive studies were carried out, 
and great progress was made on viral pathogenesis and immune regulation mechanisms in the 
following 20 years. In 2016, a new virus, causing similar symptoms to PCV2, was reported and 
named PCV3 (6). In addition, PCV4 was recently discovered in 2019 (7), and there is only 
limited information about the pathogenesis and clinical implications of PCV4.

PCV3 was initially detected in the United States in pigs suffering from porcine dermatitis 
and nephropathy syndrome (PDNS) using high-throughput sequencing technology (6). 
However, numerous retrospective studies suggest that the pathogen has been circulating among 
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pigs for a long time in Asia, Europe, South America, and North 
America (8–14). Notably, most of the PDNS pigs are PCV3-positive 
but not PCV2, and the PDNS-like disease in piglets was successfully 
reproduced based on an infectious PCV3 DNA clone (15), indicating 
PCV3 is sufficient to cause PDNS solely, and much investigation 
should be done to unveil its biology and pathogenesis. Moreover, 
PCV3 was highly prevalent in wild boars (16–21). Thus, the wild 
populations may be an important reservoir and could represent a 
concrete risk of spreading to domestic populations.

In general, all PCVs share a similar morphology, consisting of a 
close circular single-stranded DNA genome (22). The genome 
consisted from about 1760 nucleotides (nt), 1767 nt, and 2000 nt in 
PCV1, PCV2, and PCV3 (23), respectively. In addition, the sequence 
of PCV3 was only 48% homologous with PCV2, although they share 
similar genome morphologies (24). Further phylogenetic analysis also 
demonstrated the low similarity between PCV3 and other PCVs, such 
as 45.5 and 43.2% for PCV1 and PCV4, respectively (25). Recent 
studies reported that the novel PCV3 might originate from bats due 
to its high homology to some bat circoviruses at both nucleotide and 
amino acid levels (26, 27).

PCVs consist of three major open reading frames (ORFs) arranged 
in the strands of the replicative form (28). ORF1 is located on the 
positive strand and identified as the most conserved region of the 
circovirus genome (29), encoding for Rep and Rep′ proteins involved 
in virus replication initiation (30); ORF2 is located on the negative 
DNA viral strand and encodes the only structural protein (Cap), 
which is the most immunogenic viral protein and possesses multiple 
functions (31); ORF3 is oriented in the negative strand, which encodes 
for a non-structural protein regulating host cell apoptosis in PCV1 
and PCV2 (32, 33), while its function remains unknown in PCV3 (6, 
34). Traditionally, PCV3 is divided into three main clades (PCV3a, 
PCV3b, and PCV3c) based on the amino acid variations (35, 36), and 
PCV3a could be further classified into subclades, including PCV3a-1, 
PCV3a-2, and one intermediate clade (PCV3a-IM) (26, 27, 35, 36).

Since the first report of PCV3, it has been widely detected in the 
lungs, heart, kidneys, and other organs or tissues (15) and has caused 
a variety of clinical manifestations (37). The current research proves 
that various confounding factors affect the clinical manifestations and 
pathological changes of diseased pigs (38). PCV3 can replicate in 
almost all tissues, especially immune cells, where it causes targeted cell 
damage such as cell apoptosis and immune suppression. In addition, 
PCV3 infection could significantly upregulate pro-inflammatory 
cytokines and cause multisystemic inflammation in piglets and sows 
(15). Therefore, the interplay between PCV3 infection and immune 
responses is critical to its pathogenicity. In this review, we will comb 
and organize the pathogenicity and immune modulation mechanisms 
of PCV3.

2 PCV3 pathogenicity and its 
associated diseases

A series of clinical symptoms caused by PCVs are collectively 
known as porcine circovirus-associated diseases (PCVAD). In the past 
20 years, PCV2 has been regarded as the main cause of PCVAD. PCV2 
mainly proliferates in lymph nodes and induces immune cell apoptosis 
to decrease the immunity of infected pigs. Exciting progress has also 
been made in PCV3 pathogenicity. Jiang et al. successfully reproduced 

PDNS-like disease based on PCV3 alone or PCV3 in combination 
with an immune stimulator in animals (15). It is clear from the 
evidence that PCV3 infection leads to a variety of clinical and 
pathological symptoms, including PDNS, reproductive disorders, 
systemic inflammatory diseases (39), respiratory disorders (34, 40, 
41), diarrhea (40, 42), and central nervous system signs (43, 44). Here, 
we describe the recent advances in the most consistent clinical signs 
associated with PCV3 infection (Figure 1).

