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Introduction: The extended-spectrum beta-lactamase (ESBL)-producing 
Enterobacteriaceae, such as Escherichia coli, are emerging as a serious threat 
to global health due to their rapid spread and their multidrug-resistant (MDR) 
phenotypes. However, limited information is available regarding the prevalence 
and antimicrobial resistance (AMR) profile of ESBL-E. coli in the United States dairy 
farms. This study aimed to determine the prevalence and AMR pattern of ESBL-E. 
coli in East Tennessee dairy cattle farms.

Methods: Rectal fecal samples from dairy cattle (n  = 508) and manure (n  = 30), 
water (n  = 19), and feed samples (n  = 15) were collected from 14 farms. The 
presumptive E. coli was isolated on CHROMagar™ ESBL and confirmed by 
matrix-assisted laser desorption/ionization-time of flight mass spectrometry 
(MALDI-TOF MS). Antimicrobial susceptibility testing was performed on the 
ESBL-E. coli isolates.

Results and discussion: From 572 fecal and farm environmental samples, a total of 
233 (41%, n  =  572) ESBL-E. coli were identified. The prevalence of fecal ESBL-E. coli 
was 47.5% (95% CI: 46.2–49.2). The within-farm prevalence of ESBL-E. coli ranged 
from 8 to 100%. Recent treatment history with third-generation cephalosporins (3GC), 
cow parity ≥3, and calves were the independent risk factors associated (P  <  0.05) 
with fecal carriage of ESBL-E. coli. Overall, 99.6% (n  =  231) ESBL-E. coli tested 
were phenotypically resistant to at least one of the 14 antimicrobial agents tested. 
The most common AMR phenotypes were against beta-lactam antibiotics, ampicillin 
(99.1%; n  =  231 isolates), and ceftriaxone (98.7%, n  =  231). Most ESBL-E. coli isolates 
(94.4%) were MDR (resistance to ≥3 antimicrobial classes), of which 42.6% showed co-
resistance to at least six classes of antimicrobials. ESBL-E. coli isolates with concurrent 
resistance to ceftriaxone, ampicillin, streptomycin, tetracycline, sulfisoxazole, and 
chloramphenicol are widespread and detected in all the farms. The detection of MDR 
ESBL-E. coli suggests that dairy cattle can be a reservoir for these bacteria, highlighting 
the associated public health risk.
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1 Introduction

Antimicrobial resistance (AMR) is recognized as one of the top 
five global public health threats of this century (1). Of great concern 
are extended-spectrum beta-lactamase (ESBL)-producing 
Enterobacteriaceae, including Escherichia coli, due to their rising 
prevalence in food-producing animals (2, 3). Some studies identified 
the use of β-lactam antibiotics, especially the third generation 
cephalosporins (3GC) in dairy cattle farms, as a major risk factor for 
the rise of ESBL-producing Enterobacteriaceae (4, 5).

In the United  States, β-lactam antibiotics such as 3GC (e.g., 
ceftiofur), first-generation cephalosporins (e.g., cephapirin), and 
penicillin are the top three most frequently used antibiotics in dairy 
cattle (6, 7). These antibiotics are mainly used to treat or prevent 
mastitis, metritis, endometritis, lameness, pneumonia or bovine 
respiratory disease complex, and neonatal calf diarrhea (8–10). 
According to FDA’s 2019 report, from 29,830 kg of cephalosporins sold 
and approved for use in food-producing animals, the vast majority 
(81%) was distributed to cattle production (11). Similarly, Nora et al. 
(12) also reported that dairy cattle use the largest amount of 
cephalosporins and penicillin, both of which are β-lactam antibiotics.

According to the WHO’s risk-based classification systems, third-
generation cephalosporins are categorized as a ‘critically important 
class of antibiotics (CIAs) (13). They are used as antimicrobial drugs 
of choice for the treatment of severe infections caused by E. coli and 
Salmonella in humans (14, 15). The use of the same generation of 
cephalosporins in dairy cattle farms and human health settings may 
lead to cross-resistance to similar cephalosporins used for the 
treatment of human infections or vice versa if resistant bacteria 
transfer from carrier animals to humans through direct contact or 
indirectly through the food chain or environmental sources (16, 17).

In Enterobacteriaceae, resistance to 3GC is mainly mediated by the 
production of ESBL, a group of enzymes that hydrolyze the β-lactam 
ring of the 3GCs (18). ESBL-producing Enterobacteriaceae can 
be multidrug-resistant (MDR) and display resistance to other classes 
of antibiotics such as tetracycline, aminoglycosides, fluoroquinolones, 
sulfonamides, macrolide, and phenicols (19–24). E. coli, the most 
frequent colonizer of the gastrointestinal tracts of cattle (25), are 
frequently exposed to β-lactam antibiotics that exert selection 
pressure, and certain strains of E. coli can cause severe infections in 
humans (17, 25–29). Recent studies in the United States (16, 30–34) 
increasingly reported the emergence of ESBL-producing E. coli, in 
dairy cattle since its first report in Ohio in 2010 (32), posing a 
significant threat to both animal and human health.

Similarly, reports from the United  States Centers for Disease 
Control and Prevention (CDC) indicated a continuous rise in human 
infections caused by community-associated ESBL-producing 
Enterobacteriaceae (35). The CDC report revealed a yearly rise of 
approximately 9% in hospitalizations and an increase in deaths 
attributed to ESBL-producing bacteria. There is speculation that dairy 
farms may serve as reservoirs of ESBL-producing human pathogens 
because of the frequent use of 3GC (29, 36–38). The CDC has not 
directly implicated dairy farms as a source of ESBL-producing 
Enterobacteriaceae infection. However, the frequent use of 3GCs and 
other β-lactam antibiotics in dairy farms may play a role in the overall 
increase of ESBL-producing Enterobacteriaceae.

Previous studies on the United States dairy cattle farms showed 
an increasing trend in the occurrence of ESBL-producing E. coli 

(4, 30, 32, 33, 37, 39). A recent review of available literature on 
United States dairy cattle farms and recent global reviews on the 
status of ESBL-producing Enterobacteriaceae in cattle indicated 
that there is limited information on the status of ESBL-producing 
Enterobacteriaceae, including ESBL-producing E. coli in the 
United  States dairy farms (16, 40). The prevalence of ESBL-
producing E. coli and factors affecting its occurrence in dairy farms 
are poorly understood. Understanding the status (prevalence, risk 
factors and resistance profile) of ESBL-producing E. coli is crucial 
to informing the associated public health risks and devising 
effective control measures. The overall objective of this study was 
to determine the prevalence and antimicrobial susceptibility 
patterns of ESBL-producing E. coli, in East Tennessee dairy cattle 
and farm environmental samples.

