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Staphylococcus coagulans (SC) belongs to a group of coagulase-positive

staphylococci occasionally isolated from the skin lesions of dogs with pyoderma.

We recently revealed that erythritol, a sugar alcohol, inhibited the growth of

SC strain JCM7470. This study investigated the molecular mechanisms involved

in this growth inhibition of JCM7470 by erythritol, and determine whether

erythritol inhibits the growth of SC isolated from the skin of dogs with pyoderma.

Comprehensive analysis of the gene expression of JCM7470 in the presence of

erythritol revealed that erythritol upregulated the expression of glcB and ptsG

genes, both of which encode phosphotransferase system (PTS) glucoside- and

glucose-specific permease C, B, and A domains (EIICBA), respectively, associated

with sugar uptake. Moreover, erythritol suppressed in vitro growth of all 27 SC

strains isolated from the skin lesions of canine pyoderma, including 13mecA gene-

positive and 14mecA gene-negative strains. Finally, the growth inhibition of the SC

clinical isolates by erythritol was restored by the addition of glucose. In summary,

we revealed that erythritol promotes PTS gene expression and suppresses the in

vitro growth of SC clinical isolates from dogs with pyoderma. Restoration of the

erythritol-induced growth inhibition by glucose suggested that glucose starvation

may contribute to the growth inhibition of SC.
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Introduction

Staphylococcus coagulans (SC), formerly classified as S. schleiferi

subsp. coagulans, is a coagulase-positive staphylococcus primarily

isolated from the skin and ear canals of dogs (1–6). Among

staphylococci, SC is the second most prevalent cause of skin lesion

in dogs with pyoderma after Staphylococcus pseudintermedius (SP)

(7). In addition to infections in dogs, SC has been reported

to cause opportunistic infections in humans (8, 9). Similar to

findings in other staphylococcal species (10–13), the emergence

of methicillin- and multidrug-resistant SC has been reported (14–

17), representing a problem for human and veterinary medicine.

Against this background, the development of novel strategies

for preventing canine pyoderma using bacteriostatic substrates

is anticipated.

Erythritol (1,2,3,4-butanetetrol) is a polyol that is widely

used in foods as an artificial sweetener (18). Both erythritol

and xylitol, another type of polyol, were shown to inhibit the

growth of Streptococcus mutans, Streptococcus gordonii, and

Porphyromonas gingivalis, major human oral commensal bacteria

(18–20). Recently, studies have also reported that erythritol

inhibited the growth of the human skin commensal bacteria

Corynebacterium minutissimum, Corynebacterium striatum,

Staphylococcus epidermidis, and Cutibacterium acnes, as well as the

major canine oral commensal bacteria Porphyromonas gulae and

Porphyromonas macacae (21–23).

The mechanisms by which xylitol inhibits S. mutans have

been well studied (24). S. mutans incorporates xylitol via

the phosphoenolpyruvate-dependent phosphotransferase system

(PEP-PTS) and phosphorylates it to xylitol 5-phosphate. The

xylitol 5-phosphate accumulated in the bacteria directly inhibits

enzymatic activity related to glycolysis and competes with the

phosphor-heat stable protein (24) to indirectly inhibit sugar uptake.

Such mechanisms may result in glucose starvation in S. mutans and

the inhibition of bacterial growth.

Very recently, we revealed that erythritol suppressed in vitro

growth of the SP and SC strains JCM17571 and JCM7470,

respectively (25). Furthermore, erythritol upregulated PEP-PTS-

related genes (ptsG, ppdK, and ppdkR) in SP JCM17571 (26).

However, the exact molecular mechanism by which erythritol

suppresses the growth of SC has not been elucidated. In this study,

we aimed to identify the SC gene clusters whose expression was

altered by erythritol. Moreover, we investigated whether erythritol

suppresses the growth of SC clinical isolates in vitro.

Materials and methods

Bacterial strains

SC strain JCM7470 (identical to ATCC 49545) was provided

by the Japan Collection of Microorganisms (JCM) and used as a

reference strain (2). A previous study revealed that this strain was

susceptible to oxacillin and cefoxitin by disk-diffusion tests (27). A

total of 27 SC skin isolates from 27 dogs with pyoderma in different

private practices and submitted to Vet Derm Tokyo Co., Ltd., for

antibiotic susceptibility testing were also used as clinical isolates.

