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Developing and evaluating novel diagnostic assays are crucial components of 
contemporary diagnostic research. The receiver operating characteristic (ROC) 
curve and the area under the ROC curve (AUC) are frequently used to evaluate 
diagnostic assays’ performance. The variation in AUC estimation can be quantified 
nonparametrically using resampling methods, such as bootstrapping, and then 
used to construct interval estimation for the AUC. When multiple observations are 
observed from the same subject, which is very common in veterinary diagnostic 
tests evaluation experiments, a traditional bootstrap-based method can fail to 
provide valid interval estimations of AUC. In particular, the traditional method 
does not account for the correlation among data observations and could result 
in interval estimation that fails to cover the true AUC adequately at the desired 
confidence level. In this paper, we proposed two novel methods to calculate the 
confidence interval of the AUC for correlated diagnostic test data based on cluster 
bootstrapping and hierarchical bootstrapping, respectively. Our simulation studies 
showed that both proposed methods had adequate coverage probabilities which 
were higher than the existing traditional method when there were intra-subject 
correlations. We  also discussed applying the proposed methods to evaluate 
a novel whole-virus ELISA (wv-ELISA) diagnostic assay in detecting porcine 
parainfluenza virus type-1 antibodies in swine serum.
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1 Introduction

In pursuit of the One Health initiative, which aims to safeguard the health and well-being 
of humans and animals, researchers have made substantial efforts to develop new diagnostic 
tests through animal and human studies. A receiver operating characteristic curve, or an ROC 
curve, is a useful graphical tool to visualize, assess, select, and compare tests in diagnostic 
evaluation and decision-making (1–4). The ROC curve is obtained by plotting sensitivity against 
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1-specificity at various threshold settings, where sensitivity is also 
known as the true positive rate and specificity the true negative rate 
(1). The area under the curve (AUC) is widely used as an index 
associated with an ROC curve. In practice, many experiments 
examining the efficiency of new diagnostic tests, especially veterinary 
experiments, involve taking multiple observations from the same 
subjects, resulting in correlated data structures (5–8). A traditional 
bootstrap-based method may fail to provide valid interval estimations 
of AUC. In particular, the traditional method does not account for the 
correlation among data observations and would result in interval 
estimation that does not cover the true AUC at the desired confidence 
level. Due to the popularity of such experiments with repeated 
measures design, there is an urgent need to develop new 
methodologies to calculate the confidence interval of the AUC for 
correlated data with a legitimate coverage level.

For a diagnostic test with more than two possible test outcomes, 
a cutoff value can be selected to dichotomize the original test outcome 
into a binary positive or negative result. As the cutoff value varies 
through all possible choices, the sensitivity and specificity change 
accordingly, thus forming the ROC curve. By plotting the ROC curve, 
researchers can visually compare the tradeoff between the sensitivity 
and the specificity of the corresponding diagnostic test and determine 
the effectiveness of the test. ROC analysis has been extensively used in 
continuous and ordinal scaled diagnostic test evaluation (4, 9). The 
AUC can be interpreted as the probability that a random abnormal 
subject has a diagnostic test outcome that is worse than a random 
normal subject. Empirical estimation of the AUC can be calculated by 
the trapezoidal rule for an empirical ROC curve, which is also known 
as the concordance C-statistic and related to the Wilcoxon-Mann–
Whitney U-Statistic (3). The ROC curve and its AUC do not depend 
on specification of a cutoff value and can be  considered as 
comprehensive measures of the discriminating ability of a non-binary 
diagnostic test.

To construct interval estimation of the AUC, e.g., a 95% 
confidence interval (CI) of AUC, a nonparametric bootstrap method 
is frequently used. The nonparametric bootstrap method constructs 
bootstrap samples by sampling with replacement from the original 
dataset and was first introduced by Bradley Efron (10). Unlike the 
conventional asymptotic approach based on large sample sizes, the 
bootstrap method is effective in its lack of assumptions regarding the 
underlying data distribution. A traditional bootstrap method 
resamples observations independently with replacement from the 
original data, without consideration of any correlation structures. For 
example, the pROC package, currently one of the most frequently 
used tools for analyzing ROC curves, can perform confidence interval 
estimation with such traditional bootstrap methods (11). Since its first 
release on BMC Bioinformatics in March 2011, the pROC package has 
been cited over 6,500 times (11). However, the traditional 
nonparametric bootstrap method ignores potential correlation 
structure in data and thus can fail to produce legitimate interval 
estimation when multiple observations are taken on the same subject.