2 Materials and methods

2.1 Study design and sample size

This study was approved by the University of Tennessee’s 
Institutional Animal Care and Use Committee (IACUC) Registration 
Number: 2782–0720. The study farms were conventional 
(non-organic) dairy farms in East Tennessee. A cross-sectional study 
was conducted in 14 dairy farms across eight counties in 
East Tennessee.

East Tennessee was selected due to its proximity to the University 
of Tennessee, and most of the dairy farms (59%, n = 183) in Tennessee 
are found in this part of the State. Dairy farms were randomly selected 
(using a random number generator) from a sampling frame of 108 
dairy farms found at the beginning of this study in East Tennessee. 
Since some farmers may not be interested in the study, the first 60 
dairy farms were randomly selected. Dairy farmers on the list were 
then contacted one at a time by phone and asked whether they were 
willing to participate in the study. When the first selected farm refused 
to participate or could not be contacted, the next farms on the list were 
contacted and asked for their willingness to participate in the study. 
In the end, of the contacted dairy farms (n = 50), only 14 agreed to 
participate in the study.

To estimate the sample size, 50% expected prevalence of 
ESBL-E. coli at an animal level, 0.05 desired precision at a 95% 
confidence interval was used. Accordingly, the minimum required 
sample size was 384. To account for the possible clustering effect 
(design effect), the minimum sample size (n = 384) was multiplied by 
1.34 (design effect) (4, 41). Accordingly, 507 dairy cattle were sampled 
(9–74 animals per farm). The herd size of the farms ranges from 14 to 
1700 dairy cattle. Convenience sampling was used to select an 
individual animal in the herd. On the day of the farm visits, a brief 
questionnaire survey was conducted with a dairy farmer (producer) 
before sample collection. The questions included farm-related 
information such as herd size, predominant breed of cows, major 
disease problems in the farm, common antibiotics used (for 
therapeutic and prophylactic purposes), use of a blanket dry cow 
therapy (BDCT) versus selective dry cow therapy (SDCT), 
management of waste milk (milk from antibiotic-treated cows), use of 
medicated milk replacer, management of manure, and type of farm 
(open or closed), if open the recent introduction of animals from 
other herds. Individual sampled animal-related information such as 
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age, breed, parity, physiological status (dry/lactating), recent treatment 
history, and use of ceftiofur within the last 6 months before 
sample collection.

2.2 Sample collection

Following the recruitment of the farms, one-time visits were 
made to each farm between August 2020 and July 2021 for survey 
data and sample collections. Fresh rectal fecal samples were collected 
from individual cows and calves using sterile disposable rectal 
long-arm gloves. Farm environmental samples such as manure 
(pooled from different pen surfaces and slurry), feed (pooled feed), 
and water (from troughs) were collected from the study farms. 
Approximately 100 g of individual cow and 20 g of individual calf 
rectal feces were collected into 50 mL sterile falcon tubes (Thermo 
Fischer Scientific, Waltham, MA, United States) and labeled with 
individual animal ID. Similarly, about 200 g of manure and feed 
samples and 50 mL of water from water troughs were collected into 
50 mL sterile tubes. The samples were immediately placed on ice in 
an icebox, transported to the Lab, and processed in less than 24 h 
of collection.

The study recruited 14 dairy farms (designated A-N) across eight 
counties in East Tennessee (Table 1). A total of 424 dairy cows (average 
parity: 2.3 lactations, range: 1–8 lactations; average age: 3.9 years, 
range: 2–13 years) and 84 calves (average age: 2.7 months old, range: 
12 days to 8 months). Pooled manure (n = 30), pooled water samples 
(n = 19) from water troughs, and polled feed samples (n = 15) were 
collected from the farms (Table 1). Two samples (from farm N), one 
collected from a lagoon and the other one collected from runoff from 
the farm to the environment, were included as manure. A feed sample 
was not collected from one of the farms (Farm M) as the farmer was 
less comfortable. One of the two collected feed samples in farm G was 
a liquid whey fed to cattle.

2.3 Laboratory analysis of collected 
samples

About 10 g of individual animal rectal feces, feed, and manure 
samples were combined with 90 mL of Tryptic soy broth (TSB-PO4, 
MG Scientific, Pleasant Prairie, WI, United States) in a Whirl-Pak bag 
(Whirl-Pak, Pleasant Prairie, WI, United States) and massaged by 
hand for 15–20 s to mix the samples with the TSB-PO4. For water 
samples, 20 mL of sample was mixed with 80 mL TSB-PO4. The 
homogenized sample was placed at room temperature for about 2 h. 
Then, 50 μL of the homogenized sample was spirally platted on 
CHROMagar ESBL plates (DRG International Inc., Springfield, NJ, 
United States) and incubated at 37°C for 24 h to isolate ESBL-E. coli. 
Two to three presumptive ESBL-E. coli (dark pink to reddish) colonies 
were subcultured onto a new CHROMagar ESBL plate and incubated 
for another 24 h at 37°C. Well-isolated pure colonies were transferred 
to 1 mL Luria-Bertani broth (LBB) (Thermo Fischer Scientific) into a 
sterile 2 mL 96 well-serum block and incubated at 37°C for 24 h. A 
0.5 mL of the culture was transferred to a new 96-well serum block, 
mixed with an equal volume of sterile 80% glycerol, and stored at 
−80°C for further analysis.

2.4 Sample preparation and MALDI-TOF MS 
based Escherichia coli identification

Presumptive E. coli isolates stored at −80°C were thawed and 
plated on CHROMagar ESBL plates ESBL plates and incubated at 
37°C for about 18 h. A single colony of E. coli was picked and 
subcultured on blood agar (Thermo Fischer Scientific) at 37°C for 
about 18 h. Subsequently, E. coli was identified using matrix-assisted 
laser desorption ionization time-of-flight mass spectrometry 
(MALDI-TOF MS) as described by the manufacturer (Bruker 
Daltonics, Billerica, MA, United States) at the University of Tennessee, 

TABLE 1 Farm location and samples collected.

County Farm Fecal samples collected Manure Water Feed Total

Cows Calves

1 A 14 – 2 1 1 18

B 9 – 1 1 1 12

2 C 63 – 2 1 1 67

D 30 – 2 1 1 34

3 E 13 – 2 1 1 17

F 30 10 2 1 1 44

4 G 25 – 1 1 2 29

5 H 26 – 1 1 1 29

6 I 20 10 2 1 1 34

L 41 9 2 2 1 55

N 55 19 7 4 2 87

7 J 20 5 2 1 1 29

K 30 15 2 1 1 49

8 M 48 16 2 2 - 68

All farms 424 84 30 19 15 572
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College of Veterinary Medicine, Diagnostic Bacteriology and 
Mycology Lab. The samples were prepared using a formic acid (FA) 
extraction method (42) and as described in detail in our previous 
publication (43).