2.1 Multisystemic inflammation

PCV3 was initially discovered in sows and aborted fetuses that 
had PDNS-like clinical symptoms and reproductive dysfunction (6). 
PDNS is mainly harmful to nursery and finishing pigs, with the 
occasional onset of piglets. The disease has a low mortality rate but a 
high incidence and a long course and is clinically characterized by 
irregular erythema of multifocal papules and superficial dermatitis. 
Currently, studies have shown that PDNS-like disease is usually the 
most severe form of the disease that is present in pigs that are naturally 
and experimentally infected with PCV3 (15, 46, 47). Typical PDNS 
lesions such as necrotizing vasculitis and glomerulonephritis could 
be observed in sows (48, 49). PCV3-infected sows and aborted fetuses 
showed multiorgan inflammation (39) and multisystemic vasculitis 
with a prominent skin and kidney tropism caused by type III 
hypersensitivity reactions (50). A wide range of vasculitis, from local 
to systemic, has been reported in PCV3-infected pigs (6, 15, 39, 44, 
46, 51). Furthermore, vasculitis has also been found in the heart, 
kidney, and intestinal tissues of PCV3-inoculated pigs (51, 52). In 
addition, hepatic pathology, such as granulomatous lymphadenitis, 
has been demonstrated in the PCV3 challenge experiment (15, 53). 
Moreover, a high level of chemokines and pro-inflammatory 
mediators was detected in the PCV3-infected pigs (15), and it may 
be responsible for multisystemic inflammation, and host immune 
responses, and the observed lesions described above.

2.2 Reproductive disorders

Although PCV3 did not always lead to symptomatic signs in sows, 
the virus was widely colonized in gilts, weak-born piglets, and in the 
fetuses and placenta (51, 54–58), PCV3 could also be transmitted 
vertically through the colostrum, semen, and placenta (59). 
Reproductive disorder is a disease that reduces the performance of 
sows, including infertility, abortion, stillbirth, and weakness or 
neonatal malformation (60), affecting the global pig industry’s health 
development. Existing studies have shown that high levels of PCV3 
are detected in pig farms with reproductive failure by qPCR testing 
(40, 61), and high PCV3 titers could be found in the aborted fetuses 
(46, 57), indicating that PCV3 infection could directly affect the 
fetuses (44). Although PCV3 can be detected in sows with or without 
reproductive disorders, the positive rates of PCV3 are much higher in 
reproductive failure sows than those in healthy sows via qPCR assays 
(61). In addition, high PCV3 viral loads were detected using qPCR in 
the various tissues, including the fetal heart, thymus, lymph nodes, 
and placenta, suggesting additional tissue tropism of PCV3 (62). 
Interestingly, the virus could also be detected in multiple tissues of 
mummies or stillborn fetuses, such as the trophoblast cells, the 
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placenta, and the umbilical cord (21, 44, 62, 63). Thus, infection of the 
fetuses was thought to contribute to the reproductive failure induced 
by PCV3. However, the mechanism underlying PCV3-induced 
reproductive failure remains unclear and requires further study.

2.3 Respiratory or digestive disorders

Pigs, especially weaned piglets, infected with PCV3 typically 
exhibit various clinical symptoms, including respiratory diseases and 
digestive disorders (6, 35, 40, 64). However, the association between 
PCV3 circulating status and clinical respiratory manifestation is not 
well understood. Zhai et al. systemically analyzed and found that the 
PCV3 positive rate was positively correlated with respiratory 
symptoms (40). Similarly, a much higher percentage of diarrheal-
weaned pigs were PCV3 positive than non-diarrheal ones (40). 
Another report reached a similar conclusion, there was a close 

association between PCV3 infection and digestive or respiratory 
diseases (35). Although the results above proved that PCV3 was 
potentially associated with swine respiratory disease and diarrhea, 
direct evidence was imperative. To answer this question, specific-
pathogen-free (SPF) piglets were intranasally inoculated with a PCV3 
virus obtained from the infectious DNA clone by Jiang et al. and they 
found that the virus infection increased respiratory disease rates (15). 
A variety of clinical respiratory symptoms were observed in this study, 
including coughing, sneezing, and respiratory distress.

