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Diabetes mellitus is a complex metabolic syndrome that involves dysfunction 
of spleen and other lymphoid organs. Medicinal plants, including okra 
(Abelmoschus esculentus (L.) Moench), were used widely for diabetes treatment. 
Scarce data are available about the potential anti-diabetic effects of okra, the 
histopathological alterations in splenic tissues and the mechanistic pathways 
underlying this association. The current research investigated the effects of 
okra pod extract on the biochemical parameters and expression of CD8+ T cells 
and nuclear factor kappa (NF-k) B and releasing proinflammatory cytokines in 
spleen in streptozotocin (STZ)-induced diabetic rat models. A total of 50 mature 
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male Wister albino rats were divided into five isolated groups; the first served as 
control (untreated) animals, the second (DM group) diabetes induced by STZ (at 
a dose of 45  mg/kg body weight, administered intraperitoneally), the third group 
(DM  +  Insulin): diabetic rats administered insulin subcutaneously (10  units/kg bw/
day) daily for 4  weeks, the fourth group was administrated 400  mg/kg okra extract 
daily for 4  weeks, and diabetic induced rats in the fifth group were administrated 
400  mg/kg okra extract daily for 4  weeks. The 2,2-diphenyl-1-picrylhydrazyl 
(DPPH) scavenging activity in Abelmoschus esculentus (L.) Moench was studied, 
and the content of phenolic compounds in okra pods was estimated using high-
performance liquid chromatography. Diabetes induction led to decreased body 
weight, increased blood glucose levels. Capsular thickness was significantly 
increased, white pulp was widely dispersed, and mature lymphocytes in the 
periphery were also drastically decreased, with thick follicular arteries, necrosis, 
and depletion of lymphocytes in the germinal center. Red pulp revealed severe 
congestion and degenerative changes, deposition of hemosiderin granules and 
lymphocytic depletion. In addition, collagen fiber deposition was increased 
also in this group. The induction of diabetes exaggerated NF-kβ expression and 
mediated downregulation of the expression of CD8+ T cells in spleen tissue. 
Interestingly, oral administration of okra extracts post diabetes induction could 
mitigate and reverse such adverse effects. Altogether, our study points out 
the potential benefits of okra in improving blood glucose levels and restoring 
histopathological alterations in splenic tissues through CD8+ T cells and NF-kβ 
expression in a diabetic rat model.
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1 Introduction

Diabetes is a significant non-communicable illness with various 
etiologies (1). The World Health Organization (WHO) estimated 
that diabetes mellitus (DM) affected more than 500 million people 
worldwide ages 20–79 years in 2021 (1). Uncontrolled diabetes can 
negatively affect many body systems, including the nervous and 
vascular systems, resulting in catastrophic complications. It is one of 
the top five killers worldwide, and it can cause blindness, kidney 
failure, and heart attack and lead to lower limb amputation (2, 3). 
Type 1 diabetes (T1D) is characterized by multiple imperfections in 
humoral and cellular immunity (4, 5). Type 1 diabetes mellitus 
(T1DM), also known as insulin-dependent diabetes mellitus 
(IDDM), is claimed to affect about 10% of clinically diagnosed 
diabetic patients (6). According to previous studies (7), viruses, 
chemical pollutants, and autoimmune reactions can cause pancreatic 
β cells to produce insufficient amounts of insulin, which leads to 
T1DM. Uncontrolled hyperglycemia disrupts organ structure and 
function (8, 9). Additionally, hyperglycemia has been considered a 
critical mediator of altered lymphocyte function, which might drive 
the induction of oxidative stress besides play a key role in impairment 
of immunological responses following diabetes (10, 11). Diabetes is 
a complicated metabolic disorder marked by dysfunction of the 
immune system as well as failure of the lymphoid organs, especially 
the spleen (12). Increased production of reactive oxygen species 
(ROS) can aggravate inflammation by activating NF-kB. leading to 
a rise in proinflammatory cytokine levels and, as a result, cellular 
damage (13). Furthermore, diabetes causes thymus atrophy due to 

lymphocyte depletion (14). Based on their safety and lack of harmful 
side effects, the use of medicinal plants or natural substances for 
self-medication has expanded significantly, especially in developing 
or low-income nations (15–17). Recent research has focused on 
flavonoids derived from natural sources, which have no toxicity or 
adverse effects and represent a comparatively less expensive novel 
approach to slow the progression of diabetes (18). Okra (Abelmoschus 
esculentus), also known as lady fingers, or bamia in Egypt, is a 
common vegetable plant growing in tropical and subtropical regions 
of the world (19). It has recently spread throughout the world, but 
its planting and consumption are more common in Egypt, China, 
Cyprus, Greece, and Turkey (20, 21). Okra provides basic nutrients 
such as vitamins, minerals, dietary fiber, and dietary supplements. 
The peel and seeds have been documented to have anti-diabetic and 
anti-hyperlipidemic effects in streptozotocin-induced diabetic rats 
(22). According to Deters et al. (23), okra can lower blood glucose 
and cholesterol levels in obese mice. In addition, it is involved in 
hepatoprotection and ulcer healing, and has anti-cancer, anti-
inflammatory, and laxative functions (24). Okra’s anti-diabetic 
properties are attributable to flavonoids in the plant, such as 
quercetin, which have antioxidant properties and protect cells from 
oxidative stress. As a result, it can both repair injured beta cells and 
reduce the total number of cells (25). Okra can also boost insulin 
secretion and ameliorate insulin resistance (26).

When flavonoids are taken orally, they are most effective in 
treating the pancreas and its beta cells, and, in turn, diabetes (25). 
However, the underlying mechanism of the regulating potential of 
phenolic compounds in okra with regard to their anti-hyperglycemic 
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activity remains unknown. Glucosamine-nitrosourea chemical 
compound, called streptozotocin (STZ), derived from the bacterium 
Streptomyces achromogenes has been used to treat pancreatic cancer 
besides various chemotherapeutic purposes. Pancreatic cells are 
destroyed by STZ, which induces polydipsia, polyuria, 
hypoinsulinemia, and hyperglycemia, producing type 1 diabetes 
mellitus (4, 27). Against this background, our study was intended to 
investigate the anti-diabetic effects of phenolic compounds in okra 
pod (OP) extract on rats with STZ-induced T1DM and examine the 
effect of diabetes and the course of treatment on their splenic immune 
system. In addition, we  aimed to examine the effect of okra in 
STZ-induced diabetic animals using parameters including body 
weight, fasting blood glucose level, glycosylated hemoglobin, and 
spleen tissue histopathological examination. Moreover, the potential 
clinical implications of CD8 and NF-kB were also evaluated.