2.5 Antimicrobial susceptibility testing

Antimicrobial susceptibility testing (AST) was performed on 
MALDI-TOF MS confirmed E. coli isolates against 14 
antimicrobials representing ten classes of antimicrobials using the 
broth microdilution method. Commercially available 96-well 
microtiter plates containing the 14 antimicrobial panels 
(Sensitire™ CMV4AGNF) (Thermo Fisher Scientific) described in 
our previous publication were used (43). The minimum inhibitory 
concentrations (MIC) of the 14 antimicrobials were determined 
following the manufacturer’s recommended protocol and following 
CLSI M100 Clinical and Laboratory Standards Institute guidelines 
(CLSI M100: Enterobacteriaceae) (44) and summarized 
(Supplementary Table S1). E. coli ATCC 25922, Staphylococcus 
aureus ATCC 29213, Streptococcus pneumoniae ATCC 49619, 
E. coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853 
were used as quality control strains.

The results were reported as susceptible (S), Intermediate(I), 
resistant (R) along with the MIC values, the lowest concentration (μg/
mL) of an antibiotic that completely inhibits visible growth of the 
tested isolates, using CLSI M100 guidelines for interpretation.

An MIC breakpoint was not available on CLSI M100 guidelines 
for streptomycin and, thus, National Antimicrobial Resistance 
Monitoring System (NARMS) interpretive criteria (breakpoints) for 
E. coli antimicrobial susceptibility testing1 was used. Accordingly, an 
MIC ≥32 μg/mL was defined as resistant to streptomycin. For 
sulfisoxazole, CLSI defines an MIC ≤256 μg/mL as susceptible and an 
MIC ≥512 mL as resistant, and there are no breakpoints for 
intermediate resistance. Thus, E. coli isolates that have an MIC 
≥256 μg/mL were reported as resistant to sulfisoxazole in this study. In 
addition, for analyses, a few E. coli isolates that displayed intermediate 
resistance, mostly to ciprofloxacin, were recategorized as resistant. 
Multidrug resistance (MDR) was defined as acquired resistance to at 
least one antimicrobial agent in three or more antimicrobial 
classes (45).

2.6 Statistical data analyses

Raw data was entered in Microsoft Excel for Windows (2010, 
Microsoft Corp., Redmond, WA). Data was imported to SPSS for 
Windows and analyzed using IBM SPSS Statistics for Windows 
Version 27.0. (IBM Corp, Armonk, NY, United  States). For all 
statistical analyses, the unit of analysis was the sample obtained from 
a given source (cow, calf, manure, water, and feed), the farms, and the 
bacterial isolates. Descriptive statistics were done to summarize the 
animal and farm-level prevalence of ESBL-E. coli and the prevalence 
of the bacteria from different sources (fecal, water, feed, and manure 

1 https://www.cdc.gov/narms/antibiotics-tested.html

samples) of the farms. The individual animal was classified as ESBL-
positive when ESBL-producing E. coli isolates were identified 
phenotypically on the CHROMagar ESBL™ plate and confirmed by 
MALDI-TOF MS (46, 47) in the feces of the dairy cow or calf and the 
other samples.

A farm (herd) was classified as ESBL-positive when ESBL-
producing E. coli was detected from at least one animal. 
Descriptive statistics were used to calculate the prevalence of 
ESBL-producing E. coli as the number of samples tested positive 
for ESBL-producing E. coli divided by the total number of samples 
tested for each sample category. Sampling weight was used to 
calculate the within-herd and individual animal level prevalence 
to account for the unequal probability of sampling employed 
during the sample collection. The weighted sample for a specific 
farm was determined by dividing the actual number of animals 
sampled on the farm by the herd size of that farm. The reciprocal 
of this quotient was then taken as the weighted sample for the 
farm. To calculate the overall weighted prevalence, the unweighted 
prevalence of ESBL-producing E. coli in each of the 14 herds 
(farms) was multiplied by the corresponding herd proportion. 
These products were then summed up, and the result was divided 
by 100. A univariate and multivariable mixed-effects logistic 
regression model, which accounts for the clustering effect of cattle 
or isolates within farms, was used in the analysis. A mixed effects 
logistic regression analysis (weighted) was performed to evaluate 
the association between selected predictors (farm or animal level 
data) and the odds of ESBL-producing E. coli fecal carriage 
(dependent variable) in cattle.

In addition, the multidrug resistance (MDR) status of each 
bacterial isolate obtained from the study was treated as a dichotomous 
outcome variable (MDR vs. non-MDR), and their possible variation 
between sample sources was evaluated. The MDR isolates were further 
dichotomized (whether they were resistant to at least six classes of 
antibiotics or not) and assessed if there was a variation between the 
sample sources. A Pearson χ2 or Fisher exact test (as appropriate) was 
used to test the association between different categorical variables 
(ignoring clustering) when the mixed effect model fails to converge. 
A value of p = 0.05 was used for all statistical analyses to determine the 
significance level.

3 Results

3.1 Questionnaire survey results

The questionnaire survey showed that half of the farms 
practice closed production systems where replacement heifers 
originated from the same farm, whereas the other half buy 
replacement heifers/cows from outside sources in addition to 
raising their own. Thirteen of the fourteen participating dairy 
farms use cow manure as fertilizer, mainly on pasture, and one 
farm (Farm G) uses manure for biogas production. Most of the 
farms (71%) discard waste milk from cows on antibiotic treatment 
(dump down the drain or dump on the pasture field), whereas the 
remaining four farms (Farm C, F, G, and I) feed it to calves. A 
blanket dry cow treatment program was routinely practiced in all 
the farms except three (B, F, and N), which used selective dry cow 
therapy and teat sealant. The most frequently used antibiotics for 
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dry cow therapy were Spectromast® DC (ceftiofur hydrochloride), 
toMORROW (cephapirin benzathine), and Quartermaster 
(procaine penicillin G and dihydrostreptomycin). Eleven farms 
predominantly have Holstein-breed cows, whereas Jersey cows 
dominate the remaining three. The herd size of the 14 farms 
ranged from 14 to 1700 cattle, with a median herd size of 
750 animals.

All farmers mentioned mastitis as the most frequent herd 
health problem, followed by hoof problems. Beta-lactam 
antibiotics (penicillin and cephalosporins) were the most common 
antibiotics used in all farms. All study farms frequently use 
different generations and formulations of cephalosporins. Major 
disease problems and frequently used antibiotics in each farm are 
listed in Table 2.

3.2 Microbiological result

According to CHROMagar™ ESBL result, a total of 306 
presumptive ESBL-E. coli were isolated from rectal feces, manure, 
water, and feed samples. Out of 306 presumptive ESBL-E. coli isolates, 
233 (76%) were confirmed to be E. coli by MALDI-TOF MS. The 
remaining bacteria include Citrobacter sedlakii (n = 69 isolates), 
Citrobacter freundii (n = 2), and Acinetobacter baumanii and 
Enterococcus faecalis. One each. Except for AST, which was conducted 
on 231 isolates, all statistical analyses and inferences were based on the 
233 E. coli isolates. Most of the E. coli isolates (90%, n = 233) were 
isolated and identified from rectal fecal samples, whereas the 
remaining (10%) were from farm environmental samples (manure, 
water, and feed samples).

