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stiffness
Benjamin D. Jacklin 1, Katherine Hanousek 2*, 
Sabrina Gillespie 2, Anna Liedtke 2, Rachel Tucker 3, 
Andrew Fiske-Jackson 2 and Roger K. Smith 2

1 CVS Group Plc, Suffolk, United Kingdom, 2 Equine Referral Hospital, Royal Veterinary College, 
Hatfield, United Kingdom, 3 Liphook Equine Hospital, Hampshire, United Kingdom

Objective: To validate a novel technique to measure limb stiffness in a 
clinical setting.

Animals: Three horses and three ponies owned by the Royal Veterinary 
College.

Procedures: Limb stiffness indices for both forelimbs were first derived using 
the gold standard of kinematic analysis. Using the same animals, limb stiffness 
indices were then calculated using portable floor scales to record weight and 
an electrogoniometer to record changes in metacarpophalangeal joint angle. 
The two techniques were then assessed for correlation and repeatability.

Results: The repeatability of limb stiffness measurement using the novel 
clinical tool was considered to be  good based on a small coefficient 
of variation (5.70%). The correlation of limb stiffness as derived by both 
methods was high (r  =  0.78, p  <  0.01). Limb stiffness was positively correlated 
with the mass of the subject (r  =  0.85, p  <  0.01), with heavier horses having 
greater limb stiffness.

Clinical relevance: This study has compared a novel method to measure 
distal forelimb stiffness non-invasively in a clinical setting to kinematic 
analysis in six equids. It has demonstrated that limb stiffness increases in a 
linear fashion with body mass consistent with the role of forelimbs providing 
energy storage. Because in vivo limb stiffness has been shown previously 
to alter with injury to the superficial digital flexor tendon, it is hypothesized 
that this technique will offer a practical technique for the clinician to assess 
limb stiffness in clinical cases. Further study will be necessary to determine 
its clinical usefulness in such cases.
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Introduction

Superficial digital flexor tendon (SDFT) tendinopathy is a common cause of wastage 
and enforced retirement among equine athletes (1–6). Racing thoroughbreds have been 
shown to be highly susceptible to SDFT tendinopathy, affecting approximately 24% of 
racehorses in training and up to 40% of animals on individual training yards (1).
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The superficial digital flexor tendon plays a key role in storing 
energy on weight-bearing for efficient locomotion, and so its 
mechanical properties are optimized for this purpose (7). Acute 
clinical injuries are thought to be  the end result of cumulative 
degeneration of the tendon extracellular matrix, as the tendon 
undergoes repetitive strain over time, with a reduced capacity for 
remodeling as the animal and tendon age (8–13). While persistent 
lameness is rarely an issue with SDFT tendinopathies, re-injury is 
common, with a reported prevalence of 23–67%, thought to be due to 
inferior biomechanical function of the healed tendon (6, 14, 15). 
Monitoring of clinical progress following injury is currently performed 
using ultrasound, which has been shown to have some correlation 
with histological findings in healing tendons (16, 17). However, this 
offers little information regarding the biomechanical competence of 
the SDFT as lesions heal, and decision-making with regard to 
increasing exercise planes can be challenging for the clinician.

A previous study demonstrated a close correlation between limb 
stiffness findings of horses, determined using motion capture and 
force plates in vivo, with the in vitro stiffness of SDF tendons at post-
mortem (18). Unilaterally injured (SDFT tendonitis) limbs were found 
to have markedly reduced limb stiffness following injury, which 
increased over a 7-month period by which time it approximated that 
of the contralateral (normal) limb. This offers the intriguing possibility 
that measurement of the return to normal limb stiffness following 
injury may be  used as a monitoring tool to guide rehabilitation. 
However, the techniques described in this study were complex and 
required high-value equipment and expertise in its use and as such are 
not suitable for use in the clinical setting.