Various bootstrap methods have been proposed for datasets with 
complicated structures, including correlated data. Field and Welsh 
discussed the topic of bootstrapping clustered data in 2006 (12). A 
cluster bootstrap method is performed by bootstrapping clusters using 
simple random resampling with replacement without changing the 
observations within the selected clusters. This is a simplified version 
of the randomized cluster bootstrap discussed by Davison et al. (13). 

Alternatively, a hierarchical bootstrap method creates new bootstrap 
datasets by resampling with replacement at multiple levels, usually 
from the highest level down to the lower level. Hierarchical bootstrap 
has been applied successfully to multi-level datasets and outperforms 
the traditional statistical tests (14).

Although bootstrap methods have been developed for clustered 
or hierarchical data structures, these bootstrap methods have not been 
applied to ROC analysis for correlated diagnostic test data. Besides 
nonparametric methods, the correlation among repeated 
measurements from the same subjects can be alternatively modeled 
using mixed models with subjects as a random effect. Liu et  al. 
proposed to test statistical significance related to the AUC of an ROC 
curve under a repeated measures design through a generalized linear 
mixed model (GLMM) (15). The package of Liu et al. is yet under 
development; thus, we  cannot implement the method (through 
communication with the author). There is a need to develop new 
methodologies and tools to calculate the confidence interval of the 
AUC for correlated data with a legitimate coverage level and make 
them available. Here we focus on developing nonparametric methods 
based on the concept of bootstrapping (resampling).

In this paper, we considered the correlation structure caused by 
the clusters in ROC analysis and propose to utilize the cluster 
bootstrap and the hierarchical bootstrap methods to achieve legitimate 
interval estimation of the AUC. We  evaluated the impact of this 
correlation on the ROC analysis by comparing three nonparametric 
bootstrap methods:

 1. Traditional bootstrap method.
 2. Cluster bootstrap method.
 3. Hierarchical bootstrap method.

Simulation studies were conducted to compare the performances 
of the three methods in terms of coverage probability and 95% CI 
width of AUC. A dataset from a real diagnostic study that developed 
and compared three assays to detect porcine parainfluenza virus 
type-1 antibody in swine serum was used to demonstrate the 
application of the proposed methods.

2 Materials and methods

2.1 Sample notations and assumptions

In diagnostic trials, it is frequently observed that multiple 
observations are often collected from each of the many subjects. Let 
Yij denotes the jth observation from the ith subject, where i = 1, 2, 3, …, 

K, j = 1, 2, 3, …, ni. In total, there are N = 
i

K
in

=
∑

1
observations from 

K subjects.

2.2 Traditional bootstrap method

The traditional bootstrap method resamples at the observation 
level and is the method implemented in the pROC package. 
Traditional bootstrap ignores the correlation of observations from the 
same subject. This method would be appropriate if we can assume N 
observations from K subjects are independent of each other, though 
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multiple observations could come from the same subject in our 
example scenario. Nonparametric bootstrap will be performed on N 
individual observations by simply resampling with replacement. Each 
time, the same number of observations will be selected, which is N.

The nonparametric bootstrap procedure is:

 1. Assume we  have a vector x = (x1, …, xN)T of length N to 
represent all the observations in the original sample of data. 
Sampling with replacement involves forming a new vector 
x∗ = (x1*,…, xN*)T, where each xi* is independently sampled 
from x with equal probability given to each observation, i.e., P 
(xi* = xj) = 1/N for all i and j.

 2. The bootstrap sample of a replicate will be  all the 
observations sampled.

 3. One thousand bootstrap samples will be generated, and the 
95% CI for AUC will be  calculated based on the 
bootstrap samples.