TABLE 2 Common diseases and antibiotics used in each dairy farm.

Farm Common diseases on the farms Commonly used 
antibioticsa

Mastitis Hoof problem Metritis/
endometritis

Resp. disease GIT disease

A Yes Yes No No No Ceftiofur, pirsue, and 

quartermaster

B Yes No No Yes No Tetracycline, pirsue, 

toDAY, ToMORROW

C Yes Yes No Yes No ToMORROW and 

ceftiofur

D Yes Yes Yes No No Ceftiofur, penicillin, and 

quartermaster

E Yes No No No No ToDAY and 

ToMORROW

F Yes Yes No No No Ceftiofur and 

quartermaster

G Yes Yes No No No Tetracycline, Penicillin, 

ToMORROW, 

quartermaster

H Yes No No Yes No Ceftiofur, ampicillin

I Yes Yes No No No Pirsue, ToDAY, and 

ToMORROW

J Yes Yes No Yes Yes Ceftiofur, penicillin G, 

ampicillin, ToDAY, 

pirsue, and ToMORROW

K Yes Yes Yes Yes Yes Ceftiofur, Penicillin G, 

ampicillin, quartermaster, 

tulathromycin, and 

ToMORROW

L Yes Yes No No No Ceftiofur, ToMORROW, 

and quartermaster

M Yes Yes Yes Yes No Ceftiofur, penicillin G, 

and tetracycline

N Yes Yes Yes Yes Yes Ceftiofur, penicillin G, 

tetracycline, and 

tulathromycin

atoMORROW, cephapirin benzathine; toDAY, cephapirin sodium; Pirsue, pirlimycin hydrochloride; Quartermaster, Procaine penicillin G and Dihydrostreptomycin sulfate; Endometr, 
endometritis; Resp, respiratory; GIT, gastrointestinal.
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3.3 Prevalence of ESBL-producing 
Escherichia coli isolates

The weighted prevalence of fecal ESBL-producing E. coli in dairy 
cattle was 47.5% (95% CI: 46.2–49.2). ESBL-producing E. coli was 
detected from all farms. The prevalence varies widely between farms, 
with the highest within-herd weighted prevalence of 100% from farm 
A, whereas the lowest prevalence of 8% was from two farms (farms E 
and N). ESBL-producing E. coli was isolated from fecal samples of all 
fourteen farms, resulting in a herd-level prevalence of 100%. The herd 
size of the farms, the number of animals tested from each farm, the 
number of animals that tested positive and within-herd weighted 
prevalence, and the 95% confidence interval (95% CI) of the estimate 
for each farm are presented in Table 3.

The Chi-square test of independence was performed (without 
accounting for within farm clustering effect of the isolates) to test 
if there was a statistically significant difference in the weighted 
prevalence of ESBL-producing E. coli between farms. The test 
showed an overall statistically significant variation (χ2 = 21; 
p < 0.001) of within-herd prevalence of ESBL-producing E. coli. 
Similarly, a mixed-effect logistic regression (controlling the 
random effect of the farm) showed an overall significant variation 
in the fecal ESBL-producing E. coli prevalence between farms 
(p < 0.001). A comparison of the within-herd prevalence of fecal 
ESBL-producing E. coli between individual farms is shown in 
Figure 1.

The weighted prevalence of fecal ESBL-producing E. coli was 44 
and 61.7% in cows and calves, respectively. Calves were twice 
[OR = 2.12 (95% CI: 1.78–2.53), p < 0.001] as likely to carry 
ESBL-E. coli in their feces compared to cows using mixed effect 
logistic regression analysis with farms as a random variable and herd 
structure (calf vs. cow) as the sole fixed variable (Table 4).

ESBL-producing E. coli was recovered from over a quarter of all 
sample types (26%). The highest proportion of ESBL-producing E. coli 
was obtained from pooled manure samples (46.7%), whereas the least 
(26.3%) was from water samples (Supplementary Table S2).

3.4 Factors affecting fecal ESBL-producing 
Escherichia coli prevalence in dairy cattle

After matching the farm-level survey data with the findings of the 
MALDI-TOF MS results from individual animals, a mixed-effect 
logistic regression analysis was carried out to determine the 
association between the variables collected during the survey and the 
probability of isolating ESBL-producing E. coli in samples. The farm-
level collected data include herd size, farm type (closed vs. open), 
predominant breed in the farm, use of blanket dry cow therapy 
(BDCT) vs. selective dry cow therapy (SDCT), types of antibiotics 
used for DCT, presence of treatment ward in the farm, management 
of waste milk from treated cows (discard vs. fed to calves). None of 
these farm-level variables were associated with the detection of ESBL-
producing E. coli in fecal samples, in univariate and multivariable 
analysis (p > 0.05), and, thus, were not included in this report.

The relationship between individual animal-related surveys such 
as the recent (up to 6 months prior to sampling collection) use of beta-
lactam antibiotics such as ceftiofur, parity, lactation status of the cows 
(lactating vs. dry or non-lactating), age (of cows), and the breed was 
assessed for possible association with fecal ESBL-producing E. coli 
carriage. First, a univariate analysis was conducted to test the 
association between independent variables and the likelihood of 
isolating ESBL-producing E. coli in fecal samples. Then, only those 
variables with a p ≤ 0.2  in univariate analyses were used in a 
multivariable analysis controlling the random effect of the farm. 

TABLE 3 Within-herd prevalence of ESBL Escherichia coli across fourteen dairy farms.