2 Materials and methods

2.1 Materials

2.1.1 Materials and reagents
Ethanol, gallic acid, quercetin, 1,1-diphenyl-2-picrylhydrazyl 

(DPPH) radical, Folin–Ciocalteu reagent, sodium nitrite, aluminum 
chloride, sodium hydroxide, and sodium bicarbonate were of analytic 
grade and provided by the Faculty of Science, Alazhar University 
(Assiut Branch), Egypt.

2.1.2 Preparation of okra pods extract
Small fresh green okra pods (Abelmoschus esculentus) were 

purchased from a local market (Sohag City, Sohag, Egypt). The 
inedible sections of the okra pods were removed before washing them 
with clean tap water. They were dried in the shade in a thin layer at 
room temperature, then ground with a laboratory mill (Braun, 
Germany). A total of 100 g dried powder from okra pods was 
immersed in 1,000 mL of 70% ethanol and stirred (by a Mettler 
magnetic stirrer) for 3 h at room temperature. The extracts were 
centrifuged for 10 min at 5,000 rpm after being extracted twice more 
as above. Following the extraction, all supernatants were collected and 
condensed to dry residue using a rotary evaporator under vacuum at 
40°C. The concentrated samples were lyophilized (dried at 45°C under 
negative vacuum) to obtain okra pod powder, which was stored at 
20°C until analysis.

2.1.3 Quantitative identification of phenolic 
compounds in okra pods and high-performance 
liquid chromatography analysis

This step involved identifying the phenolic compounds in okra 
pod extract using high-performance liquid chromatography (HPLC) 
as described elsewhere (28). This phase was carried out using a double 
piston pump (Beckman model 126) and a fluorescence detector 
(Perkin Elmer LC 240); a reaction pump (Dioxin); a derivatization 
tube 10 × 0.33 mm; a data processing system (Gold Data Management); 
a SUPELCOSIL LC-18-DB column, 25 cm × 4.6 mm × 5 m; and a 20 L 
injector (Beckman). The UV detector was set to 272 nm, and each 
compound was identified by comparing retention times and UV/VIS 
spectra to standards. The calibration curves of the respective standards 
were used to quantify the compounds.

2.1.4 Determination of total phenolic compound 
content

The Folin–Ciocalteu method was used to calculate the total 
phenolic component contents (29). The Folin–Ciocalteu reagent was 
diluted with deionized water (1:10), and 0.750 mL of sodium 
bicarbonate solution (7.5% w/v) were added to a 0.1 mL sample 
(1.5 mg/mL). The mixture was incubated for 90 min at room 
temperature (dark conditions). The combination’s absorbance was 
measured at 765 nm using a UV–visible spectrophotometer Then 
phenolic contents were expressed as grams of gallic acid equivalents 
(GAE) per gram of extract.

2.1.5 Determination of total flavonoid content
The Dewanto et al. (30) technique was used to assess the total 

flavonoid content. This step involved mixing of 2.25 mL of distilled 
water, 0.15 mL of 5% NaNO2 solution, and 0.5 mL of sample extract 
in a test tube. Then, after 5 min, 0.3 mL of AlCl36H2O solution (10%) 
was added after vertexing for 6 min. The addition of 1.0 mL of 1 M 
NaOH was done followed by completely mixing with a vortex. The 
absorbance was then measured right away at 510 nm. Quercetin 
equivalents (QE) per gram of dry material (mg/g) were used to 
represent the results.

2.1.6 DPPH radical scavenging assay
The Pothitirat et al. (31) approach was used to conduct the 

DPPH radical scavenging test. In this step, 2 mL of the samples 
were diluted in different concentrations of the extraction solvent 
(0.25–1.5 mg/mL) and then mixed with 2 mL of DPPH solution 
(0.1 mM, in ethanol). Following vortex for 30 min at room 
temperature, the reaction mixture was incubated in the darkness, 
and the absorbance was determined at 517 nm in comparison to a 
control. The preparation of the control group was identical to that 
of the test group, with the exception that the antioxidant solution 
was replaced with an equivalent extraction solvent. The following 
formula was used to determine how much the sample inhibited the 
DPPH radical:

 

DPPH scavenging activity

Ab control Ab sample Ab control

%

/

( )
= −( )  ×100

2.1.7 Drugs and chemicals
Sigma-Aldrich Company (St. Louis, MO, USA) provided the 

streptozotocin powder, trisodium citrate dihydrate, and citric 
acid monohydrate.

2.2 Animals

Fifty adults male Wister rats, weighing between 165 and 200 g, 
were obtained from the Experimental Animal House of Sohag 
University. Rats used in this study were kept in clean stainless-steel 
cages with a 12 h light/12 h dark cycle, five rats to a cage. Throughout 
the experiment, they were given a conventional pellet meal and 
unlimited amounts of water. To maintain a clean environment, 
bedding was changed on a regular basis. The rats were given a week 
for acclimatization before to the experiment’s start.
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2.3 Methods

2.3.1 Ethical considerations
Research protocols were carried out in accordance with the 

Declaration of Helsinki and Taif University’s ethical standards, which 
were both approved by Taif university’s ethics committee, Taif, 
Saudi Arabia (approval number HAO-02-T-105).

2.3.2 Experimental design
Rats were monitored for 1 week prior to the experiment to prevent 

the inclusion of parasitically infected animals. During this week, 
samples of each group’s feces were evaluated using concentration 
floatation and sedimentation concentration techniques to exclude 
animals infested by parasites. Following acclimatization, rats were 
randomly assigned to 4 different isolated groups (10 animals per each) 
as follows:

 ➢ Group 1: Normal control (Control; n = 10): fed standard rat 
chow and drinking water.