2.3 Cluster bootstrap method

The cluster bootstrap method considers the correlation of 
observations from the same subject (cluster). It assumes observations 
from the same subject are correlated. For each resampled data set, K 
subjects will be  sampled from the original subject pool with 
replacement. Then, all the observations from the K subjects will 
be sampled to form the bootstrap data. The number of observations 
of each bootstrap sample may vary, as different subjects can have 
different numbers of observations.

The cluster bootstrap procedure is:

 1. We have vector k = (k1, …, kK)T of length K to represent all the 
unique subjects in the original sample of data. Sampling on 
subjects with replacement involves forming a new vector 
k* = (k1

*,…, kK*)T, where each ki* is independently sampled 
from k with equal probability given to each subject, i.e., P 
(ki* = kj) = 1/K for all i and j.

 2. For each sampled subject ki*, where ki* = kj, all the observations 
will be sampled (without randomness) from this subject kj.

 3. A bootstrap sample of data contains all such observations from 
all sampled subjects k* = (k1*,…, kK*)T.

 4. One thousand bootstrap samples will be generated, and the 
95% CI for AUC will be  calculated based on the 
bootstrap samples.

2.4 Hierarchical bootstrap method

Similar to the cluster bootstrap method, the hierarchical bootstrap 
method also considers the correlation of observations from each 
subject. Nonparametric bootstrap will be performed on K subjects 
first. Each time, K subjects will be selected from the original subject 
pool with replacement, which is the same as in a cluster bootstrap. 
Then, observations will be selected from a subject with replacement, 
with the number of observations per subject to be the same as in the 
original data for this subject. This step differs from the cluster 

bootstrap, where observations within a subject are not resampled. The 
bootstrap sample will contain all the sampled observations from all 
the sampled subjects. Similar to cluster bootstrap, the number of 
observations of each bootstrap sample may vary, as different subjects 
can have different numbers of observations.

The hierarchical bootstrap procedure is:

 1. Let vector k = (k1, …, kK)T of length K represent all the unique 
subjects in the original sample of data. Resampling on subjects 
with replacement involves forming a new vector k* = (k1*,…, 
kK*)T, where each ki* is independently sampled from k with 
equal probability given to each subject, i.e., P (ki* = kj) = 1/K for 
all i and j. Note that this step is the same as step 1 of the cluster 
bootstrap method.

 2. For each ki* from k*, where ki* = kj, nj observations will 
be  sampled from subject kj with replacement with 
equal probability.

 3. One hierarchical bootstrap sample of data will be  all the 
sampled observations from all the sampled subjects. Empirical 
ROC is calculated according to the bootstrap sampled data and 
the corresponding AUC is calculated nonparametrically.

 4. One thousand bootstrap samples will be generated, and the 
95% CI for AUC will be  calculated based on the 
bootstrap samples.

2.5 Application to a novel whole-virus 
ELISA diagnostic assay

The dataset is from a published paper that utilizes different 
diagnostic assays to detect porcine parainfluenza virus type-1 
antibody in swine serum (16). The dataset has 364 observations in 
total, including 168 porcine parainfluenza virus 1 (PPIV-1) 
unchallenged observations and 196 PPIV-1 challenged observations 
from 72 unique subjects. The animals in the challenged group were 
inoculated intratracheally and intranasally with tissue culture isolate, 
and the challenge statuses were confirmed by the RT-rtPCR test for all 
observations. Approximately 70% of the subjects have 6 observations 
each, and the remaining 30% have 1 to 5 observations each. For 
subjects with 6 observations each, 40% of the subjects only have 
unchallenged observations, which means the challenge status of the 6 
observations are all unchallenged, while 60% of the subjects have 
different challenge statuses as the first observation is unchallenged and 
the following 5 observations are challenged. Antibodies of the serum 
samples were measured by wv-ELISA as described previously (16). 
Our proposed methods based on the cluster bootstrap and the 
hierarchal bootstrap are applied to analyze this diagnostic test data 
and compared to the traditional bootstrap method. Results are 
presented and discussed in the sections below.