Previous studies proved that PCV3 was able to replicate in the 
lungs and that virus infection could activate the innate immune 
system and trigger the release of inflammatory cytokines (39, 65). 
Clinical respiratory signs are usually accompanied by interstitial 
pneumonia and pleuritis, as well as other types of pulmonary lesions 
(66). Pneumonia will lead to alveolar congestion and edema, and lots 
of inflammatory secretions in the alveolar cavity will affect oxygen 
exchange. However, there are some conflicting results. The pigs only 

FIGURE 1

The virion structure of PCV3 and its clinical diseases or signs (A) PCV3 has a single-stranded, circular DNA genome, and the capsid consists of 12 
pentagonal, trumpet-shaped pentamers. (B) The PCV3 genome is about 2000-nt in length and contains three major ORFs: ORF1, ORF2, and ORF3 
(45). (C) A variety of clinical and pathological symptoms are associated with PCV3 infection: ① skin: multifocal papules, macules, and/or superficial 
dermatitis; ② kidney: lymphoplasmacytic interstitial nephritis and vasculitis; ③ reproductive disorders: abortion, stillbirth, and mummified fetuses; ④ 
lung: coughing, sneezing, and respiratory distress associated with lymphoplasmacytic interstitial pneumonia; ⑤ digestive disorders.
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demonstrated subclinical infection without any pathological lung 
changes and showed no evidence of PCV3 replication in the lung 
tissue (51, 52). Another study showed that rescued PCV3 virus 
infection in Kunming mice did not affect the tissues or organs of either 
control or infected groups (67). At the moment, there is not enough 
information regarding the factors contributing to the lung tropism 
and pathogenesis of PCV3.

A report shows that there is a tendency for diarrhea in PCV3-
positive suckling and weaned piglets (42). Based on 
immunohistochemistry, it was determined that the PCV3 antigen was 
present in all organs, including the intestinal tract (65, 68). 
Consistently, the infected pigs developed diarrhea, with degeneration 
and necrosis of the small intestinal epithelium in the PDNS-like 
lesions study (15). The piglets inoculated with PCV3 showed a high 
level of PCV3-positive cells within their small intestine tissues (69). 
Experimental infection studies revealed that piglets inoculated with 
PCV3 showed a series of lesions in the small intestine, including villus 
and crypt atrophy, eosinophilic and lymphocyte infiltration, mucosal 
epithelial cells and lymphocyte necrosis, and small numbers of plasma 
cells (42, 69). Gut microbiota is made up of trillions of bacteria and 
plays critical roles in modulating host immunity; changes in the 
microbiota are closely linked to the progression of diseases. Therefore, 
it may be an effective way to prevent PCV3 infection through the 
regulation or changes of the gut microbiota.

3 Immune modulation of PCV3

PCV3 has been widely reported around the world since its 
discovery and is characterized by typical PDNS lesions. Unfortunately, 
only one successful PCV3 isolation has been recently reported in cell 
culture (70), and there may be various unknown factors associated 
with the disease. Increasing results have shown that PCV3 triggers the 
host cells’ immune response when invading host cells (Figure 2). High 
levels of the PCV3 genome could be found in aborted and weak-born 
piglets, especially in the thymus and lymph nodes (62). Moreover, a 
few animal detections found that PCV3 exhibits persistent infection 
(18) or asymptomatic infection (63). Overall, the virus tends to 
replicate in almost all tissues in pigs, and strongly prefers to replicate 
in immune cells, and causes targeted cell damage.

3.1 Innate immune response

3.1.1 Type I interferon response
A diverse range of defensive strategies are employed by different 

viruses to battle innate immunity. However, the immune evasion 
strategies of PCV3 are not fully understood. It has been reported that 
Cap protein could significantly inhibit the activity of the 
IFN-stimulated response element (ISRE) by interacting with the 
transcription (STAT2) transactivation domain (56, 71). Several studies 
have demonstrated PCV2 not only activates cGAS/STING and 
RIG-like receptor (RLR) signaling, but it also increases IFN-β 
expression, which promotes the proliferation of PCV2. Meanwhile, in 
this process, surprisingly, there seems no appearance to prevent its 
replication through the NF-κB signaling pathway (72–74). These 
findings are consistent with those in the studies on PCV3. It has been 
reported that the PCV3 Cap protein inhibits the type I  interferon 
signaling pathway by inhibiting ISRE promoter activity. Mechanically, 