 ➢ Group 2: DM (n = 10): fasted overnight (12 h before induction 
of diabetes).

 ➢ Group  3: DM + Insulin (n  = 10): diabetes induced (same as 
diabetic positive control group  2), insulin administered 
subcutaneously (10 units/kg bw/day) (32) daily for 4 weeks.

 ➢ Group 4: Okra (n = 10): 400 mg/kg okra extract administered 
daily for 4 weeks by gavage (18, 33).

 ➢ Group 5: DM + Okra (n = 10): 400 mg/kg okra extract administered 
daily for 4 weeks by gavage (18, 33); same treatment as group 4 after 
STZ treatment (same as diabetic positive control group 2). By the 
end of the experimental protocol and after 12 h of the final 
treatment with extract, all rats were sacrificed and blood and tissue 
samples were collected.

2.3.3 Induction of diabetes
As previously described (34, 35), diabetes was established by 

intraperitoneal injection of 45 mg/kg of streptozotocin (0.1 M cold 
citrate buffer, pH 4.5). The rats were allowed free access to food and 
water after the injection and were instructed to drink a 15% glucose 
solution all night long to prevent hypoglycemia. Within 3–6 days after 
STZ treatment, blood glucose levels were assessed (36–39). Diabetes 
was diagnosed by polydipsia, polyuria, and blood glucose levels 72 h 
after STZ injection using blood samples collected by tail prick Using 
tail prick blood samples and a glucometer (On Call Plus, ACON 
Laboratories, Germany),diabetes was diagnosed by observation of 
polydipsia, polyuria, and high blood glucose levels 72 h after STZ 
injection. The term “diabetic” only refers to STZ-injected rats with 
blood glucose levels of 250 mg/dL or higher. During the course of the 
trial, we  observed various diabetic symptoms such as polydipsia, 
substantially elevated polyuria, and frequent urination in addition to 
elevated blood glucose levels. Following diabetes confirmation, rats 
with hyperglycemia (blood glucose >250 mg/dL) were collected for 
the study.

2.3.4 Measurement of animal body weight
The initial body weights of all experimental animals were 

recorded, and the final body weights were recorded at the time 
of sacrifice.

2.3.5 Sample collection

2.3.5.1 Evaluation of fasting blood sugar
Fasting blood glucose levels were measured during the experiment 

using a modified version of the method described in previous work 
(40), which involved drawing blood via a tail prick following sanitizing 
the area with 10% alcohol, and allowing the blood to touch the test 
strip. The test strip was then placed into a calibrated glucose meter 
(On Call Plus Glucometer, ACON Laboratories, Germany). After 5 s, 
a direct reading in mg/dL was provided.

2.3.5.2 Whole blood samples
At the completion of the experiment, rats were euthanized and 

sacrificed individual blood samples from each group were taken in dry 
clean tubes containing EDTA (anticoagulant) for measuring 
glycosylated hemoglobin (HbA1C) (41).

2.3.6 Biochemical analysis

2.3.6.1 Fasting blood glucose level measurement
In this step, the fasting blood glucose levels were continuously 

checked during the trial (40).

2.3.6.2 Cumulative blood sugar measurement
The ARKRAY ADAMS A1c HA-8190 V, based on high-

performance liquid chromatography (hHPLC), is a fully automated 
hemoglobin (HbA1c) analyzer. Automated detection and separation 
of variable hemoglobin is performed by the HA-8190 V (42).

2.3.6.3 Histopathological examination
Following the completion of the experiment, the animals were 

euthanized, and tissue samples, principally spleen, were taken, 
dissected, and quickly fixed in 10% formalin for 24 h, dehydrated in a 
graded alcohol series, cleaned in xylene, and embedded in paraffin. 
Hematoxylin and eosin (H&E) were used to stain tissue sections, 
which were cut into 3 μm thick sections (43). For histological analysis, 
the collagen and iron deposits in the splenic tissue were identified 
using Masson’s trichrome and Perl’s Prussian staining, respectively. All 
sections were evaluated with an Olympus light microscope (Olympus 
CX43 light microscope) and taken using a camera (Olympus SC52) 
adapted for the microscope.

2.3.6.4 Morphometric study
A total of 10 slides from each group were examined under 

low-power objective and chosen to measure the thickness of the 
splenic capsule using ImageJ software (34, 35). Organ histology 
analysis was performed, and scores were assigned based on the 
severity of damage seen in the analyzed tissue in each group, as 
previously established: 0 = no lesions; 1 = mild (1 to 25%); 2 = moderate 
(26 to 45%); and 3 = severe (>45%) (44, 45).

A simple approach for quantifying collagen fibers in 
atherosclerotic lesions is to use Masson’s trichrome and Perl’s Prussian 
blue staining. This method is based on open-source ImageJ software 
and the color deconvolution plugin. The original images of lesions 
were transformed to RGB images, which were then deconvolved by 
ImageJ using the color deconvolution plugin. The resulting 
monochromatic images showed collagen fibers (Masson’s trichrome) 
and/or iron overload (Perl’s Prussian blue staining) at maximum 
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separation from background tissues. Collagen fibers were accurately 
and efficiently quantified in order to quantify the area of the green 
component. We measured the area of interest after selecting “Image” 
from the menu, choosing the “Adjust” box, and using the “Threshold” 
tool to isolate the green collagen fibers or the blue iron area. 
Depending on the stain, the threshold was manually adjusted until the 
entire green or blue region was highlighted in red. The threshold area 
was then measured by entering the set measurement dialogue under 
the “Analyze” menu, and after checking “Area,” “Integrated Intensity,” 
and “Limit to Threshold,” clicking the “Measurement” button under 
the “Analyze” menu, and the results were displayed in the “Results” 
window. Finally, morphometry was performed and area-based 
percentage analysis was used (46).