Goniometry has been used and validated in human biomechanics 
and physiotherapy for accurate measurement of joint angles in vivo 
(19–22). Reliability and accuracy are improved when simple “hinge” 
joints are measured (23). Studies have also found goniometric 
measurements of joint angles to be reliable in cats, dogs, and horses 
(21, 24–26). The use of goniometers in horses has been described for 
the assessment of a passive range of motions in both standing and 
sedated animals (24, 27).

The objectives of the current study were 2-fold: (1) to compare the 
use of an electrogoniometer and floor scales with kinematic analysis 
as a technique for measuring limb stiffness in a clinical setting; and (2) 
to investigate the relationship between body mass and limb stiffness 
in the horse.

Materials and methods

Six university-owned equids, 3 horses and 3 ponies (age range 
6–24 years), were used in the study, which was approved by the ethics 
committee of the Royal Veterinary College (SSRERB number: 2013/
R56). All were mixed native breeds and kept at pasture. Animals were 
unshod and subject to a 6-weekly foot trimming regimen by a 
registered farrier. All animals were evaluated to confirm an absence of 
lameness by subjective evaluation when trotting in a straight line and 
an absence of palpable abnormalities of the distal thoracic limbs prior 
to each stage of the study. This was performed by an experienced 
equine practitioner (BJ). The animals were weighed using equine 
weigh scales and weighed between 258 and 506 kg. Limb stiffness (as 
determined by the force (kg) needed to change the 
metacarpophalangeal angle by one degree (kg/degree)) was 

determined for both thoracic limbs in each animal, using both of two 
different methods as follows. Both methods were performed on the 
same day, with method 1 performed prior to method 2.

Method 1: Kinematic determination of limb 
stiffness

Animals were evaluated in the manner described previously (18). 
Retroreflective markers were precisely positioned on both forelimbs 
on the skin overlying the head of the fourth metacarpal bones, the 
lateral epicondylar fossae of the third metacarpal bones, and the lateral 
hoof wall at the center of rotation of the distal interphalangeal joint 
(8). Repeatability and accuracy of these methods have been established 
in the equine distal limb (28, 29).

The positions of the retroreflective markers were recorded using 
eight Qualisys (Software: QTM V2.0.365/Hardware Oqus 3 Series) 
three-dimensional computerized motion analysis cameras (Kistler 
Instrumente AG, Winterthur, Switzerland) supported on individual 
tripods. These were positioned on either side of seven force plates 
(Kistler 9287BA) (Qualisys AB, Gothenburg, Sweden) laid in series, 
over which each animal was walked in a straight line to measure 
vertical ground reaction force (GRF). Horses were walked over the 
force plates and between the cameras until each thoracic limb had 
completed ten or more successful “strikes” on a single force plate. A 
successful strike was defined as a foot placement where the entire 
solar surface landed in the center of a single force plate and was 
withdrawn from the same before other limbs struck the same 
force plate.

The vertical GRF was not standardized per kilogram bodyweight 
in order to assess the influence of the mass of each animal on derived 
limb stiffness. Data were analyzed using commercial software (The 
MathWorks Ltd, Cambridge, United  Kingdom). The derived 
metacarpophalangeal (MCP) joint angles and their associated vertical 
GRF data points were both standardized to 100 points evenly 
distributed across the stride phase, enabling comparison between 
strides. A force–deformation plot was thus generated for each stride, 
and the gradient of the linear “unloading” portion of the curve was 
determined. A mean of these derived gradients was taken from both 
thoracic limbs of the horses, generating a “limb stiffness index” 
for each.