Cap interacts with the transactivation domain of STAT2 and binds to 
ISRE to prevent the binding of STAT2 and ISRE (71). Therefore, PCV3 
could evade the host’s innate immunity mediated by IFN. In addition, 
PCV3 Cap can also interact with G3BP1 and inhibit the induction of 
type I  interferon (75). According to proteomic analysis, PCV3 
infection in SPF piglets infected with infectious clones of PCV3 
increased several IFN-related factors, such as IFIT3, ISG15, and so on, 
in lung tissue (47). Another study performed on HEK-293 T cells 
found that, though it was not observed that PCV3 Cap contributed to 
the controlled expression of IFN-β, the mRNA level of RIG-I/MDA5 
could significantly be increased by Cap protein in the RLRs pathway 
(76). Therefore, these studies indicate that the regulation of the type 
I interferon response may be an important strategy for host immune 
escape by PCV3. Moreover, a recent paper reported that the PCV3 
Cap protein is involved in cell autophagy, another mechanism thought 
to be  effectively used by viruses to enhance their replication and 
persistency (77). Mechanically, the protein induced complete 
autophagy by inhibiting the phosphorylation of the mammalian target 
of rapamycin in HEK-293 T cells, including the formation of 
autophagosomes and autophagic vesicles, as well as the transformation 
of LC3-I to LC3-II (78). Of course, the ubiquitin-proteasome pathway 
is also involved in this process. In all, information in this area is 
necessary to understand the role of pathogenicity and innate 
immunity during PCV3 infection.

3.1.2 Inflammatory responses
According to previous studies, a close association exists between 

PCV3 and multisystem inflammation, as well as respiratory disease, 
diarrhea, myocarditis, encephalitis, periarteritis, and so on (6, 34, 39, 
44, 51, 67, 68, 79, 80). Studies have shown that uncontrolled 
inflammatory responses might contribute to significant damage in 
PCV3-infected pigs (51, 79). PCV3 infection was demonstrated to 

FIGURE 2

The immune modulation of PCV3. The summary of the major 
immune modulations of PCV3. (A) PCV3 Cap interacts with the 
transactivation domain of STAT2 and inhibits ISRE promoter 
activation induced by IRF9-S2C, helping PCV3 to escape type 
I interferon-meditated host innate immunity. (B) PCV3 Cap interacts 
with G3BP1 to prevent cGAS from recognizing DNA, affecting type 
I interferon production via the cGAS-STING pathway. (C) PCV3 Cap 
protein induces NF-κB activation and upregulates the expression of 
pro-inflammatory cytokines.
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have regulatory effects on IL-8 expression by evaluating the innate 
immune response in vivo (52). Significantly, higher levels of 
pro-inflammatory mediators and chemokines were observed in 
PCV3-infected piglets (15). In a recent study, PCV3 Cap was shown 
to be a critical factor in activating NF-κB signaling by upregulating 
pro-inflammatory mediators such as RIG-I and MDA5 in HEK-293 T 
cells (76). This may provide a basis for the pathogenesis of PCV3 and 
the innate immunity of the host. Therefore, the induction of a chronic 
pro-inflammatory state of disease results in dysregulation of innate 
immunity in PCV3-infected pigs, which may provide a possible 
explanation for the subsequent clinical signs. PCV3 Cap protein 
appears to activate some signaling pathways, but the mechanism is still 
unclear and needs further investigation.

3.2 Cell-mediated immune responses

As a consequence of the innate immune subversion, reduced 
T-cell response, compromised antigen presentation ability, and the 
imbalance of immunosuppressive cytokine secretion, the adaptive 
immune response against PCV2 was severely influenced (81). For 
example, the proteins of PCV2 (such as Cap and Rep) stimulate 
antigen-specific IFN-γ secreting cells (82–84). Meanwhile, the 
infection of PCV2 could directly affect immature thymocytes, such as 
by inhibiting thymocyte selection, which results in disturbances of 
helper T cell immunity (85). Even when the immune response to 
PCV2 is low, pigs still display protective clinical symptoms, indicating 
that cell-mediated immune responses, specifically Th1-mediated 
responses, play crucial roles in protective immunity. A study using 
recombinant PCV3-infected conventional weaning piglets and 
PBMCs found that they were incapable of responding to mitogen 
stimulation, but it is unclear whether this effect is permanent or 
whether energy of lymphocytes can be reversed (15). As a result of 
proteomic analysis of PCV3-infected pigs, it was found that both 
SLA-I and II loci in lung tissue were significantly upregulated (47). At 
the same time, it has been reported that most of the influx of 
lymphocytes is associated with T-cell populations, regardless of 
peripheral response to PCV3 (52). However, a more detailed study of 
PCV3-mediated cell immunity is necessary to delve deeper into the 
pathogenesis of PCV3.