2.3.6.5 Immunohistochemistry
Immunohistochemistry was performed as described by Attaai 

et al. (47). Mouse polyclonal anti-CD8 (1:200; Abcam, catalog no. 
ab4055) and rabbit monoclonal anti-NF-kβ (1:100; Cell Signaling, 
catalog no. 8242) was used as a primary antibody. Sections were 
incubated with the secondary antibody, Ultra Tek HRP Anti-
Polyvalent Staining System (goat anti-mouse, rat, rabbit, and guinea 
pig IgG), which was purchased from ScyTek (USA), followed by 
incubation with VECTASTAIN ABC (avidin–biotin complex) reagent 
in a humid chamber at room temperature for 45 min. The reaction was 
visualized using 0.04% 3,3′-diaminobenzidine and 0.003% H2O2 in 
Tris–HCl buffer (0.05 M; pH 7.5) for 5–10 min. Harris hematoxylin 
was used as a counterstain on the sections for 30 s. Following sections 
dehydration in ascending concentrations of ethanol, they were cleaned 
in xylene and covered using DPX mounting media. Leitz Dialux 20 
microscope was used to analyze the immunohistochemical staining, 
and a Canon Powershot A95 digital camera was used to 
capture pictures.

A minimum of three fields from a minimum of three different 
rats were quantified. For each rat, 15 randomly chosen splenic 
portions were used for the measurements. NF-k and CD8 
expression were analyzed quantitatively using Image J (Version 
1.53i) program. Image J software was used to quantify the DAB 
signal in order to calculate the variations in immunoreactivity. 
Select “Set Measurement” from the “Analyze menu,” then check 
“Area,” “Max. gray value,” and “Mean gray value” in the pop-up box 
that appears. In the cytoplasm of the cells, many circles were drawn 
and recorded. The findings were copied into an excel sheet, and the 
optical density was determined using the formula shown below: To 
determine how dark the stained cells are in response to the DAB 
signal, use the formula OD = log (Max. gray intensity/mean gray 
intensity) (48).

2.4 Statistical analysis

The measurements from the experimental groups were 
statistically estimated using GraphPad Prism, version 5 (San Diego, 
CA, USA) with one-way ANOVA and with Tukey’s post hoc 
multiple comparison tests; P 0.05 was used in the data to define 
statistical significance between groups (54, 55). The data were 
expressed as mean with standard deviation (SD), and the 
measurements obtained from the experimental groups were 
expressed as mean with SD.

3 Results

3.1 Identification of DPPH scavenging 
activity and phenolic compound content of 
okra pods using HPLC

The DPPH scavenging activity of okra pods is illustrated in 
Table 1. Table 2 shows the potential bioactive phenolic compounds of 
okra pods using HPLC. As shown in the table, eight compounds were 
identified: catechin, chlorogenic acid, p-coumaric acid, ferulic acid, 
gallic acid, caffeic acid, quercetin and kaempferol.

3.2 Diabetic induction and body weight 
measurement

Experimental Animals developed type 1 diabetes within 72 h, and 
displayed typical DM symptoms like polyphagia, polydipsia, and 
polyuria as well as significant (P 0.05) unexplained weight loss that 
began at the end of the first week and continued until the end of the 
experimental period before sacrifice (Figure  1). The significance 
(p ≤ 0.05) of decreased body weight was much more obvious in the 
untreated diabetic group than in the DM + Okra treated group, 
compared with the control group. on the other side, the diabetic rats 
treated with insulin showed normal body weight at the end of the 
experiment (Figure 1B).

3.3 Biochemical assessment

Statistical analysis of fasting blood sugar during the first, 
second, and third weeks of the experiment revealed that both 
diabetic (DM) groups, those treated with okra and those treated 
with insulin, had significantly (p  ≤ 0.05) increased levels 
compared to the negative control and okra control groups 
(Figure 2). At the end of the fourth week and before sacrifice, the 
mean value for the DM + Okra treated group was significantly 
(p  ≤ 0.05) decreased compared to untreated DM group, and 
approached the level of the negative control and okra control 
groups; however, the elevated blood sugar levels in this group were 
still significant compared with the control groups (Figure 2). The 
highest cumulative blood sugar (HbA1c) level was observed in the 
DM group, which was significantly (p ≤ 0.05) higher compared to 
the negative control and okra control groups; it also reflected the 
diabetic status of rats in this group. The means cumulative blood 
sugar level was significantly (p ≤ 0.05) higher in the DM + Okra 
treated group compared to the negative control and okra control 
groups, and significantly lower compared to the DM group 
(Figure 3).

TABLE 1 The DPPH scavenging activity of okra pods.

Samples Total 
phenolic 
content 

(mg GAE/g)

Total flavonoid 
content 

(mg QE /g)

IC50 of 
DPPH 
radical 

(mg/ml)

Okra pods 46.45 11.61 0.83
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3.4 Histopathological assessment

Microscopic analysis of spleen sections stained with H&E revealed 
normal histological appearance of the splenic capsular structure and 
thickness in the control group (G1) and the okra control group (G4) 
(Figures  4A,D). Capsular thickness was significantly increased in 
untreated DM animals compared with the control groups 
(Figures 4B,F). A significant reduction in spleen capsular thickness 
was observed in diabetic animals treated with insulin (Figure 4C). 
However, the restoration and improvement in capsular thickness was 
more obvious in the DM + Okra group (Figures 4E,F).

The histological structure of white pulp is composed of follicular 
arteries with condensed lymphocytes and periarterial lymphatic sheath 
(PALS), and the germinal center contains condensed lymphocytes and 
a mantle zone surrounded by a marginal zone. A clear distinction 
between the red and white pulp was evident in the spleens of normal 
control rats (Figure  5A) and okra control animals (Figure  5D). 
Microscopic inspection of spleen sections of DM rats revealed that the 
white pulp was widely dispersed, and mature lymphocytes in the 
periphery was also drastically decreased (Figure 5B), with thick follicular 
arteries, necrosis, and depletion of lymphocytes in the germinal center 
(Figure 5B). Spleens from diabetic animals treated with insulin showed 
mildly thickened follicular arteries and mild lymphocytic depletion in 

the germinal center (Figure 5C). However, spleen sections from diabetic 
rats treated with okra showed an obvious improvement, with a normally 
distributed lymphocyte population and a normal ratio relative to red 
pulp (Figure 5E). According to the statistical examination of histological 
abnormalities in splenic tissues, diabetes generated significant depletion, 
degeneration, and necrotic changes in lymphocytes of white pulp. As 
compared to control animals, treatment with okra markedly restored 
these parameters to levels that are close to normal (Figure 5F).