2.6 Validation with simulation studies

To validate and check the robustness of our methods, we conducted 
two simulation studies. The validity of the proposed methods as well 
as the traditional method were evaluated using the coverage 
probabilities of the 95% confidence interval of AUC. The coverage 
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probability is the probability that the calculated 95% confidence 
interval covers the true AUC value. A legitimate 95% confidence 
interval is expected to cover the true value of interest 95% of the time 
as the study is repeated randomly. A coverage probability much lower 
than the desired level is of severe concern as there is a high chance that 
the interval misses the true value. The coverage probability can 
be calculated as the proportion that the calculated confidence interval 
contains the true AUC value out of all simulated data sets.

The simulation parameters were estimated from the above ELISA 
application data by fitting the dataset to a linear mixed effect model:

 Y Sij ij i ij= + × + +β β τ0 1   (1)

Here Yij represents the outcome value of the jth observation from 
the ith subject; β0 is the mean value of the response variable when the 
predictor variable is 0; β1is the mean difference between the challenged 
status and the unchallenged status; Sij is the indicator function 
denotes the challenge status of the jth observation from the ith subject, 
where Sij =1 when the challenge status is challenged and Sij = 0 
otherwise; τ σi

iid
sN~ 0
2

,( )  is the random effect of the subject i, and 

ij
iid

eN~ 0
2

,σ( ) is the random observational level error term.
By analyzing the real data, the unchallenged population’s 

wv-ELISA distribution appears to follow a normal distribution, 
 β σ0 2

,( ). In comparison, the wv-ELISA distribution of the 
challenged population follows a normal distribution with a different 
mean,  β β σ0 1

2+( ), . Here σ σ σ2 2 2= +s e  is the total variation. 
According to the fitted linear mixed effect model, we estimated the 
coefficients from the analysis of the real data:
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Two simulation studies were performed to assess and compare the 
proposed methods to the traditional bootstrap method. In the first 
simulation study, the data were simulated to examine a situation 
where the challenge status of observations from the same subject may 
change over time, mimicking the structure of the real data. For each 
simulated dataset, 100 subjects were simulated, with 6 observations 
from each of the subjects. Among these subjects, P1 (=40) subjects 
were assigned to the unchallenged group, where the challenge status 
of all the observations from these subjects was always unchallenged. 
The other P2 (=60) subjects were assigned to the challenged group, 
where out of the 6 observations for each subject, the first observation 
had a status of unchallenged, and the remaining 5 observations 
were challenged.

A second simulation study was performed to examine a situation 
where the challenge status of observations from the same subject does 
not change over time. The data structure is similar to that of the first 
study except that the statuses of all 6 observations of the P2 challenged 
subjects were fixed to be challenged all the time.

The parameters for the two simulation studies were chosen based 
on the estimates from the real data analysis. Six combinations of the 
simulation parameters were considered in each simulation study, 
namely β0 0 0564= − . ; β1= 1.3873 or 0.6936; {σ σs e

2 2
, } = {0.2381, 

0.2936}, {0.01, 0.5217}, or {0.5217, 0.01}. For the mean parameters, 
we  considered the estimated effect size 1.38728, and half of that, 
0.6936. The variance parameters were set up so that we controlled each 
combination’s total variance (σ σs e

2 2+ ) to be equal. Two thousand 
datasets were simulated and analyzed for each parameter combination 
using the three bootstrap methods discussed above.

3 Results

3.1 Real data analysis

The real data was analyzed by the three methods discussed 
previously. The wv-ELISA test result was a continuous random 
variable, and the challenge status was binary, either positive or 
negative. The range for wv-ELISA results was from −0.160 to 3.515. 
We chose different thresholds between −0.160 to 3.515 to calculate the 
sensitivity and (1-specificity) and plot the sensitivity against the 
(1-specificity) to plot the ROC curve. The point estimate was 
determined by a specific threshold value and the corresponding 
sensitivity and (1-specificity). As seen in Figure 1, the estimated ROC 
curve of wv-ELISA bulged to the upper left point (0,1) and the 
estimated AUCs were high. The mean, the 95% CI, and the width of 
the AUC were calculated by the three methods and summarized in 
Table 1. As we can see from Table 1, the three methods gave similar 
mean estimates of the AUC. The 95% CI widths of AUC differed 
between each method, with the cluster and traditional bootstrap 
method having similar widths, whereas the hierarchical bootstrap 
method had the widest width. The large value of AUC implies that 
wv-ELISA is a highly effective tool in detecting porcine parainfluenza 
virus type-1 antibody.