Method 2: Goniometric determination of 
limb stiffness

A twin-axis SG150B goniometer (Biometrics Ltd, Newport, 
United  Kingdom) was secured to the dorsal aspect of the distal 
thoracic limb using zinc oxide tape (Figure 1). It was placed such that 
the distal (short) base plate lay on the dorsal pastern finishing 1 cm 
proximal to the coronary band, and the proximal (long) base plate was 
fixed to the dorsal aspect of the third metacarpal bone, with its most 
proximal extent at the level of the metacarpal tuberosity. The 
goniometer was connected to an Angle Display Unit (Biometrics Ltd, 
Newport, United Kingdom) via a 1.5-m interconnecting lead such that 
the angle of the MCP joint was displayed. A set of 600 kg × 0.2 kg floor 
scales (My Scales, Milton Keynes, United  Kingdom), placed in a 
custom-made wooden box, was used to determine the mass and thus 
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vertical GRF. The wooden box housed the floor scales such that one 
limb could bear weight on the scales and the contralateral limb on the 
box itself (Figure  1). Each limb had 5 measurements taken 
simultaneously of both angle and weight with the horse stood square, 
alternated with 5 measurements with the contralateral limb elevated. 
This generated 10 data points on a graph of weight plotted against the 
MCP joint angle for each limb. The gradient of a line of best fit was 
determined using Microsoft Excel (Microsoft Corporation, Redmond, 
WA, United States), and thus, a limb stiffness index for each limb 
was generated.

The accuracy of the goniometer to measure the angle of the 
metacarpophalangeal joint was assessed in one horse. Ten lateromedial 
radiographs were taken of the metacarpophalangeal joint with the 
goniometer positioned as in Figure 1. Five radiographs were taken 
with the limb weight-bearing, and five with the contralateral limb 
lifted, goniometer readings were recorded at the same timepoint as 
each radiograph. Metacarpophalangeal joint angle was measured 
digitally using Visbion image viewing software by a single user, by 
measuring the angle of intersection of a line parallel to the midshaft 
of the third metacarpal bone and a line parallel to the midshaft of the 
proximal phalanx.

The repeatability goniometric limb stiffness measurements 
(method 2) were evaluated using a single animal. Once the limb 
stiffness index for the limb was determined, the horse was moved off 
the scales, equipment was removed from the leg, and the measurement 
process was repeated by the same operator. This was performed 5 
times for each leg, generating 5 stiffness indices for each leg. 
Repeatability was assessed by calculating the coefficient of variation 

(CV) for each limb. The lower the Cv, the smaller the dispersion of 
values around the mean, which indicates greater repeatability.

Statistical analysis

Quantitative data were assessed for normality using the Shapiro–
Wilk test and graphically. Normally distributed data were summarized 
using the mean (standard deviation [SD]). A mean limb stiffness 
index for both thoracic limbs of each horse was generated by each of 
the two methods, and these were plotted against one another in order 
to assess the correlation between methods. Pearson’s product moment 
correlation coefficient (r) was calculated for the datasets using 
Microsoft Excel to assess the strength and significance of correlation. 
Significant positive correlation coefficients were interpreted as weak 
(<0.35), moderate (0.35 to <0.67), high (0.67 to <0.90), and very high 
correlations (≥0.90) (30).

A Bland–Altman plot was also created for the two datasets to 
assess agreement between the methods using GraphPad Prism 
(GraphPad Software, 225 Franklin Street, Fl, Boston, MA). Two lines 
were used to represent the mean difference between the two methods 
and the limits of agreement to indicate whether there are systematic 
differences between the two methods. The limits of agreement were 
defined as the mean difference ± 1.96 SD of differences to indicate the 
range of differences. The mean was calculated for both the absolute 
difference and percentage difference between the left and right limbs, 
for method 1 and method 2. The absolute difference for each horse 
was then compared, between method 1 and method 2, with a 
paired t-test.

Results

The mean kinetically derived limb stiffness (method 1) for the 6 
horses included in the present study was 12.28 kg/degree (SD 3.22). 
The mean goniographically measured limb stiffness (method 2) for 
the same 6 horses was 9.25 kg/degree (SD 2.47).

There was close agreement between the metacarpophalangeal 
joint angle measured simultaneously with the goniometer and 
lateromedial radiographs ten times in one horse, with a mean 
difference of 1.5° (± 0.9°).