The histological examination of splenic tissue from the control 
group and the okra control group revealed that the red pulp contained 
lymphoid cells, plasma cells, reticular fibers, splenic cords, and 
sinusoids (Figure  6A). The examination of spleen sections from 
diabetic rats revealed severe congestion and degenerative changes, 
deposition of hemosiderin granules (characteristic of damaged spleen) 
represented by marked siderophage (macrophages that engulf 
hemosiderin to give yellow-brown granules), and lymphocyte 
depletion (Figure 6B). Interestingly, the DM + Okra group (Figure 6E) 
showed partial repair of the red pulp architecture similar to the 
DM + Insulin group (Figure 6C), and similar to the control rats treated 
with Okra extract (Figure  6D). When compared to the tissues of 
control groups, the statistical analysis of the histopathological changes 
in the splenic tissues showed that diabetes significantly caused various 
lesions in the red pulp, while Okra treatments significantly restored 
the histopathological changes to near normal levels (Figure 6F).

3.5 Collagen deposition in spleen

Figures 7A,F,K show a representative section of the control spleen, 
while Figures 7D,I,N show a representative section of the spleen from the 
okra control group. Additionally, it was noted that the spleens of diabetic 
rats had increased capsule thickness with widely dispersed trabeculae and 
a relatively high degree of fibrosis surrounding the follicular artery 
(PALS), in both the white and red pulps (Figures 7B,G,L). DM rats treated 
with insulin showed moderate collagen deposition in capsule and red and 
white pulp (Figures 7C,H,M). In contrast, sections from the diabetic rats 
received okra displayed normal splenic trabeculae distribution and 
capsule thickness (Figures 7E,J,O). When compared to the control tissues, 

TABLE 2 Phenolic compounds contents in okra pods extract using HPLC.

Component Concentration 
(mg/g)

%

Catechin 45.69 4.57

Chlorogenic acid 27.45 2.75

p-Coumaric acid 17.82 1.78

Ferulic acid 7.50 0.75

Gallic acid 4.22 0.42

Caffeic acid 1.15 0.12

Quercetin 1.77 0.18

Kaempferol 0.02 0.015

FIGURE 1

Comparisons in the body weights between experimental groups in STZ DM model: (A): Body weight before the experiment, (B): Body weight (4th 
week). Values are expressed in Means  ±  SD. Significant differences vs. the control group are marked by different asterisks, while significant differences 
versus DM group are marked by different # through one-way ANOVA with Tukey’s post hoc test: ###, *** p ≤  0.001; ns: non-significant vs. control.
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okra treatments were observed to dramatically return these parameters to 
normal levels (Figure 8A).

3.6 Iron overload (hemosiderosis) in spleen

Histological sections of spleens from the control group 
(Figures 9A,F,K) and okra control group (Figures 9D,I,N) are shown 
for comparison. Perl’s Prussian blue staining of sections from the 
diabetic group revealed diffuse bluish hemosiderosis spots 
representing precipitations of iron pigment in the white and red pulp 
of the spleen, indicating marked iron overload (blue granules) 
(Figures 9B,G,L). Spleens of DM rats treated with insulin showed 
moderate iron deposition in capsule and red and white pulp 
(Figures  9C,H,M), but okra treatment was found to restore the 
histological architecture (Figures  9E,J,O), with blue granule 
distribution similar to the control group. In comparison to the 
control tissues, okra treatment significantly restored these parameters 
to the normal levels (Figure 8B).

3.7 Immunohistochemistry assessment

Nuclear factor kappa β (NF-kβ) was investigated with regard to 
diabetes being implicated as affecting the expression of 

FIGURE 2

Comparisons in the fasting blood glucose level of between experimental groups in STZ DM model. (A): glucose level (1st week), (B): Fasted blood 
glucose level (2nd week), (C): Fasted blood glucose level (3rd week), (D): Fasted blood glucose level (4th week). Values are expressed in Means ± SD. 
Significant differences vs. the control group are marked by different asterisks,while significant differences versus DM group are marked by different # 
through one-way ANOVA with Tukey’s post hoc test: #, *p ≤ 0.05, ##, **p ≤ 0.01, ###, ***p ≤ 0.001, ns: non-significant vs. control.

FIGURE 3

Comparisons in the cumulative blood sugar value (HbA1C) of 
between experimental groups in STZ DM model: Values are 
expressed in Means  ±  SD. Significant differences vs. the control group 
are marked by different asterisks,while significant differences versus 
DM group are marked by different # through one-way ANOVA with 
Tukey’s post hoc test: ##p ≤  0.01, ###, ***p ≤  0.001, ns: non-significant 
vs. control.
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pro-inflammatory cytokines. Comparing diabetic rat spleens to those 
of the control and okra control groups, we  observed that NF-kβ 
expression was elevated in the DM rats (Figures 10A–C, 11A–C). 
However, in diabetic animals that received insulin and okra treatment, 
the expression was mitigated (Figures 10D,E, 11D,E). In the control 
and okra groups, NF-kβ expression was restricted to just a few cells in 
the red pulp of the spleen (Figures 10A,B, 11A,B). However, in the 
other groups, the expression was more pronounced in red pulp and 
marginal zone of white pulp (Figures 10C–E, 11C–E). It was found 
that compared to control and okra control groups, the expression of 
CD8+ T cells were more pronounced in the control and okra groups 
than in the diabetic groups (Figures 12A–C, 13A–C). Comparing the 
diabetic groups treated with insulin, the immunomodulatory effect of 
okra on diabetes may be  easily clarified (Figures  12D,E, 13D,E). 
Comparing diabetic groups, DM + Insulin and DM + Okra to control 
and okra groups, a substantial reduction in the intensity of CD + ve 
cells was determined (Figure 14A). Comparing diabetic groups to 

control and okra groups, a substantial increase in the intensity of 
NF-kβ was determined. NF-kβ intensity was shown to be significantly 
lower in the DM + Insulin and DM + Okra groups compared to the 
diabetic groups (Figure 14B).