The identification of SC was confirmed as follows: The DNA

extracted from the 27 bacterial strains was subjected to multiplex

PCR for identification of coagulase-positive staphylococcal strains

(28). If the band size of the amplicons was identical to that in

S. schleiferi, the strains were further subjected to a coagulase test

using rabbit plasma (Eiken Chemical Co. Ltd., Tokyo, Japan) to

identify S. schleiferi to the subspecies level (28). The mecA gene

in the SC clinical isolates was identified by PCR with primer

pairs used to identify this gene in S. aureus, SP, and S. schleiferi

isolated from dogs (29). The antimicrobial susceptibility testing

was performed by a disk diffusion test using KB DiskTM (Eiken

Chemical Co. Ltd.), as described previously (30). The following

antimicrobials were used for the susceptibility testing: amoxicillin-

clavulanate (AMPC/CVA; 20 or 10 µg/disk), cephalexin (CEX; 30

µg/disk), cefpodoxime (CPDX; 10 µg/disk), enrofloxacin (ERFX;

5 µg/disk), gentamicin (GM; 10 µg/disk), sulfamethoxazole-

trimethoprim (ST; 23.75–1.25 µg/disk), clindamycin (CLDM; 2

µg/disk), doxycycline (DOXY; 30 µg/disk), minocycline (MINO;

30 µg/disk), chloramphenicol (CP; 30 µg/disk), and fosfomycin

(FOM; 50 µg/disk). Supplementary Table 1 lists the PCR primers

used in this study, and Supplementary Table 2 shows the results of

the disk diffusion susceptibility tests.

Bacterial culture

The following experiments were performed in accordance

with the methodology used in a previous study (26). A single

colony of JCM7470 was inoculated into 3ml of National

Institute of Technology and Evaluation Biological Resource

Center (NRBC) #802 medium containing 1% hipolypepton

(Fujifilm Wako, Osaka, Japan), 0.2% yeast extract (Nacalai

Tesque Inc., Kyoto, Japan), and 0.1% MgSO4·7H2O (Fujifilm

Wako, pH 7.0), and incubated with rotation at 210 rpm

until the optical density at 600 nm (OD600) reached 3.4. The

bacterial suspensions were further diluted 100-fold in NRBC

#802 medium with or without 5% (w/w) erythritol (B Food

Sciences Co. Ltd., Tokyo, Japan) and incubated at 30◦C until

OD600 reached 0.8–1.0. These experiments were performed in

triplicate. We chose an erythritol concentration of 5% in this

study as we had observed that erythritol at higher concentrations

significantly inhibited the growth of JCM7470 in a previous

study (25).

RNA sequencing (RNA-seq)

RNeasy Mini Kit (Qiagen, Venlo, Netherlands) was used to

extract total RNA from the bacterial samples. The total RNA

samples were submitted to Bioengineering Lab (Sagamihara,

Japan). After removal of ribosomal RNA using riboPOOLS

(siTOOLs Biotech, Planegg, Germany), a cDNA library for

RNA-seq analysis was generated using MGIEasy RNA Directional

Library Prep Set (MGI Tech, Shenzhen, China). The cDNA

library was used to construct a circular DNA library using

the MGIEasy Circularization Kit (MGI Tech). The cDNA
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library anchored by DNA Nanoball (DNA) was subjected to

sequencing analysis using DNBSEC-G400 (MGI Tech). Nucleic

Acid SeQuence Analysis Resource (NASQAR; https://nasqar.

abudhabi.nyu.edu) was used for creating principal component

analysis (PCA) plots of the triplicate samples and a heatmap

to visualize the RNA-seq results. A volcano plot was created

using ggVolcanoR (https://ggvolcanor.erc.monash.edu). Protein

ANNotation with Z-scoRE (PANNZER2; http://ekhidna2.

biocenter.helsinki.fi/sanspanz) was used for gene ontology (GO)

analysis to predict the genes up- and downregulated in response

to erythritol.