3.3 Immunopathogenesis

All the pathogenic PCV types are widespread and have been 
detected in both healthy and sick pigs. They have a variety of clinical 
manifestations and often cause chronic systemic infections. Current 
research results have suggested that the homeostasis disorder of the 
immune system may be the key factor leading to the pathogenesis of 
PCV infection. In PCV2 infection experiments, the virus could 
interact with components of the immune system, including immune 
cells, to impair innate and adaptive immunity. Dysregulation of the 
immune response can lead to a series of serious consequences, 
including rapid upregulation of pro-inflammatory factors, the 
formation of immune complexes, decreased antigen presentation 
ability, and necrosis of lymphocytes and immune cells. For example, 
several studies have demonstrated that the infections of PCV3 and 
PCV2 are connected to the immune complexes’ formation (15, 86). 

Although there are few reports on the immunosuppression of PCV3 
to date, considering the similarity of clinical symptoms and 
pathogenicity between PCV3 and PCV2, we believe that PCV3 may 
also have strong immunosuppression, especially in the case of 
co-infection with other viruses, which is also worth exploring in the 
following study.

4 Others

4.1 Co-infection

In recent years, multi-pathogen mixed infection or co-infection 
has become more common in clinical practice, especially with a 
variety of pig viruses, including PCVs. Co-infection not only leads to 
more serious diseases than any single virus infection but also has a 
negative impact on the pig immune system and aggravates the 
complexity of pig farm diseases. There are reports that the co-infection 
rates of PCV3 with porcine reproductive and respiratory syndrome 
virus, classical swine fever virus, pseudorabies virus, porcine epidemic 
diarrhea virus (PEDV), and porcine parvovirus (PPV) were 36.36, 
6.92, 14.53, 27.27, and 74.2% in some pig farms, respectively (87–91), 
indicating that the co-infection of PCV3 with other pathogens is 
common in pig farms. Moreover, co-infection of PCV2 and PCV3 was 
mostly reported in swine farms, although they share a similar genome 
and belong to the same genus. A survey of serum samples from 
clinically healthy pigs from major European countries showed a 3% 
positive rate of PCV2–PCV3 co-infection in fattening pigs (92). And 
a report found that the PCV2 and PCV3 co-infection rates gradually 
increased from 3.4% in 2016 to 16.1% in 2018 in the Midwest of the 
United States (93). In addition, studies have reported that the positive 
rate of PCV2 and PCV3 co-infection in different regions of China 
ranges from 6.78 to 19.7% (94, 95). These results indicate that the 
prevalence of PCV2 and PCV3 co-infection is widespread all over the 
world and has gradually increased in recent years.

4.2 Vaccination

Vaccination has been proven efficacious and successful for the 
prevention of PCV2 and other viral pathogens. Commercial PCV2 
vaccines are mostly inactivated or Cap-based subunit vaccines, which 
provide favorable protective immunity against other types of PCV2 (68). 
ORF2 encodes the only structural protein capsid, and the identity between 
PCV2 and PCV3 was lower. Therefore, the vaccines based on PCV2 may 
only provide limited protection against PCV3. As expected, there was no 
correlation between PCV2 vaccination and PCV3 circulation, indicating 
the cross-protection between PCV2 and PCV3 was poor (96). However, 
there are no PCV3-based commercial vaccines to prevent PCV3 infection. 
Therefore, it is urgent to develop efficacious measures like universal 
antibodies and vaccines to prevent the disease in the future.

5 Conclusion and perspective

PCV3 was widespread in the world, including Asia, Europe, and 
America (8–13), according to retrospective epidemiological studies, 
although it was first discovered in pigs with PDNS-like clinical signs 
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in 2016 (6). It is generally considered to be  pathogenic and 
associated with various symptoms similar to those of PCV2, 
including PDNS, reproductive failure, and respiratory diseases. The 
symptoms described in this paper might not be the major clinical 
signs of PCV3, and there may be other contributing factors. Thus, 
the impact of PCV3 is still controversial to some extent, and further 
information is required to understand its potential pathogenicity. 
PK-15 and porcine testicular cells were susceptible to PCV2 and 
used for PCV2 isolation and propagation (97), but PCV3 mostly 
failed to be  isolated and propagated in these passage cells (70). 
Furthermore, only one PCV3 infection model was reported. 
Therefore, the restrictions above hinder the research into PCV3 
pathogenesis. Accumulating data indicated that PCV3 is often 
co-infected with PCV2, PPV, PEDV, and other pathogens, which 
not only lead to the severity of the disease, but also become a 
serious threat to the healthy development of the pig industry system 
(56, 58, 98). Moreover, PCV3 infection has a low mortality rate but 
a high morbidity and a long course of disease, which may be a great 
threat to the pork industry. Thus, it is imperative to further 
systematically evaluate and investigate the co-infection prevalence 
and pathogenicity of PCV3 with other pathogens and to develop an 
effective vaccine against PCV3.
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