Results of repeatability testing performed on a single animal using 
goniometric determination of limb stiffness are shown in Table 1. The 
coefficient of variation (Cv) was 5.70%, indicating a small dispersion 
of values around the mean and repeatability of limb stiffness 
measurement using the novel clinical tool.

Limb stiffness indices plotted against the mass of each subject 
generated for each method are shown in Figure 2. Pearson’s product 
moment correlation coefficient for the two datasets was calculated at 
r = 0.924 (p < 0.01) demonstrating a very high correlation between 
bodyweight and limb stiffness (30). Mean limb stiffness indices 
generated via the two methods are compared in Figure 3. Pearson’s 
product moment correlation coefficient for the two datasets was 
calculated at r = 0.784 (p < 0.01) indicating a high correlation between 
methods (30).

Figure 4 shows a Bland–Altman plot for the two datasets. This 
revealed a mean difference in limb stiffness index of 3.03 kg/degree 
between methods demonstrating that the kinematic-derived 

FIGURE 1

Twin-axis SG150B goniometer attached to the dorsum of a thoracic 
limb. The distal base plate extends to 1  cm proximal to the coronary 
band, with the proximal base plate extending to the metacarpal 
tuberosity. The two are connected by an extensible lead.
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measurements (method 1) provided measurements that were 
systematically higher than the goniometer-derived measurements 
(method 2). The 95% limits of agreement indicating the range of 
differences were-0.89 to 6.95 kg/degree (±3.92 kg/degree around 
the mean).

The absolute and percentage differences in limb stiffness index 
between the left and right forelimb for both method 1 and method 2 
are shown in Table 2. They indicate that method 2 shows reduced 
variation than method 1 (the gold standard), but this was not found 
to be significant (p = 0.146).

Discussion

This study provides evidence that the presented novel method 
using an electrogoniometer and floor scales can be used in a clinical 
setting to non-invasively measure distal forelimb stiffness. The 
accuracy of fetlock angle measurement using a goniometer taped to 
the front of the distal limb in one horse was very good, as was the 

repeatability of limb stiffness measurement and correlation between 
methods, which had a low coefficient of variation although one 
limitation to the study was the small sample size. We therefore propose 
that the use of the goniometer for assessment of limb stiffness is 
sufficiently reliable for clinical use, with a variation that was lower 
than the alterations in stiffness indices identified in clinical cases (18). 
The procedure was non-invasive, well tolerated, and safe for animals 
and their handlers. Despite the electrogoniometer being attached to 
the skin spanning across the metacarpophalangeal joint, the 
interconnecting wire between the plates is coiled to allow unhindered 
elongation well over what was required during the different degrees of 
metacarpophalangeal joint flexion. The mobility of the skin would 
affect both methods of measurement, and it is its alignment to the 
dorsal cortices of the metacarpus and phalanges, which is the most 
relevant and unaffected by skin movement induced by flexion and 
extension of the metacarpophalangeal joint. The high level of 
repeatability demonstrated with both methods is consistent with this 
conclusion and is supported by the study of Bergh et al. (24) who 
demonstrated “fair” to “excellent” inter-tester reliability when 

TABLE 1 Results of repeatability measurements using goniometric determination of limb stiffness (method 2) of both thoracic limbs in a single horse, 
with each measurement repeated 5 times.