Reverse-transcription quantitative
polymerase chain reaction (RT-qPCR)

Transcriptor First Strand cDNA Synthesis Kit (Roche

Diagnostics, Rotkreuz, Switzerland) with random primers was

used to synthesize complementary DNA from total RNA extracted

from JCM7470 with or without erythritol. Supplementary Table 1

lists the primers used in this study. The primer sets and TB

Green R© Fast qPCR Mix (Takara Bio, Kusatsu, Japan) were used

for RT-qPCR on a Thermal Cycler Dice R© Real-Time System III

(Takara Bio) with 45 cycles of 95◦C for 5 s and 55◦C for 60 s. The

recA gene, which has been validated as an appropriate reference

gene for qPCR in SP (31), was used as a reference to evaluate the

relative gene expression levels of the other genes. The RNA-seq

performed in this study revealed that the recA gene expression

in SC was consistent regardless of the presence of erythritol

(log2FC = −0.19, p = 0.111), suggesting the validity of the recA

gene as a reference gene for qPCR in SC. This experiment was

performed in triplicate, and mean values were compared among

the groups.

In vitro turbidity assay of SC clinical isolates

The SC clinical isolates were pre-cultured in Luria-Bertani (LB)

medium (Kanto Chemical Co., Inc., Tokyo, Japan) and diluted

fivefold in this medium. Then, 30 µL of the diluted bacterial

suspension was mixed with 900 µL of NRBC #802 medium with

erythritol at concentrations of 0%, 5%, 10%, and 15% [w/w] in

96-well U-bottomed microplates (Watson Corporation, Tokyo,

Japan). The OD600 was measured over time using EpochTM2

(Agilent Technologies, Inc., Santa Clara, CA, USA) from 0 to

6 h.

The effect of glucose on the erythritol-induced growth

inhibition of SC clinical isolates was analyzed as follows.

The SC isolates were incubated in NRBC #802 medium for

2 h and diluted fivefold in NRBC #802 medium. Then, 30

µL of the diluted bacterial suspension was mixed with 900

µL of NRBC #802 medium containing 0% erythritol and

0% glucose, 0% erythritol and 0.1% glucose, 10% erythritol

and 0.1% glucose, 10% erythritol and 1% glucose, or 10%

erythritol and 0% glucose, and 200 µL was inoculated

into each 96-well plate. The OD600 was measured over

time for up to 6 h. The experiments analyzing growth were

performed in triplicate, and mean values were compared among

the groups.

Statistical analysis

Empirical Analysis of Digital Gene Expression Data in R

(edgeR) exactTest was used to compare gene expression levels

analyzed by RNA-seq. GraphPad Prism 9 software (GraphPad

Software Inc., San Diego, CA, USA) was used for the following

statistical analysis. Welch’s t-test was used to compare transcription

levels of glcB and ptsG genes between the groups, and the

effect of erythritol on mecA gene-positive and -negative SC

strains. Dunnett’s test was used to compare the turbidity between

SC strains incubated in the presence or absence of erythritol

and/or glucose. A p-value of less than 0.05 was considered

statistically significant.

Results

Comprehensive gene expression analysis of
SC JCM7470 in response to erythritol

We first performed RNA-seq analysis to investigate

the molecular mechanism behind the growth inhibition

of JCM7470 by erythritol. After filtering the raw

sequencing reads, we obtained 16,589,804, 16,962,572,

and 27,123,064 clean reads of the transcriptome in

control samples. By contrast, there were 17,294,425,

18,110,786, and 15,713,381 clean reads in the

erythritol-treated samples.

The calculated gene expression levels [|log2 fold change

(log2FC)| > 1, p < 0.05] identified a total of 162 differentially

expressed genes, including 60 upregulated and 102 downregulated

genes, in JCM7470 following erythritol treatment. The PCA plot

with 80% of the variance explained by PC1 exhibited a clear split

between the control and erythritol-treated samples (Figure 1A).

The heatmap is shown in Supplementary Figure 1.

Erythritol upregulated the expression of
glucose-specific phosphotransferase
system genes in JCM7470

Among the 162 genes in JCM7470 differentially expressed in

response to erythritol, only four were upregulated more than 10-

fold (log2FC > 3.322) in the presence of erythritol. Conversely,

no genes were downregulated more than 10-fold in the presence

of erythritol.