4 Discussion

Type 1 diabetes is characterized by hypoinsulinemia, 
hyperglycemia, and decreased body weight (41). STZ causes 
pancreatic β-cell damage and reduces the amount of insulin secreted, 
which results in hyperglycemia (49). The present work reveals a series 
of clinical, biochemical, and histopathological findings about the 
potential benefits of okra in an STZ-induced type 1 diabetic rat model. 
Similar to several previous studies (50–52), rats with induced DM 
presented hyperglycemia, glucosuria, and considerable (p  < 0.05) 
unexplained weight loss compared with other groups. In our study, 

FIGURE 4

Photomicrograph of spleen tissue sections stained with HE stains from (A) control group, (B) DM untreated group, (C) diabetic group treated with 
insulin, (D) okra control group, (E) DM  +  Okra, showing the capsular thickness. The bar size represents 50  μm. (F) Histomorphometry graph showing 
quantitative measurements of splenic capsular thickness. Data are expressed as means  ±  standard deviations. Significant differences versus the control 
group are marked by #, while significant differences versus DM group are marked by different asterisks through one-way ANOVA with Tukey’s post hoc 
test: *p ≤  0.05, ###, ***p ≤  0.001.
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okra extract could not restore the weight of rats administered STZ 
compared with control groups, although compared with the untreated 
DM group, this body weight result was significant (p < 0.05). In the 
present study, daily administration of 400 mg/kg okra pod extract to 
DM rats led to reduced fasting blood glucose levels, with values that 
were close to those of healthy controls. After the first week of the 
experiment, statistical analysis of fasting blood glucose levels showed 
that both the diabetic DM and DM + Insulin and DM + Okra groups 
had considerably (p ≤ 0.05) higher levels than the control groups. 
Before the end of the fourth week, the diabetic group that received 
okra extract had remarkably lower blood sugar levels (p ≤ 0.05) than 
the untreated DM group. The findings of this study indicate that 
diabetic rats had significantly high fasting blood glucose levels 
compared to the control group. Hyperglycemia was dramatically 
reduced in the groups treated with okra and insulin compared to the 

diabetic group. According to a previous study, the pancreatic beta-cell 
membrane is damaged by streptozotocin, and the loss of these cells 
lowers insulin release (53).

According to the present results, the DM group had the highest 
level of HbA1c and had a substantially greater level than the control 
groups (P 0.05). The DM + Okra treated group, on the other hand, had 
high HbA1c levels that were significantly (p ≤ 0.05) higher than those 
of the control and okra control groups, indicating that the okra 
treatment had no discernible effect on plasma glucose levels and did 
not inhibit the development of hyperglycemia in the DM rats. In 
contrast, the DM group that was not given any treatment, diabetic rats 
that received okra treatment exhibited a significant reduction in 
HbA1c levels. This finding agrees with the results of other studies (54, 
55). Our findings support a previous study (56) finding that okra may 
enhance glucose tolerance (57).

FIGURE 5

Photomicrograph of spleen tissue sections (White Pulp) stained with HE stains (A) control group: normal size and structured white pulp, normal 
follicular artery (arrow), germinal center lymphocytic cellular density (GC), Mantle zone (arrowheads) surrounded by marginal zone (star). (B) DM 
untreated group: thick follicular artery (arrow), necrosis and depletion in lymphocytes of germinal center (white arrows). (C) Diabetic group treated 
with insulin: mild thickness in follicular artery (arrow), lymphocytic depletion in germinal center (white arrows). (D) Okra control group: normal white 
pulp structure and cellular density. (E): DM  +  Okra, showing improvement in white pulp structure, mild lymphocytic cellular depletion in germinal 
center (white arrows). The bar size represents 50  μm. (F) Histomorphometry graph showing semiquantitative measurements of splenic white pulp total 
lesion scores. Data are expressed as means ± standard deviations. Significant differences versus the control group are marked by #, while significant 
differences versus DM group are marked by different asterisks through one-way ANOVA with Tukey’s post hoc test: *p ≤  0.05, ###, ***p ≤  0.001.
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In this study, it was found that administering okra pod extract 
after the onset of diabetes significantly reduced elevated blood glucose 
levels and led to maintaining body weight, which is consistent with 
previous reports (58). Importantly, the flavonoids in okra have 
antioxidant properties that prevent beta cell damage. Additionally, 
they include oxidative factors that raise insulin levels and can restore 
beta cells. Okra powder may enhance the glycemic index, according 
to previous studies (59). Studies have reported that the flavonoids with 
the highest levels in okra are quercetin and its derivatives (60–62). 
Flavonoids, including quercetin, have recently been found to lower 
blood glucose levels (59). According to research by (63), rats given 
okra exhibited decreased expression levels of the PPARα, PPARγ 
(Peroxisome proliferator-activated receptors), which were higher in 
diabetic rats. Nuclear receptor superfamily members PPARα, PPARγ 
genes have critical functions in modulating cellular proliferation in 

pancreatic endocrine tissue as well as lipid and glucose homeostasis 
(64). The polysaccharide extracted from okra has been shown by (33), 
to have anti-T2DM benefits by lowering oxidative stress through 
activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B 
(AKT)/glycogen synthase kinase 3 beta (GSK3) pathway. Additionally, 
it increased the expression of the nuclear factor erythroid-2 (Nrf2) and 
promoted the production of the enzyme’s heme oxygenase-1 (HO-1) 
and superoxide dismutase 2 (SOD2), which are both mediated 
by Nrf2.

According to the present study, blood glucose levels were 
significantly lower in the DM + Okra group than in the DM group. A 
number of previous studies have shown that dietary supplements 
containing natural antioxidants, such as flavonoids and phenolic 
compounds, can reduce the risk of streptozotocin-induced diabetes 
(65). Thus, pancreatic tissue may benefit from the flavonoids and fiber 

FIGURE 6

Photomicrograph of spleen tissue sections (Red Pulp) stained with HE stains (A) control group: normal red pulp containing normal lymphoid cellular 
density (star), splenic cords and sinusoids (arrow). (B) DM untreated group: congested sinusoids (arrows), necrosis and depletion in lymphocytes (star), 
(B) magnified in selected square: marked sidrophage cell numbers (notched arrows), megakaryocytic cells (zigzag arrows). (C) Diabetic group treated 
with insulin: a normal histological appearance of red pulp composed of condensed lymphocytes (star) splenic cords and sinusoids (arrow). (D) Okra 
control group: (E): DM  +  Okra, showing improvement in red pulp structure. The bar size represents 50  μm, (C,D) represents 100  μm. 
(F) Histomorphometry graph showing semiquantitative measurements of splenic red pulp total lesion scores. Data are expressed as means  ±  standard 
deviations. Significant differences versus the control group are marked by #, while significant differences versus DM group are marked by different 
asterisks through one-way ANOVA with Tukey’s post hoc test: #, *p ≤  0.05, **p ≤  0.01, ###, ***p ≤  0.001.
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present in okra (65, 66). After 4 weeks, a significant difference was 
found between the groups. Therefore, blood sugar levels in diabetic 
rats can be reduced if they consume okra extract for 4 weeks.