3.2 Simulation studies results

Coverage probabilities and 95% confidence interval widths of 
AUC were evaluated for the three methods using the simulated 

FIGURE 1

Estimated receiver operating characteristic (ROC) curve of wv-ELISA 
diagnostic assay.
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datasets. The coverage probability is the probability that the calculated 
95% confidence interval covers the true AUC, which is 0.910741 or 
0.7494095, depending on the mean difference parameter (β1). The 
95% confidence interval width of AUC is the difference between the 
upper bound and the lower bound of the calculated 95% confidence 
interval. A legitimate 95% confidence interval is expected to cover the 
true parameter of interest 95% of the time as the study is repeated 
randomly. A coverage probability much lower than the desired level is 
of severe concern as there is a high chance that the interval misses the 
true parameter value.

The results of simulation studies 1 and 2 were summarized in 
Tables 2, 3, respectively. Table 2 shows that when the subject’s random 
effect was big, the traditional bootstrap method gave the lowest 
coverage probability. In particular, the coverage probability for 
traditional method ranged from 62.75% to 82.05% for settings 1,2,5, 
and 6 in simulation study 1 (Table 2). This low coverage probability is 
due to the empirical method’s neglect of the correlations between 
observations from the same subject, and therefore it is invalid to use 
when the random effect of the subject is big. However, when the 
random effect of the subject was extremely small, the traditional 
bootstrap method is legitimate since the coverage probabilities were 
close to 95%. The proposed cluster bootstrap and hierarchical 
bootstrap methods gave high coverage probabilities regardless of the 
random effect of the subject. The hierarchical bootstrap method 
always gave higher coverage probabilities than the cluster bootstrap 
method; however, we should also note that the 95% CI widths of AUC 
of the hierarchical bootstrap method were also wider than the cluster 
bootstrap method.

From Table 3, the results of simulation study 2 were very similar 
to those of simulation study 1. The cluster bootstrap method and the 
hierarchical bootstrap method gave high coverage probabilities 
regardless of the random effect of the subject as before, and the 

traditional bootstrap method only gave rational coverage probability 
when the subject’s random effect was insignificant. However, two 
results differed from simulation study 1. First, the traditional bootstrap 
method had an approximate 7% drop in coverage probabilities when 
the subject’s random effect was noteworthy. Second, there was no 
significant difference between the cluster bootstrap and the 
hierarchical bootstrap methods when the subject’s random effect was 
big. Those two differences in results can be explained as the subject’s 
random effect from the same subject will only affect the unchallenged 
or challenged populations, which increases the effect caused by it 
while implementing ROC analysis. In contrast, in simulation study 1, 
the subject’s random effect of the challenged group affected both the 
challenged and unchallenged populations in ROC analysis.

4 Discussion

The area under the ROC curve is a widely used tool to measure 
the accuracy of diagnostic tests, and there are many examples where 
it has been applied extensively in veterinary diagnostic test studies 
(17–20). However, when repeated measurements from the same 
subject have been collected, the correlation of observations from the 
same subject is always ignored in the statistical analysis (5–8). 
Furthermore, although it occurred in only a small number of 
experiments, the challenge status of a subject can also change if 
repeated measurements are collected longitudinally. The weighted 
area under the ROC curve method has been proposed to solve multi-
reader multi-test data in medical imaging modality studies (21). 
Michael et al. proposed a model where the biomarker levels were 
conditioned on the previous status of a patient to perform ROC 
analysis for regularly measured biomarkers longitudinally (22). 
However, neither of these two methods fits into the scenario which 
often occurs in veterinary diagnostic tests. Therefore, the lack of 
proper methods and the need to analyze correlated data in veterinary 
medicine research motivated us to develop methods that can be used 
in veterinary diagnostic studies where multiple observations are 
always drawn from the same subject over a longitudinal period.

As in the simulation results described previously, regardless of the 
size of the random effect of the subject, the two proposed methods in 
this paper show high coverage probabilities, which ensure the 
legitimacy of using them in solving practice problems. On the 
contrary, the current existing method gives low coverage probabilities 
when the random effect caused by the subject is high and 

TABLE 1 AUC and 95% confidence interval were calculated by three 
bootstrap methods.