Supplementary Table 3 shows the predicted functional

descriptions and GO biological processes for the top 15 up- and

downregulated genes in response to erythritol. The GO analysis

revealed that two of the four most upregulated genes were glcB

[log2FC = 5.459, p < 0.001, positive predictive value (PPV) =

0.71] and ptsG (log2FC = 3.727, p < 0.001, PPV = 0.71), both

of which encode PTS transporter subunit IIBC (Figure 1B).
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FIGURE 1

Gene expression analysis. (A) PCA plot shows a clear split between

the control and erythritol-treated Staphylococcus coagulans

JCM7470, with 80% of the variance explained by PC1. (B) The

volcano plot shows di�erences in expression levels of up- and

downregulated genes in JCM7470 treated with erythritol. The genes

upregulated >10-fold (log2FC > 3.322, p < 0.05) in response to

erythritol are highlighted in red. (C) Comparison of the expression

levels of glcB and ptsG genes in JCM7470 treated with erythritol or

control medium, as determined by RT-qPCR. **p < 0.01.

FIGURE 2

Restoration of erythritol-induced growth inhibition of SC clinical

isolates by glucose supplementation. (A) Bacterial turbidity of the SC

clinical isolates (n = 27) immediately or 6 h after incubation with

di�erent doses of erythritol. (B) Comparison of bacterial turbidity

between mecA gene-positive and -negative SC strains 6 h after

incubation with di�erent doses of erythritol. (C) Fluctuation of the

bacterial turbidity of the SC strains incubated with di�erent doses of

erythritol and glucose. ns, not significant; ****p < 0.0001.

Meanwhile, the other two most upregulated genes encode

hypothetical proteins for which the associated biological processes

are unknown (Figure 1B). RT-qPCR revealed that transcription

levels of glcB and ptsG genes in the erythritol-treated group were
significantly higher than those in the control group (glcB, p =

0.0024; ptsG, p = 0.0028, Figure 1C). The log2 fold changes of glcB

and ptsG in the erythritol-treated group relative to the levels in
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the control group were 5.57 ± 0.06 and 4.12 ± 0.06 (mean ± SE),

respectively.

Glucose supplementation restored
erythritol-induced growth inhibition of SC
clinical isolates

We next investigated whether erythritol suppresses the growth

of SC isolated from clinical lesions of canine pyoderma. In vitro

turbidity assay revealed that the turbidity increased over time up

to 6 h in both the control group and the erythritol-supplemented

groups, regardless of whether the strains carried the mecA gene

(Supplementary Figure 2). The turbidity of 27 SC clinical isolates

incubated for 6 h in the presence of 5% (0.728± 0.172, p< 0.0001),

10% (0.460 ± 0.130, p < 0.0001), and 15% erythritol (0.283 ±

0.070, p < 0.0001) was significantly lower than the level upon

incubation in the absence of erythritol (1.023 ± 0.193). Moreover,

erythritol suppressed the growth of the SC clinical isolates in a

concentration-dependent manner (p < 0.0001). In contrast, there

were no significant differences in the baseline bacterial turbidity

in the SC groups between erythritol-supplemented groups and the

control group (p > 0.05) (Figure 2A). Furthermore, there were

no significant differences in turbidity between the mecA gene-

positive strains (n = 13) and mecA gene-negative strains (n = 14)

supplemented with 0% (p = 0.295), 5% (p = 0.332), 10% (p =

0.703), and 15% erythritol (p= 0.709) (Figure 2B).

Considering the upregulation of PTS-related genes and growth

inhibition, we wondered whether carbohydrate starvation in

response to erythritol caused the growth inhibition of the

SC clinical isolates. Therefore, we investigated whether glucose

supplementation of the culture media of the SC clinical isolates

would overcome the growth inhibition induced by erythritol. We

found that the turbidity of the SC clinical isolates supplemented

with 10% erythritol and 0.1% (0.577 ± 0.250, p < 0.0001) or 1%

glucose (0.704 ± 0.275, p < 0.0001) was significantly higher than

that upon supplementation with 10% erythritol alone (Figure 2C).

Discussion

Erythritol may induce glucose starvation in
SC

The present study revealed that erythritol significantly

upregulated the expression of glcB and ptsG encoding PTS

transporter subunit IIBC in the SC strain. GO analysis predicted

that the transcripts of these two genes function as glycoside- and

glucose-specific enzyme II components EIICBA, respectively. The

upregulation of ptsG gene expression in response to erythritol in SC

was in agreement with the data obtained in our recent study using

an SP strain (26). The EIICBA are membrane permeases that play

significant roles in the uptake of carbohydrates into the bacterial

cytoplasm (32, 33). EIIA, EIIB, and EIIC usually specifically

incorporate one substrate or closely related carbohydrates into

bacterial cytoplasm (34).