Spleens are made up of two distinct elements: a white pulp and a 
red pulp. T and B lymphocytes, as well as macrophages, make up the 
majority of the white pulp (56). However, parenchymatous cells and 
vascular sinuses make up red pulp. A notable histological characteristic 
of the diabetes control group is a decrease in white pulp and activation 
of red pulp in the spleen. An early sign of spleen damage is 
hemosiderin, an iron-loading complex made of ferritin crystals (67).
It should be noted that persistent hyperglycemia is the most common 
cause of multiple organ failure (68). One of the most serious effects of 
diabetes is destruction of the spleen, a secondary lymphoid organ 

made up of red and white pulp sandwiched between two portions in 
the marginal zone (13, 68). A fundamental function of red pulp is 
blood filtration, by removing damaged erythrocytes (56). White pulp, 
which contains T- and B-lymphocytes, dendritic cells, and 
macrophages, is important for the spleen’s immunological function, 
which protects against infection (56, 69). Antigen processing occurs 
in the marginal zone (56, 70). Diabetes, according to research, 
produces morphological and histopathological abnormalities as a 
defining hallmark of spleen damage. These changes can eventually 
lead to immunological dysfunction (13, 71, 72). Splenic immune 
dysfunction in both diabetic rats and humans has been reported in 
previous studies (13, 73). Splenic malfunction can also disturb glucose 
and lipid metabolism (13, 73). This might explain the potential 

FIGURE 7

Photomicrograph of spleen tissue sections stained with Masson’s Trichrome from the experimental groups showing the collagen deposition in (A–E) 
the splenic tissue capsule (arrowheads). (F–J) Collagen deposition in PALS (arrows), and in red pulp (stars). (K–O) Collagen deposition in splenic white 
pulp (arrows). The bar size represents (A–F =  200  μm), (G–O =  100  μm).

FIGURE 8

Histomorphometry graph showing quantitative measurements representing mean percentage area of (A) Collagenous fibers, (B) Iron overload 
(hemosiderosis) in all groups. Data are expressed as means  ±  standard deviations. Significant differences versus the control group are marked by #, 
while significant differences versus DM group are marked by different asterisks through one-way ANOVA with Tukey’s post hoc test: (###, ***p ≤  0.001), 
ns: non-significant.
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influence of the spleen’s metabolic and immunological responses in 
the development of diabetes (13, 73, 74). In line with this, there is 
unambiguous proof that splenectomy and hyperglycemia are 
associated (73).

The depletion of white pulp and its marginal zone was significantly 
reduced in diabetic rats was previously described (75), while the 
volume density of the red pulp zone increased, pointing to spleen 

degradation and a diminished cellular immunological response. 
Supplementation with okra lessened diabetes’s harmful effects. This 
was demonstrated by the improvement in size and cellular density of 
the white pulp and marginal zone, indicating the ability to lessen 
spleen damage in diabetes conditions.

There is also evidence that okra protects against diabetic-induced 
splenic damage. Oxidative stress is generated by the overproduction 

FIGURE 9

Photomicrograph of spleen tissue sections stained with n stained with Perl’s Prussian bluefrom the experimental groups showing the 
erythrophagocytic activity and iron overload (hemosidrosis) in the splenic tissue red pulp (stars), and white pulp (arrows). The bar size represents 
(A–E =  200  μm), (F–J =  100  μm), (K–O =  50  μm).

FIGURE 10

Expression of NF- kβ in the spleen of rats. (A,B) Showing only a few numbers of cells in the red pulp of the spleen (inset) from the control and control 
okra groups reacted positively with NF- kβ. (C–E) NF-kβ expression was more pronounced in the red pulp and marginal zone of white pulp (arrows). 
(E) The expression of NF- kβ was mitigated in the diabetic groups that treated with okra.
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of free radicals and a depleted antioxidant defense, which is recognized 
as a key regulator in the process of splenic apoptosis in diabetes (52, 
68, 75). In the diabetic condition, high glucose concentrations induce 
ROS release by activating the glucose autoxidation, hexosamine, 
protein kinase C, and polyol pathways, as well non-enzymatic protein 
glycation, which together contribute to splenic damage (68, 76). 

Excess ROS production induces lipid peroxidation, which eventually 
yields components that can accelerate cell death signaling and trigger 
cell death (77, 78). ROS overproduction depletes enzymatic 
antioxidants such as catalase, SOD, and GPx, molecules that function 
to combat free radicals and neutralize oxidants (77). Taking this into 
account, splenic cell damage in diabetes is primarily due to the 

FIGURE 11

Higher magnification of NF- kβ expression in the different groups. (A,B) Showing the control and control okra groups. (C) The diabetic group. (D,E) The 
diabetic groups that treated with insulin and okra, respectively.