Farm Herd sizea Sample size 
(n)b

Unweighted 
frequency 

(prevalence %)c

95% CI 
unweighted 
prevalence

Weighted 
frequency and cd

95% CI of the 
weighted 

prevalence

A 100 14 14 (100) 76.8–100 100 (100) 96.4–100

B 14 9 3 (33.3) 7.4–70 5 (35.7) 12.8–64.9

C 750 63 35 (55.6) 42.4–68 417 (55.6) 52.0–59.2

D 300 30 3 (10) 2.2–26.5 30 (10) 6.8–13.9

E 50 13 1 (7.7) 0.2–36 4 (8) 2.2–19.2

F 110 40 27 (67.5) 50.8–81.4 74 (67.3) 57.7–75.9

G 170 25 6 (24) 9.4–45.1 41 (24.1) 17.9–31.3

H 35 26 22 (84.6) 65.1–95.6 30 (85.7) 69.7–95.2

I 61 30 4 (13.3) 3.8–30.7 8 (13.1) 5.8–24.2

J 60 25 18 (72) 50.6–87.9 43 (71.7) 58.6–82.5

K 1700 45 28 (62.2) 46.5–76.2 1,058 (62.2) 59.9–64.5

L 250 50 21 (42) 28.2–56.8 105 (42) 35.6–48.4

M 450 64 21 (32.8) 3.0–16.8 148 (32.9) 28.6–37.4

N 350 74 6 (8.1) 3.0–16.8 28 (8) 5.4–11.4

Total 4,400 508 209 (41.1%) 36.8–45.6 2090 (47.5%) 46.2–49.2

aHerd size: the total number of animals on each farm; bThe actual number of animals sampled from each farm; cThe number and proportion of animals from which ESBL Escherichia coli was 
isolated; dFrequency of the weighted sample size and the corresponding prevalence in the herd.
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Overall, recent treatment with ceftiofur, cow parity, and the lactation 
status of the cows was independently associated (p < 0.001) with the 
prevalence of fecal ESBL-producing E. coli. The odds of ESBL-
producing E. coli fecal carriage in cows recently treated with ceftiofur 
was higher than [ORadj = 1.35 (95% CI: 1.1–1.65), p = 0.004] those 
which did not receive the treatment. Lactating cows were more than 
three times [ORadj = 3.42 (95% CI: 2.79–4.10), p < 0.001] more likely to 
carry ESBL-E. coli in their feces compared to dry cows.

Age and parity of the cows were highly correlated (p < 0.001; 
R = 0.73) since parity increases with age. Thus, the age of the cows was 
not included in the analysis, and parity was retained in the model. 
Odds of retrieving ESBL-producing E. coli was 33% higher [ORadj = 1.33 
(95% CI: 1.13–1.63), p = 0.01] in cows with parity greater than two 
compared to those cows with parity less than or equal to two (Table 5).

3.5 Antibiotic resistance profile of 
ESBL-producing Escherichia coli isolates 
from all sample type

Overall, 230 (99.6%) of 231 E. coli tested for phenotypic resistance 
were resistant to at least one of the 14 antimicrobial agents tested (Table 6). 
One isolate was susceptible to all tested antimicrobials. The most common 
resistance phenotypes were against beta-lactam antibiotics, ampicillin 
(99.1%; n = 231), and ceftriaxone (98.7%, n = 231). Only three isolates 
showed susceptibility to ceftriaxone; two of them were recovered from 
cows. After ceftriaxone and ampicillin, the isolates showed the highest 

resistance to tetracycline (80.1%), sulfisoxazole (60.2%), streptomycin 
(55%), and chloramphenicol (46.8%).

Among the critically important classes of antibiotics, the higher 
level of resistance after ceftriaxone was to streptomycin (55%), 
followed by ciprofloxacin (18.6%) and azithromycin (13.4%). The 
prevalence of resistance to gentamycin and nalidixic acid, the other 
critically important antimicrobials tested in this study, were 10 and 
9%, respectively.

The resistance level to other β-lactam antibiotics was 10% for 
cefoxitin and 9.2% for amoxicillin-clavulanic acid. All ESBL-
producing E. coli isolates in this study were susceptible to meropenem.

3.6 Multidrug resistance profiles of 
ESBL-producing Escherichia coli isolates

Most of the ESBL-producing E. coli isolates (94.4%; 218/231) 
displayed multidrug resistance (MDR) phenotypes (acquired resistance 
to at least one agent in three or more antimicrobial classes) (45). All 
isolates recovered from manure (n = 5) and water samples (n = 5) 
showed MDR phenotypes. Most of the isolated from calves (96.3%; 
n = 27), cows (93.9%; n = 180), and feed (80%; n = 4) were MDR. Among 
the 14 farms, all isolates obtained from 10 of the farms were MRD. From 
218 MDR isolates, 42.6% showed concurrent resistance to at least one 
antibiotic in six classes of antibiotics. ESBL-producing E. coli isolates 
that showed concurrent resistance to ≥6 antimicrobial classes were 
obtained from all sample sources (Supplementary Table S3).

3.7 Distribution of ESBL-producing 
Escherichia coli resistant to multiple 
antimicrobial agents

Overall, resistance to multiple classes of antibiotics is widespread 
across the study farms (Table 7). The most common (52.8%, 122/231) 
and widespread multidrug resistance pattern was concurrent 
resistance to ceftriaxone, ampicillin, streptomycin, and tetracycline, 
detected in all farms and sample types. Similarly, simultaneous 
resistance to ceftriaxone, ampicillin, sulfisoxazole, and tetracycline 
was frequent (48.5%, 112/231) and detected in all farms and sample 
types. Concurrent resistance to at least one antimicrobial agent in all 
critically important classes of antibiotics (ceftriaxone, streptomycin, 
azithromycin, and ciprofloxacin) was relatively less frequent (6.5%, 
15/231) and limited in the scope of spread among farms (detected in 
only three farms). Fourteen of fifteen E. coli isolates with this 
resistance pattern were retrieved from cow fecal samples. Seventeen 
(7.4%) of E. coli isolates were co-resistant to all beta-lactam antibiotics 
tested in this study (ceftriaxone, ampicillin, cefoxitin, and 

FIGURE 1

Pairwise comparison of within-herd fecal ESBL-E. coli prevalence 
across 14 farms. Farms connected with green lines (—) showed 
statistically significant variation in their within-herd prevalence, whereas 
no difference for those farms connected with light blue lines (—).

TABLE 4 Comparison of prevalence of fecal ESBL Escherichia coli in dairy cattle.

Herd structure Unweighted sample 
size

Weighted size Weighted frequency 
and [(prevalence), 

95% CI]

OR (95% CI) p-value

Cows 424 3,526 1,551 [(44%), 42.3–45.6] Ref

Calves 84 874 539 [(61.7%), 58.4–64] 2.12 (1.78–2.53) <0.001

Total 508 4,400 2090 [(47.5%), 46.2–49.2] NA
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amoxicillin-clavulanic acid). E. coli isolates with this co-resistance 
phenotype were detected in six farms, and all of them were isolated 
from fecal samples except one recovered from a feed sample.

4 Discussion

In this study, all farms identified mastitis as the most frequent 
health problem of dairy cows and a primary driving factor for 
antibiotic use. This finding is consistent with other studies in the 
United States that also reported mastitis as the most common disease 
and the main reason for antibiotics use in dairy farms (8, 11, 46, 48, 
49). Similar to previous studies in the United States (50, 51), most 
(86%, n = 14) of the farms in the present study used blanket dry cow 

therapy to manage mastitis. This practice may expose many animals 
and their gut commensal bacteria to antibiotics as portions of the 
administered dose or metabolites may enter the bloodstream and 
reach the gut (52).

Beta-lactam antibiotics such as cephalosporins (ceftiofur, 
cephapirin benzathine, and cephapirin sodium) and penicillin were 
the most frequently used antibiotics in the study farms. This finding 
concurs with a recent study by Nora et al. (12), who reported the 
consumption of large quantities of cephalosporins and penicillin in 
dairy cattle farms compared to other antibiotics. Similarly, the latest 
USDA survey reports (50, 53) and two other studies in the 
United States (8, 54) also showed that cephalosporins and penicillin 
are the most commonly used antibiotics to treat or prevent mastitis 
and other common diseases of dairy cattle. The previous studies 

TABLE 5 Association between cow-level characteristics and weighted fecal ESBL Escherichia coli prevalence.