Method AUC 95% Confidence interval

Lower 
bound

Upper 
bound

Width

Traditional 0.958 0.9355 0.9776 0.0421

Cluster 0.9583 0.9352 0.9757 0.0405

Hierarchical 0.9586 0.9283 0.9814 0.0531

TABLE 2 Simulation study 1: the challenge status of observations from the same subject may change over time.

Simulation parameters Traditional Cluster Hierarchical

No.
1β 2sσ 2eσ

Coverage Width Coverage Width Coverage Width

1 1.38728 0.2381 0.2936 82.05% 0.0444 93.75% 0.0649 96.25% 0.0742

2 0.69364 0.2381 0.2936 81.0% 0.0767 94.3% 0.1149 97.05% 0.1299

3 1.38728 0.01 0.5217 93.55% 0.0446 93.75% 0.0451 99.15% 0.0609

4 0.69364 0.01 0.5217 94.95% 0.0768 94.65% 0.0779 98.95% 0.1047

5 1.38728 0.5217 0.01 62.75% 0.0443 93.75% 0.0938 94.85% 0.0966

6 0.69364 0.5217 0.01 64.65% 0.0766 94.05% 0.1572 94.7% 0.1632

Coverage probabilities and confidence interval widths were calculated by 2000 simulated datasets under 6 simulation parameter settings. True AUC for No. 1, No. 3, No. 5 is 0.910741, for No. 
2, No. 4, No. 6 is 0.7494095.
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non-negligible under most simulation settings. Moreover, when the 
challenge status of all the observations from the same subject does not 
change, the coverage probability of the traditional bootstrap method 
will be  further reduced, as demonstrated in simulation study 2. 
However, it should be  noted that when the random effect of the 
subject is negligible, the traditional bootstrap method is also legitimate 
(coverage probability approximated to 95%) and shows higher 
precision compared with the cluster and the hierarchical 
bootstrap methods.

The hierarchical bootstrap method outperforms the cluster 
bootstrap method and the traditional bootstrap method in terms of 
coverage probability; however, it gives the widest 95% CI width of 
AUC compared with the cluster bootstrap method and the traditional 
bootstrap method, which makes it less precise than the other two 
bootstrap methods. Also, simulation study 2 showed that the cluster 
bootstrap and hierarchical bootstrap methods gave similar results 
when the subject-level challenge status was fixed and the subject’s 
random effect was high. Therefore, for convenience and time efficiency 
in implementation, the cluster bootstrap method might be preferable 
to the hierarchical bootstrap method as it is legitimate and precise.

The proposed hierarchical bootstrap method was articulated for 
two-level cases where the total variance came from subjects and 
observations. This hierarchical bootstrap can be applied sequentially 
to each level of the hierarchical structure if there are more sources of 
variance. For example, multiple trials can be performed in real-life 
animal experiments to solve the same research question. Data 
collected from different trials are usually combined and analyzed as 
one complete study. Therefore, a trial-level random effect can emerge 
if each trial’s laboratory personnel, operational procedures, 
experimental animals, and seasons vary greatly. In this case, the 
hierarchical bootstrap can be performed first on different trials, then 
on subjects, and finally on the observations. The procedures are: (1) 
select trials by simple random sampling with replacement from the 
trials in the study; (2) select subjects within the selected trials by 
simple random sampling with replacement; and (3) select observations 
within the selected subjects by simple random sampling with 
replacement. In addition, the hierarchical bootstrap can be applied to 
multi-level data with the same principle. For example, we can consider 
different blocking factors, such as pen, barn, house, and sampling 
season, as different levels.