FIGURE 12

CD-8 expression in the spleen of rats. (A,B) Showing the prominent expression of CD8+ T-cells in the control and okra. The expression was more 
obvious in the red pulp and the marginal zone of the white pulp (inset). (C,D) Showing the declined expression of CD8+ T-cells in the diabetic group 
and the diabetic group that receive insulin treatment. (E) The diabetic group that receives okra treatment showed a prominent immunoreactivity to 
CD8.
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excessive oxidative stress generated by a pro-oxidant/antioxidant 
imbalance. In light of this finding, increased oxidative stress caused by 
a pro-oxidant/antioxidant imbalance is the main cause of splenic cell 
damage in diabetes. In previous studies, it was shown that 
STZ-induced diabetes in rats was associated with an obvious increase 
in splenic oxidative stress (13, 52, 68, 75). Concerning the antioxidative 
effects of flavonoids, okra aided in prevention of oxidative damage by 
enhancing endogenous antioxidant defense and scavenging free 

radicals that were produced (52, 79, 80). The antioxidant and free 
radical scavenging properties in okra pod extract effectively alleviate 
spleen damage caused by hyperglycemia. Histological sections of 
spleen have shown that okra treatment after induction of diabetes 
reverses the reduction of white pulp, activation of red pulp, and 
augmented hemosiderin deposition, indicating that okra has the 
potential to restore normal immunological functions of the spleen. 
Histological analyses of the spleen have demonstrated that treating 

FIGURE 13

Higher magnification of CD-8 expression in the different groups. (A,B) Showing the control and control okra groups. (C) The diabetic group. (D,E) The 
diabetic groups that treated with insulin and okra, respectively.

FIGURE 14

Immunohistochemical staining quantification using image j software. (A) Showing the mean immunohistochemistry staining of CD8 in different 
groups. (B) Showing the mean immunohistochemistry staining of NF- kβ expression in the different groups. Data are expressed as means ± standard 
deviations. Significant differences versus the control group are marked by asterisks. While significant differences versus DM group are marked by 
different # through one-way ANOVA with Tukey’s post hoc test: ***p ≤  0.001, ##, **p <  0.01, #, *p <  0.05.

https://doi.org/10.3389/fvets.2023.1268968
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Alblihd et al. 10.3389/fvets.2023.1268968

Frontiers in Veterinary Science 15 frontiersin.org

animals with okra after the onset of diabetes reverses the circumstances 
of reduced white pulp, activated red pulp, and increased hemosiderin 
deposition, suggesting that okra has the potential to reestablish the 
normal immunological functions of the spleen. The pathogenesis of 
type 1 diabetes has been linked to increased amounts of inflammatory 
cytokines, which may help attract macrophages and lymphocytes to 
the sites of inflammation (81).

Nuclear factor kappa β (NF-kβ) is a transcription factor that has 
been demonstrated to be activated in response to stress or signals 
produced by pathogens. NF-kβ is quiescent in the cytoplasm of cells 
and is not activated unless an appropriate type of cellular stimulation 
occurs (82). NF-kβ controls cell proliferation, adhesion, apoptosis, and 
angiogenesis in a variety of cell types (83). The inflammatory proteins 
interleukin 6 (IL6) and tumor necrosis factor alpha (TNF-α) are 
produced as a result of the NF-kβ activation (84). The pathophysiology 
of diabetes is significantly influenced by the expression of cytokines 
and inflammatory substances (85). According to (86), the NF-kβ 
family of transcription factors consists of five closely related 
transcription factors: p50 (NF-kb1), p52 (NF-kb2), p65 (RelA), c-Rel, 
and RelB. the antidiabetic benefits of dietary flavonoids and quercetin 
and their underlying molecular mechanisms on particular pathways, 
including the glucose transporter, hepatic enzymes, tyrosine kinase 
inhibitor, NF-kβ, AMPK (5′ adenosine monophosphate-activated 
protein kinase) and PPAR. Through the control of glucose metabolism, 
hepatic enzyme activity, and a lipid profile, flavonoids ameliorate the 
pathogenesis of diabetes and its consequences (87). Additionally, 
quercetin’s modulatory effect on NF-kβ, a nuclear factor kappa-light-
chain-enhancer of activated B cells, aids in enhancing the release of 
insulin induced by glucose (88). Comparing the spleens of DM rats to 
those in the control and okra control groups, we observed that NF-kβ 
expression was exaggerated in the DM rats. However, in diabetic 
animals that received insulin and okra treatment, the expression was 
mitigated. Therefore, we were able to show the ameliorative effect of 
okra on diabetic animals: compared to diabetic rats, animals treated 
with okra had decreased positive NF-kβ immunostaining.

Innate and adaptive immunity are regarded as important immune 
system components. It should be emphasized that the two primary 
adaptive immunity mediators are B cells, which produce antibodies, 
and T cells, which are further classified into helper CD4+ cells and 
cytotoxic CD8+ cells (89). Patients with diabetes mellitus have 
impaired function of both CD4+ and CD8+ T cells (90, 91). Therefore, 
diabetes progression is substantially influenced by abnormal immune 
cell activation and the subsequent inflammatory environment. In the 
majority of pancreatic biopsies from T1D patients, class I human 
leukocyte antigen (HLA) is hyper-expressed in islet and endothelial 
cells (92). These findings imply that cytotoxic T lymphocytes’ 
identification of islet autoantigens delivered by class I HLA molecules 
may play a significant role in the effector mechanism that attacks beta 
cells (93). The current study demonstrates the immunomodulatory 
effect of okra on the adaptive immune response in streptozotocin 
(STZ)-induced diabetic rats. This was evidenced by the expression of 
CD8+ T cells, which was more obvious in diabetic animals treated with 
okra compared to diabetic animals and diabetic animals treated with 
insulin. According to previous research (94), diabetic rats have 
significantly fewer lymphocytes in their spleen and peripheral blood. 
This finding suggests that elevated levels of free radicals, rising 
pro-inflammatory cytokine levels, and programmed cell death are all 
signs of diabetic toxicity stressing lymphocytes.

5 Conclusion

Okra pod extract exhibited potent anti-diabetic and anti-
hyperlipidemic effects in streptozotocin-induced diabetic rats, 
indicated by its action in downgrading elevated blood glucose levels 
and maintaining body weight to a large extent. Okra pod extract 
effectively alleviated spleen damage caused by hyperglycemia. 
Histological sections of the spleen demonstrated that okra 
administration after diabetes induction reversed the reduced white 
pulp and activated red pulp, and increased hemosiderin deposition, 
indicating its powerful effect on restoring the normal immunological 
function of the spleen. Okra therapy also lowered inflammation, 
which is consistent with the other findings. The splenic tissue of the 
DM group treated with okra had lower NF-kβ expression and higher 
CD8 expression.
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