Variable Prevalence (frequency) Multivariable analyses

Name Category Adjusted OR (95% CI) p-value

Ceftiofur*Treated No 15.4% (254/1641)

Yes 20.5% (230/1124) 1.35 (1.1–1.65) 0.004

Reproductive status

Dry 22.2% (180/812)

Lactating 50.5% (1,371/2714) 3.42 (2.79–4.10) <0.001

Cow parity ≤2 39.4% (840/2130)

≥3 50.8% (706/1391) 1.33 (1.13–1.56) <0.001

*The data related to treatment with ceftiofur pertains only to cows (does not include claves).

TABLE 6 Number and percentage of resistance of ESBL Escherichia coli isolates (N  =  231) obtained from various sources.

Antibiotic Sources of E. coli isolates and proportion of resistance to the specific antibacterial 
agent

Prevalence of 
resistant 

isolates to 
specific 

antibiotic

Cows 
(N  =  180)a

Calves 
(N  =  27)

Manure 
(N  =  14)

Feed (N  =  5) Water (N  =  5)

n (% Resistant)b n (% Resistant) n (% Resistant) n (% Resistant) n (% Resistant) n (% Resistant)

AUG2 8 (4.4) 11 (40.7) 0 (0) 1 (20) 0 (0) 20 (8.7)

AMP 178 (98.9) 27 (100) 14 (100) 5 (100) 5 (100) 229 (99.1)

AZI 25 (13.9) 4 (14.8) 0 (0) 2 (40) 0 (0) 31 (13.4)

FOX 11 (6.1) 11 (40.7) 1 (7.1) 0 (0) 0 (0) 23 (10)

AXO 178 (98.3) 26 (96.3) 14 (100) 5 (100) 5 (100) 228 (98.7)

CHL 83 (46.1) 12 (44.4) 7 (50) 3 (60) 3 (60) 108 (46.8)

GEN 9 (5) 12 (44.4) 1 (7.1) 0 (0) 0 (0) 22 (9.5)

MERO 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

CIP 36 (20) 0 (0) 2 (14.3) 3 (60) 2 (40) 43 (18.6)

NAL 16 (8.9) 4 (14.8) 0 (0) 1 (20) 0 (0) 21 (9.1)

STR 85 (47.2) 25 (92.6) 9 (64.3) 4 (80) 4 (80) 127 (55)

FIS 107 (59.4) 20 (74.1) 9 (64.3) 1 (20) 2 (40) 139 (60.2)

TET 138 (76.7) 25 (92.6) 14 (100) 4 (80) 4 (80) 185 (80.1)

STX 44 (24.4) 12 (44.4) 3 (21.4) 1 (20) 1 (20) 61 (26.4)

aN, total number of isolates obtained from a given source; bn, number of isolates resistant to a specific antimicrobial agent; proportion: the percentage of isolates resistant to a particular 
antimicrobial in the given sample (n/N). AXO, ceftriaxone; FOX, cefoxitin; AUG2, amoxicillin-clavulanic acid; AMP, ampicillin; MERO, meropenem, AZI, azithromycin; CIP, ciprofloxacin; 
NAL, nalidixic acid; CHL, chloramphenicol; GEN, gentamicin; STR, streptomycin; TET, tetracycline; FIS, sulfisoxazole; STX, trimethoprim-sulfamethoxazole.
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demonstrated that frequent use of a given antibiotic leads to the 
emergence of resistance to antibiotics (47, 55–59). Regularly using 
cephalosporins, particularly ceftiofur, in the study farms is concerning 
as it could lead to the emergence of ESBL-producing bacteria such as 
E. coli (60).

ESBL-producing E. coli was detected from fecal samples of at least 
one animal in all 14 study farms resulting in 100% herd-level 
prevalence. This is higher than previous studies from the United States 
that reported 20% (5/25 farms) from Ohio (37), 85% (18/21) from 
Washington (30), and 4% (3/80) from Pennsylvania (61) dairy herds. 
However, this comparison should be interpreted with caution as these 
studies may differ in the criteria that they used to define a herd as 
positive (use of pooled manure samples vs. rectal fecal sample), sample 
processing steps (use or not using enrichment steps, type of media 
used for bacterial isolation) involved to determine the herd level status 
of ESBL-producing E. coli, which has different detection sensitivity 
and specificity. The widespread occurrence of ESBL-producing E. coli 
across the present study farms could be related to the frequent use of 
beta-lactam antibiotics, such as ceftiofur, that may subject them to 
selection pressure and other farm management related factors that 
favor the spread of the ESBL-producing E. coli or their ESBL genes.

The weighted within-herd prevalence of fecal ESBL-producing 
E. coli ranged from 8.0 to 100%, and the difference between within-
herd prevalence was statistically significant across the farms. Detection 
of statistically significant variation in prevalence between different 
farms could be related to the differences in the type and level of beta-
lactam antibiotics use and the presence of other influencing farm 
management related factors that were not within this study’s scope.

The within-herd prevalence of 8–100% in the present study is 
higher than a few previous studies conducted in the United States, 
including 3.3–100% (37) in Washington state and 0–33% in Ohio (33). 
Studies from other countries also reported a within-herd prevalence 

ranging from 5.2–86.7% (62, 63). However, it should be noted that 
these studies differ from the present study and each other in the 
microbiological techniques they used to isolate and identify the 
bacteria and the study farms’ selection criteria, which makes the 
comparison less plausible.

The prevalence of fecal ESBL-producing E. coli in the present 
study was 47.5% at an animal level, indicating a high level of 
colonization. The current prevalence report is higher than the previous 
report from Ohio dairy cattle (9.4%,70/747) (37) but closely similar to 
a report from European dairy cattle, 41% (37/90) (63). The fecal 
prevalence of ESBL-producing E. coli in this study is higher than the 
recently reported prevalence of 4.6% in United  States cow-calf 
operations (64). This variation could be related to the differences in 
the type and frequency of beta-lactam antibiotics use and other 
managemental factors that may favor the occurrence and spread of 
ESBL-producing E. coli in the farms.