Furthermore, restoration of the erythritol-induced growth

suppression by glucose supplementation implies that glucose

starvation in response to erythritol may cause the upregulation of

PTS-related gene expression and result in the growth inhibition

of SC. It was reported that, in S. mutans, xylitol 5-phosphate, a

metabolite derived from xylitol, directly inhibits glycolytic enzymes

and competes with glucose 6-phosphate, a glucose metabolite

incorporated into glycolysis (24). We speculate that erythritol or

its metabolites also compete for the glycolytic enzyme in SC,

although the exact erythritol uptake and metabolic pathways in the

staphylococci have yet to be determined.

Previous studies revealed that the ptsG operon of S. carnosus

consists of two adjacent genes, glcA and glcB, which encode

IICBAGlc1 and IICBAGlc2, respectively (32, 33, 35). Analysis of the

deduced amino acid sequence suggested that the ptsG gene in SC

(NCBI WP_ 050331035.1) consists of two components, PTS-II-

BC-glcB (glucose-specific IIBC component) and PTS-EIIA-1, while

the glcB gene in SC (NCBI WP_ 0503356536.1) consists of two

components, PTS-II-BC-glcB and NagE (IIA component). Efforts

should be made to ensure consistency in the gene nomenclature

between S. carnosus and SC. Nevertheless, the sequence analysis

suggested that these two genes encode enzyme II components

crucial in carbohydrate uptake into SC.

Di�erences in erythritol-induced alteration
of gene expression profiles in SC and SP

In the SP strain, erythritol upregulated ppdK and ppdkR,

which are other PTS-related genes predicted to encode pyruvate

phosphate dikinase (PPDK) and PPDK regulatory protein

(PPDKR), respectively (26). The same study also revealed that

erythritol downregulated the expression of pur operon genes

involved in the synthesis of inosinic acid (IMP) leading to purine

biosynthesis in the SP strain. However, such changes were not

recognized in the present study using the SC strains. Possible

reasons for this discrepancy include differences in the bacterial

species or that such changes are a late phenomenon occurring

in response to glucose starvation. Indeed, PPDK and PPDKR

contribute to the regeneration of PEP necessary to reactivate PTS

(36, 37), and phosphoribosyl pyrophosphate, the precursor of

IMP, is a metabolite derived from glucose 6-phosphate through

the pentose phosphate pathway (38). The expression of genes

encoding vraTSR, which are associated with resistance to β-

lactams and glycopeptides in S. aureus (39–43), and sgtB, which is

involved in proteoglycan biosynthesis in S. aureus (44), was also

upregulated in the SP strain. The present study revealed slight

increases in vraS, sgtB, and vraR gene expression (|log2FC| < 1.9)

(Supplementary Table 3). However, the biological significance of

these changes induced by erythritol in SC was not identified in this

study because the changes in the susceptibility of SC to antibiotics

were not evaluated.

Future perspectives on the application of
erythritol clinically

We also revealed that erythritol inhibited the growth of SC

isolated from the skin lesions of canines with pyoderma. A previous

study revealed that erythritol has a bacteriostatic effect on bacteria

associated with canine periodontal disease (45). Based on these
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findings, we assumed that SC strains whose growth was inhibited

in the presence of erythritol may grow on agar plates for colony

counting and thus did not analyze the effect of erythritol on

colony-forming units. Studies have reported that erythritol was

more efficient at inhibiting the growth of human oral commensal

streptococci than xylitol (18), while such efficacy of erythritol

against SP and SC clinical isolates was similar to that of xylitol (25).

Unlike in humans, the safe dosage range of xylitol in dogs is

narrow and there is a risk of xylitol toxicity such as hypoglycemia

and acute liver failure, which raises safety concerns (46, 47). In

contrast, erythritol was less likely to cause hypoglycemia and

appeared to be safe for dogs, as determined by oral toxicity studies

(48, 49). Therefore, topical application of erythritol is expected

to have the potential to alleviate the clinical severity of canine

pyoderma caused by SC or to prevent its recurrence. Future

clinical trials with topically applied erythritol for canine pyoderma

are expected. It is also anticipated that erythritol can prevent

SC infections via contaminated medical equipment in humans

and animals.

Conclusion

Our findings suggest that glucose starvation in response to

erythritol contributes to growth inhibition in SC. Our findings

also suggest the potential of erythritol in preventing SC-

associated cutaneous infections in dogs and the contamination of

medical equipment.
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