Given the results from our studies, we saw that the random effect 
of the subject is inevitable and subsequently causes issues for ROC 
analysis with the traditional bootstrap method. Under ideal 

experimental conditions, each subject should only contribute one 
sample to ensure that all samples are independent and identically 
distributed random variables. However, such ideal conditions are 
usually very difficult to achieve as the economic cost will be too high 
to afford. Therefore, most diagnostic test data correlate because 
researchers want to get enough samples from limited experimental 
subjects. Rather than suggesting that experimenters use more subjects 
to get samples, we recommended that researchers pay attention to 
possible sources of variance, consider the random effect of these 
sources, and use our proposed methods to do the ROC analysis if 
applicable. Under field conditions, multiple observations from the 
same subject are not as likely to be  there as under experimental 
conditions. Yet our proposed methods are still applicable as naturally 
existing clusters, such as pens, barns, and houses, introduce random 
correlations to the diagnostic data. Further development of our 
methods is likely needed for application to field data, as the true status 
of disease is usually unknown in field studies.

One more thing to notice is that bootstrap datasets generated by 
the cluster bootstrap method and the hierarchical bootstrap method 
may have a different number of observations compared with the 
original dataset. This is because the number of observations from 
different subjects may vary in the experiment. It can be due to the 
experimental design or a miss of samples. As the cluster and 
hierarchical bootstrap methods will first bootstrap by subjects, there 
may be minor variations in the bootstrap sample size. However, this 
scenario should not affect the implementation of the proposed 
methods as long as most subjects have a similar number of 
observations drawn.

In this manuscript, we  focused on testing the performance of 
these two proposed methods in calculating the estimated interval of 
AUC for a single diagnostic test. AUC comparison is another 
important application of ROC analysis, and it is again done with the 
traditional bootstrap in the pROC package. Similarly, as discussed in 
the introduction, we have the same concerns about comparing AUCs 
with the traditional bootstrap method if the data are correlated. 
Therefore, our future research will focus on applying these two 
proposed methods to compare the AUCs of different diagnostic tests.

5 Conclusion

In this paper, we proposed two nonparametric bootstrap methods, 
the cluster bootstrap, and the hierarchical bootstrap methods, for 

TABLE 3 Simulation study 2: the challenge status of observations from the same subject does not change over time.

Simulation parameters Traditional Cluster Hierarchical

No.
1β 2sσ 2eσ

Coverage Width Coverage Width Coverage Width

1 1.38728 0.2381 0.2936 75.05% 0.0452 93.7% 0.075 95.15% 0.0822

2 0.69364 0.2381 0.2916 74.3% 0.078 94.55% 0.1361 96.0% 0.147

3 1.38728 0.01 0.5217 93.6% 0.0454 94.2% 0.0465 98.9% 0.0625

4 0.69364 0.01 0.5217 94.25% 0.0782 94.7% 0.0808 99% 0.1079

5 1.38728 0.5217 0.01 55.2% 0.0449 94.25% 0.1095 94.55% 0.1098

6 0.69364 0.5217 0.01 57.1% 0.0782 94.2% 0.1935 94.15% 0.194

Coverage probabilities and confidence interval widths were calculated by 2000 simulated datasets under 6 simulation parameter settings. True AUC for No. 1, No. 3, No. 5 is 0.910741, for No. 
2, No. 4, No. 6 is 0.7494095.
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interval estimation of the area under the ROC curve for correlated 
diagnostic test data. Based on simulation studies, we concluded that 
the current existing method (the traditional bootstrap method) only 
works when the random effect of the subject is negligible. The 
traditional bootstrap method is not legitimate when there is a 
significant random effect of the subject. However, both methods 
proposed in this study show robustness in the presence of the random 
effect of the subject, with coverage probabilities close to or higher than 
95%. In the analysis of real data, the cluster bootstrap method and the 
hierarchical bootstrap method give similar estimations of the results; 
however, the cluster bootstrap method gives narrower confidence 
intervals in comparison with the hierarchical bootstrap method, while 
the hierarchical bootstrap method always has a higher coverage 
probability among all the three methods. The two proposed methods 
will be helpful in analyzing correlated data in experimental diagnostic 
studies where multiple observations are collected from the same 
subject over a period of time. In this work, we  evaluated a new 
diagnostic test’s ability to distinguish a random abnormal subject from 
a random normal subject, which is the traditional AUC at the 
population level. It should be noted that the predictive ability of a 
diagnostic test at the subject level (within a subject) and at the 
population level (between subject) are not the same (22). If the focus 
is to evaluate the diagnostic test within a subject, our method can 
be modified to simulate within subject resampling to achieve that goal.
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