The fecal ESBL-producing E. coli prevalence in dairy calves was 
significantly (p < 0.001) higher than in cows (61.7% vs. 44%). This 
finding agrees with recent studies from North America (56, 61, 64–68) 
and Europe (63, 69–71) that reported a higher proportion of ESBL-
producing or -third-generation cephalosporins (3GC) resistant-E. coli 
in calves compared to older cattle. Conclusive evidence as to why the 
higher prevalence of resistant bacteria in calves is not available and 
needs further study. It is hypothesized that feeding medicated milk 
replacers, colostrum, or milk from cows treated with beta-lactam 
antibiotics might have exerted selective pressure that led to the 
increased fecal carriage of ESBL-producing E. coli in calves (56, 63, 66, 
69, 72). However, a recent study in the United States and Canada dairy 
calves showed a high prevalence of antimicrobial resistant E. coli in 
young calves that were not exposed to antimicrobials-containing milk 
replacers or did not feed milk from cows treated with antibiotics (66). 
Another alternative hypothesis for a higher prevalence of 

TABLE 7 Distribution of concurrent resistance of ESBL Escherichia coli to multiple classes of antibiotics across farms and sample sources.

Concurrent 
resistance pattern

Sources and number of isolates Prevalence and No. of farms with 
the resistance pattern

Feces 
(N  =  207)

Manure 
(N  =  14)

Water 
(N  =  5)

Feed (N  =  5) n (Prevalence)a No. of farmsb

AXO-AMP-STR-TET 105 9 4 4 122 (52.8) All (14)

AXO-AMP-FIS-TET 100 9 2 1 112 (48.5) All (14)

AXO-AMP-TET-FIS-CHL 64 6 1 1 72 (31.2) 13

AXO-AMP-STR-FIS-

CHL-TET

52 6 1 0 59 (25.5) 12

AXO-AMP-STR-FIS-CHL 48 6 0 1 55 (23.8) 11

AXO-AMP-STR-CIP 29 1 2 3 35 (15.2) 8

AXO-AMP-STR-AZI 20 0 0 2 22 (9.5) 6

AXO-AMP-FOX 20 1 0 0 21 (9.1%) 6

AXO-AMP-AUG2-FOX 16 0 0 1 17 (7.4) 6

AXO-AMP-STR-NAL-

STX

19 0 0 0 19 (8.3) 6

AXO-AMP-STR-AZI-CIP 14 0 0 1 15 (6.5) 3

aFrequency and proportion of isolates with a given concurrent resistant pattern. bNumber of farms with the given concurrent resistance pattern. AXO, ceftriaxone; FOX, cefoxitin; AUG2, 
amoxicillin-clavulanic acid; AMP, ampicillin; AZI, azithromycin; CIP, ciprofloxacin; NAL, nalidixic acid; CHL, chloramphenicol; STR, streptomycin; TET, tetracycline; FIS, sulfisoxazole; STX, 
trimethoprim-sulfamethoxazole.
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ESBL-producing E. coli in calves is related to the fitness of the resistant 
bacteria due to less bacterial diversity in the calves’ gut compared to 
adult dairy cattle with more diverse gut bacteria where competition is 
strong for ESBL-producing E. coli to thrive (71, 73, 74). A controlled 
study is needed to identify factors that promote a higher fecal ESBL-
producing E. coli carriage in dairy calves than in adult cattle. Whatever 
the driving factor may be, this study suggests that calves may be an 
important source or reservoir of ESBL-producing E. coli and can 
be considered as sentinel animals for surveillance.

The detection of a higher proportion of ESBL-producing E. coli in 
manure is not surprising as manure contains a mixture of fecal 
samples, bedding, and wastewater pooled from different animal 
sources and has a high chance of containing the bacteria. Previous 
studies in the United States also reported a comparable level (53.5%; 
62/116) of ESBL-producing E. coli from pooled manure samples (33). 
Most dairy farms in this study use manure as a fertilizer on pasture 
fields, which can contaminate the environment and water. Thus, the 
presence of ESBL-producing E. coli in the manure sample has 
significant public and environmental health implications. In our 
previous study, we  detected a higher proportion of 3GC-resistant 
E. coli in dairy manure-amended soils compared to prairie soils not 
impacted by dairy cattle suggesting the need for proper management 
of manure to reduce the spread of resistant bacteria (16). The detection 
of ESBL-producing E. coli in feed (33.3%) and water (26%) samples in 
this study suggest that the bacteria may remain circulating in dairy 
farms through oral-fecal transmission via contaminated feed and 
water (75). Frequent cleaning of water and feed troughs may help to 
reduce the chance of maintenance of ESBL-producing E. coli in the 
dairy farm (5, 67).

This study also assessed animal-level factors that may influence 
the fecal prevalence of ESBL-producing E. coli. Recent use of ceftiofur 
(for treatment or prophylaxis), parity, and lactation status of the cow 
were significant predictors for the probability of ESBL-producing 
E. coli fecal carriage (p < 0.05). Cows recently receiving ceftiofur 
treatment (up to 6 months before sample collection) were 35% more 
likely (OR = 1.35) to carry ESBL-producing E. coli in their feces 
compared to cows not exposed to this antibiotic during the same 
period. Previous studies (4, 72, 76–79) also showed ceftiofur use leads 
to an increased probability of ESBL-producing E. coli detection or 
decreased susceptibility to 3GC, such as ceftriaxone in dairy cattle. 
Controlled studies in the United States (78) and Europe (80) showed 
a significant increase in ESBL mediating genes and mobile genetic 
elements (plasmids and prophages) in ceftiofur treated compared to 
non-treated dairy cows. In addition, a European study showed a 
restrictive use of ceftiofur and cefquinome (4th generation 
cephalosporin) in cattle significantly decreased the prevalence of fecal 
ESBL-producing E. coli in cattle (71).

Nevertheless, existing literature does not fully agree on the 
association between ceftiofur use and the probability of detection of 
E. coli with reduced susceptibility to 3GC. Some authors reported a 
lack of association between the two (37, 68), and others reported a 
decreased chance of recovering resistant E. coli following treatment 
with ceftiofur (72). However, most controlled and observational 
studies (37, 68) (including the present study) indicated a stronger 
association between ceftiofur use and the probability of detecting 
ESBL-producing E. coli. Thus, considering ways to reduce ceftiofur use 
(e.g., using only when sensitivity test result justifies) may help to 
reduce the ESBL-producing E. coli emergence and spread.

The likelihood of lactating cows having ESBL-producing E. coli in 
their feces were more than three times greater (OR = 3.42) than that of 
dry cows. The difference in the prevalence of fecal ESBL-producing 
E. coli may be  related to the increased risk of mastitis and other 
diseases in lactating cows, prompting antibiotic use and favoring the 
emergence of ESBL-producing E. coli strains. This finding is significant 
because lactating cows are more likely to come into contact with 
humans than dry cows, and they also produce milk that can 
be contaminated. This increases the risk of transmission of ESBL-
producing E. coli from cows to humans during the lactation period.

Cows with higher parity (≥3) were associated with an increased 
probability (OR = 1.33) of fecal ESBL-producing E. coli recovery 
compared to those cows with lower parity (≤2). This could be related 
to frequent exposure to beta-lactam antibiotics for managing mastitis 
and other diseases whose prevalence likely increases with age. 
Previous studies (81–83) showed a strong association between the 
prevalence or incidence of mastitis and parity (higher risk in older 
cows), which is also correlated with increased use of antibiotics that 
promote selection pressure on commensal E. coli.