Limb Test Correlation 
coefficient (R)

Stiffness Index 
(kg/degree)

Mean (kg/
degree)

Standard Deviation 
(kg/degree)

Left Fore

1 0.99 10.38

10.41 0.25

2 0.99 10.46

3 1.00 10.77

4 1.00 10.08

5 0.99 10.36

Right Fore

1 0.99 9.82

9.51 0.40

2 1.00 9.22

3 0.99 9.03

4 0.99 9.50

5 0.99 10.00

FIGURE 2

Linear relationship between limb stiffness as determined using both Method 1 (kinematic determination of limb stiffness) and Method 2 (goniometer 
and floor scales) and the mass of the subject. Both methods were performed in both forelimbs of 6 horses (total of 12 measurements).
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measuring equine joint range of motion with an electrogoniometer 
positioned on the lateral aspect of the joint. Certainly, method 2 does 
not appear to give more variable results as this method showed a lower 
mean difference (with reduced standard deviation) in limb stiffness 
between the left and right limbs of individual horses than the 
kinematic analysis, although this was not statistically significant. 
However, when used in clinical practice, it must be considered that the 
novel method (method 2) may underestimate the value of limb 
stiffness by a mean of 3 kg/degree. In addition to this not being 
statistically significant, such a difference was considered by the authors 
unlikely to change clinical interpretation because of the need to 

compare limbs or for repeated measurements over time due to the 
variation of limb stiffness with weight. It does, however, indicate that 
the same method is used for each animal. It should also be noted that 
the definite value is not equal between both methods, and the definite 
values from the two methods should not be  compared when 
measuring limb stiffness in future study.

A particularly interesting finding was the linear relationship 
between limb stiffness and body mass seen with both methods, which 
accounts for much of the inter-individual variation. This finding is of 
biomechanical significance for maintaining optimal elastic efficiency 
of the SDFT across equines of different sizes, supporting the previously 
proposed concept that the SDFT acts as a spring system for energy 
storage (31). The linear relationship between animal weight and limb 
stiffness necessitates normalizing the limb stiffness to bodyweight to 
allow comparison between individuals or alternatively expressing the 
ratio in limb stiffness between limbs.

Potential applications for this proposed clinical tool are numerous. 
Dakin et al. (18) found limb stiffness to normalize by 7 months post-
SDFT injury, but data beyond this point were not obtained. Therefore, 
significant changes after this could have implications both for reduced 
energy efficient locomotion and increased risk of re-injury. The ability 

FIGURE 3

Correlation between the limb stiffness indices determined using Method 1 and Method 2 (r  =  0.615, p  <  0.01), measured in both forelimbs of 6 horses 
(total of 12 measurements).

FIGURE 4

Bland–Altman plot of the difference of derived limb stiffness indices 
(kg/degree) between Method 1 and Method 2 against the mean limb 
stiffness from both methods. The black dashed horizontal line 
represents the mean difference between the two methods, 
indicating whether there are systematic differences between the two 
methods. Red dashed horizontal lines represent limits of agreement, 
defined as the mean difference  ±  1.96 SD of differences, and indicate 
the range of differences. The mean difference was found to 
be 3.03  kg/degree between methods. The 95% limits of agreement 
indicating the range of differences were  −0.89 to 6.95  kg/degree 
(±3.92  kg/degree around the mean).

TABLE 2 Mean and standard deviation (SD) of the absolute and 
percentage differences in limb stiffness index between the left and right 
forelimbs of 6 horses, measured with two methods.

Difference in limb stiffness between left and right limbs

Method 1 Method 2

Mean SD Mean SD

Absolute 

difference (kg/

degree)

0.30 1.24 0.16 0.31

Percentage 

difference (%)
7.45 6.23 3.04 3.74
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to compare the mechanical properties of treated and control limbs 
could also be a key clinically relevant mechanical parameter when 
evaluating the efficacy of novel treatment options for SDFT 
tendinopathy (15, 32–35).

Conclusion

The current study offers validation of a potentially useful clinical 
and research tool for the assessment of equine limb stiffness in vivo. 
The proposed technique showed a statistically significant relationship 
to the current ‘gold standard’ for measuring limb stiffness, had good 
repeatability, was safe to perform, and was well tolerated by subjects. 
Further study is required to collect data from a range of equines, 
including animals with SDF tendinopathy and other soft tissue injuries 
of the distal limb, to further evaluate the accuracy with respect to a 
clinically meaningful outcome in clinical cases.
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