Almost all (99.6%, 230/231) ESBL-producing E. coli tested for 
AST exhibited resistance to at least one of the 14 antimicrobial agents 
tested. The isolates displayed the highest level of resistance to 
ampicillin (99.1%, n = 231) and ceftriaxone (98.7%) which is expected 
as the isolates produce ESBL-enzymes that hydrolyze penicillin and 
extended-spectrum cephalosporins (14, 84). Three ESBL-producing 
E. coli isolates were identified as ESBL-producers by the selective 
chromogenic media and were unexpectedly susceptible to ceftriaxone, 
a 3GC. One isolate was sensitive to all the tested antimicrobial agents. 
This finding was unexpected as the selective media used in this study 
contains a supplement that is supposed to select isolates resistant to 
beta-lactam antibiotics such as penicillin and 3GC. This could 
be related to the reduced specificity of the screening media used to 
isolate ESBL-producing E. coli or later loss of expression of the ESBL 
gene (85).

A high prevalence of co-resistance was detected between 
ceftriaxone and older antibiotics such as ampicillin (97.8%, n = 231), 
tetracycline (79.7%), sulfisoxazole (59.7%), and streptomycin (54.5%). 
This resistance trend and prevalence are consistent with previous 
studies from the United States dairy cattle (16, 30, 61). Recently, Masse 
et al. (65) also reported a similar trend but a lower prevalence of 
co-resistance to these antibiotics in Canada. However, some authors 
used different initial screening steps (selective media) to isolate E. coli, 
making the comparison challenging. Some of these antibiotics 
(streptomycin and sulfisoxazole) were not mentioned by farmers as 
predominantly used antibiotics in their farms, suggesting the high 
level of resistance detected may not be related to their utilization. 
Further investigation is important to explain if these resistance 
phenotypes were co-selected with ESBL phenotypes, common 
resistance phenotypes reported in this study.

ESBL-producing E. coli exhibited low resistance to amoxicillin-
clavulanic acid (8.7%, n = 231) and cefoxitin (10%). Generally, the 
growth of ESBL-producing E. coli is expected to be inhibited by both 
amoxicillin-clavulanic acid and cefoxitin, a cephamycin (14, 84, 86). 
As reported in other studies, the detection of resistance to these two 
antibiotics suggests the possible expression of multiple resistance 
phenotypes in the same E. coli isolates (5, 30, 65).

ESBL-producing E. coli displayed a higher level of concurrent 
resistance between ceftriaxone and other members of CIAs, such as 
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streptomycin (55%), ciprofloxacin (18.6%), and azithromycin (13.4%). 
The prevalence of concurrent resistance is similar to a previous study 
from the United States (30) but 5 to 20 times higher than the reported 
prevalence from Canadian dairy farms (65). Other previous studies 
reported ESBL-producing E. coli often exhibit co-resistance to multiple 
CIAs (3, 68).

The overall prevalence of MDR ESBL-producing E. coli isolates 
in this study were 94.4% (218/231), suggesting an association 
between MDR and ESBL-phenotypes in E. coli. This finding is 
consistent with previous studies that reported a high prevalence of 
MDR phenotype1 in ESBL-producing E. coli isolates from cattle 
rectal fecal and farm manure samples (30, 64, 68). About 42.6% of 
MDR E. coli isolates in this study showed concurrent resistance to 
at least six classes of antibiotics, suggesting the ESBL-producing 
E. coli is a host of resistance genes which may complicate treatment 
if these bacteria cause infection or transfer the resistance genes to 
pathogenic bacteria. Multidrug resistant ESBL-E. coli was detected 
from all farms and all sample types, suggesting widespread 
occurrence across farms. Unlike recent studies from Canadian 
dairy farms (65), no difference was detected in the prevalence of 
the MDR across the five sample sources and study farms. The lack 
of detection of variation indicates that ESBL phenotype is a 
phenotypic marker of the MDR pattern in E. coli, irrespective of 
sample sources (5, 86, 87).

The study found two specific patterns of multidrug resistance 
ESBL-producing E. coli, AXO-AMP-STR-TET (52.8%), and 
AXO-AMP-FIS-TET (48.5%) were prevalent and detected in all 
sample types and study farms. The widespread occurrence of these 
patterns is a cause for concern regarding the spread of antibiotic 
resistance. The study calls for further research to understand the 
mechanisms behind the spread of these patterns, and the potential 
impact on animal and human health to identify strategies for reducing 
their prevalence in dairy farms.

The study found that 6.5% of ESBL-producing E. coli had 
concurrent resistance to at least one antibiotic in all CIAs tested in 
this study. This is a serious cause for concern as these antibiotics 
are of the highest importance for human health, and their efficacy 
could be  compromised. However, concurrent resistance was 
detected from only three study farms, highlighting the need for 
continuous monitoring with targeted and localized interventions. 
Another study in the United States reported that CIAs such as 
macrolides and fluoroquinolones are commonly used to treat 
diseases in dairy calves and other non-lactating dairy cattle under 
2 years of age, which could possibly drive the concurrent presence 
of resistance to these antibiotics (88). Other studies in humans 
reported the frequent use of 3GC as a risk factor for the 
co-occurrence of resistance to CIAs such as fluoroquinolones 
(89–91) which could be  the case as two of these farms were 
frequently using ceftiofur, a 3GC.

5 Conclusion

This study showed a high prevalence of ESBL-producing E. coli 
in dairy cattle farms, with almost half of the tested animals harbored 
the bacteria. The prevalence of ESBL-producing E. coli varied 
significantly within each farm. The study found that recent treatment 

with third generation cephalosporins, cows with higher parity, and 
being calves was linked to an increased risk of fecal carriage of 
ESBL-producing E. coli. These findings suggest that interventions 
should target these identified variables. Almost all the ESBL-
producing E. coli isolates were MDR with the highest resistance to 
ampicillin and ceftriaxone. Over 40% of ESBL-E. coli showed 
concurrent resistance to at least six classes of antibiotics. Concurrent 
resistance to ceftriaxone, ampicillin, tetracycline, sulfisoxazole, 
streptomycin, and chloramphenicol was high and widespread across 
all farms. It is important to indicate that the study farms and animals 
sampled from each farm were based on farmers that agreed to 
participate in the study and individual animals were selected based 
on convenience sampling. In addition, we acknowledge that the use 
of CHROMagar ESBL plates, while a widely accepted method, may 
result in some misclassifications. Despite these limitations, the 
findings of this study particularly the high prevalence of MDR 
ESBL-producing E. coli in the study area is significant and provides 
baseline data for future intervention measures. Further investigation, 
such as the longitudinal monitoring of ESBL-E. coli colonization in 
dairy cattle and possible transmission between cattle and farm 
workers who are in direct and frequent contact with animals and 
their feces is required.
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